化工进展 ›› 2021, Vol. 40 ›› Issue (5): 2909-2916.DOI: 10.16085/j.issn.1000-6613.2020-1207
收稿日期:
2020-06-29
出版日期:
2021-05-06
发布日期:
2021-05-24
通讯作者:
周康根
作者简介:
幸艳(1995—),女,硕士研究生,研究方向为赤泥脱碱与土壤化协同处理技术。E-mail:基金资助:
XING Yan(), ZHANG Xuekai, ZHOU Kanggen(), PENG Changhong
Received:
2020-06-29
Online:
2021-05-06
Published:
2021-05-24
Contact:
ZHOU Kanggen
摘要:
赤泥是氧化铝行业最大的环境污染问题,碱性调控是处置赤泥的关键。本文以赤泥资源化过程中产出的CaCl2溶液的模拟液作为脱碱剂对赤泥进行碱性调控研究,考察了可能影响碱性调控过程的因素,并进行了柱淋洗实验以模拟实际赤泥堆存过程中的淋洗过程,进行盆栽试验来评估脱碱赤泥的土壤化潜力。结果表明:在固液比为500g/L、脱碱液Ca2+浓度为10g/L、反应温度为85℃、反应时间为2h的条件下,浸出液中Ca、Na浓度分别为7.74g/L和1.22g/L,pH可降低至8.39,并且一次脱碱过程即可达到脱碱平衡。柱淋洗流出液Na/Ca比高达107.8,远高于海水Na/Ca比(25.8),可用作氯碱工业原料;脱碱后赤泥pH由11.14降至8.05。黑麦草在脱碱赤泥与锯末的混合基质中的七天发芽率达到92%,高于新鲜土壤中黑麦草发芽率(84%),表明脱碱后赤泥适合植物生长。利用CaCl2回收液进行赤泥碱性调控可为赤泥处置提供一种成本低廉、绿色环保的方法。
中图分类号:
幸艳, 张雪凯, 周康根, 彭长宏. CaCl2回收液赤泥碱性调控[J]. 化工进展, 2021, 40(5): 2909-2916.
XING Yan, ZHANG Xuekai, ZHOU Kanggen, PENG Changhong. Alkalinity regulation of red mud with recycled CaCl2[J]. Chemical Industry and Engineering Progress, 2021, 40(5): 2909-2916.
成分 | 质量分数/% |
---|---|
Fe | 19.45 |
Al | 9.34 |
Ca | 12 |
Na | 7.41 |
Si | 6.80 |
Ti | 4.12 |
表1 赤泥化学组成
成分 | 质量分数/% |
---|---|
Fe | 19.45 |
Al | 9.34 |
Ca | 12 |
Na | 7.41 |
Si | 6.80 |
Ti | 4.12 |
元素 | 浓度/mg·L-1 |
---|---|
Fe | 0.6 |
Al | 8.2 |
Ti | 0.6 |
Ca | 49663 |
Na | 7167 |
Y | 0.2 |
La | 2.6 |
Ce | 1.9 |
表2 CaCl2回收液元素组成
元素 | 浓度/mg·L-1 |
---|---|
Fe | 0.6 |
Al | 8.2 |
Ti | 0.6 |
Ca | 49663 |
Na | 7167 |
Y | 0.2 |
La | 2.6 |
Ce | 1.9 |
样品 | pH | EC/mS·cm-1 | 播种数 | 发芽数 | 发芽率/% |
---|---|---|---|---|---|
原始赤泥 | 11.14 | 1.43 | — | — | — |
脱碱赤泥 | 8.05 | 0.64 | — | — | — |
新鲜土壤 | 5.12 | 0.10 | 50 | 42 | 84 |
RRMS | 9.49 | 1.27 | 50 | 12 | 24 |
DRMS | 8.54 | 0.35 | 50 | 46 | 92 |
表3 黑麦草发芽率及样品理化特性
样品 | pH | EC/mS·cm-1 | 播种数 | 发芽数 | 发芽率/% |
---|---|---|---|---|---|
原始赤泥 | 11.14 | 1.43 | — | — | — |
脱碱赤泥 | 8.05 | 0.64 | — | — | — |
新鲜土壤 | 5.12 | 0.10 | 50 | 42 | 84 |
RRMS | 9.49 | 1.27 | 50 | 12 | 24 |
DRMS | 8.54 | 0.35 | 50 | 46 | 92 |
1 | 李彬, 张宝华, 宁平, 等. 赤泥资源化利用和安全处理现状与展望[J]. 化工进展, 2018, 37(2): 714-723. |
LI Bin, ZHANG Baohua, NING Ping, et al. Present status and prospect of red mud resource utilization and safety treatment[J]. Chemical Industry and Engineering Progress, 2018, 37(2): 714-723. | |
2 | 薛生国, 吴雪娥, 黄玲, 等. 赤泥土壤化处置技术研究进展[J]. 矿山工程, 2015(3): 13-18. |
XUE Shengguo, WU Xue'e, HUANG Ling, et al. Research advance on soil formation of bauxite residue[J]. Mine Engineering, 2015(3): 13-18. | |
3 | ZHANG Xuekai, ZHOU Kanggen, WU Yehuizi, et al. Separation and recovery of iron and scandium from acid leaching solution of red mud using D201 resin[J]. Journal of Rare Earths, 2020, 38(12): 1322-1329. |
4 | XUE Shengguo, WU Yujun, LI Yiwei, et al. Industrial wastes applications for alkalinity regulation in bauxite residue: a comprehensive review[J]. Journal of Central South University, 2019, 26(2): 268-288. |
5 | LI Yiwei, JIANG Jun, XUE Shengguo, et al. Effect of ammonium chloride on leaching behavior of alkaline anion and sodium ion in bauxite residue[J]. Transactions of Nonferrous Metals Society of China, 2018, 28(10): 2125-2134. |
6 | POWER G, GRÄFE M, KLAUBER C. Bauxite residue issues: (): Current management, disposal and storage practices[J]. Hydrometallurgy, 2011, 108(1/2): 33-45. |
7 | 王宇斌, 朱新锋, 张乐观, 等. 赤泥去除高浓度含磷废水[J]. 化工进展, 2010, 29(9): 1771-1774. |
WANG Yubin, ZHU Xinfeng, ZHANG Leguan, et al. Adsorption removal of high concentration phosphorus wastewater using red mud[J]. Chemical Industry and Engineering Progress, 2010, 29(9): 1771-1774. | |
8 | ARINO M D, KATSIOTIS M, GIANNAKOPOULOS G, et al. Low-carbon footprint cements incorporating high volumes of bauxite residue[C]//The International Committee for Study of Bauxite, Alumina & Aluminium (ICSOBA), 2017. |
9 | PONTIKES Y, ANGELOPOULOS G N. Bauxite residue in cement and cementitious applications: current status and a possible way forward[J]. Resources Conservation and Recycling, 2013, 73: 53-63. |
10 | KIM Youngjae, Youngmin LEE, KIM Minseuk, et al. Preparation of high porosity bricks by utilizing red mud and mine tailing[J]. Journal of Cleaner Production, 2019, 207: 490-497. |
11 | MANDAL A K, VERMA H R, SINHA O P. Utilization of aluminum plant’s waste for production of insulation bricks[J]. Journal of Cleaner Production, 2017, 162: 949-957. |
12 | MUKIZA E, ZHANG L L, LIU X M, et al. Utilization of red mud in road base and subgrade materials: a review[J]. Resources, Conservation and Recycling, 2019, 141: 187-199. |
13 | ZHANG Xuekai, ZHOU Kanggen, LEI Qingyuan, et al. Stripping of Fe(Ⅲ) from Aliquat 336 by NaH2PO4: implication for rare-earth elements recovery from red mud[J]. Separation Science and Technology, 2021, 56(2): 301-309. |
14 | ZHANG Xuekai, ZHOU Kanggen, LEI Qingyuan, et al. Integration of resource recycling with de-alkalization for bauxite residue treatment[J]. Hydrometallurgy, 2020, 192: 105263. |
15 | NARAYANAN R P, KAZANTZIS N K, EMMERT M H. Selective process steps for the recovery of scandium from Jamaican bauxite residue (red mud)[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(1): 1478-1488. |
16 | ZHANG Xuekai, ZHOU Kanggen, CHEN Wei, et al. Recovery of iron and rare earth elements from red mud through an acid leaching-stepwise extraction approach[J]. Journal of Central South University, 2019, 26(2): 458-466. |
17 | URÍK M, BUJDOŠ M, MILOVÁ-ŽIAKOVÁ B, et al. Aluminium leaching from red mud by Filamentous fungi[J]. Journal of Inorganic Biochemistry, 2015, 152: 154-159. |
18 | ZENG Hua, Fei LYU, HU Guangyan, et al. Dealkalization of bauxite residue through acid neutralization and its revegetation potential[J]. JOM, 2020, 72(1): 319-325. |
19 | PULFORD I D, HARGREAVES J S J, ĎURIŠOVÁ J, et al. Carbonised red mud—A new water treatment product made from a waste material[J]. Journal of Environmental Management, 2012, 100: 59-64. |
20 | 吕常胜, 王家伟, 贾永真, 等. 赤泥加入量对赤泥烧结砖的影响[J]. 安全与环境学报, 2013, 13(4): 98-102. |
Changsheng LYU, WANG Jiawei, JIA Yongzhen, et al. Effects of red mud content on the sintered red mud bricks[J]. Journal of Safety and Environment, 2013, 13(4): 98-102. | |
21 | KUMPIENE J, LAGERKVIST A, MAURICE C. Stabilization of Pb- and Cu-contaminated soil using coal fly ash and peat[J]. Environmental Pollution, 2007, 145(1): 365-373. |
22 | OJEKANMI A A, CHANG S X. Soil quality assessment for peat-mineral mix cover soil used in oil sands reclamation[J]. Journal of Environmental Quality, 2014, 43(5): 1566-1575. |
23 | XUE Shengguo, ZHU Feng, KONG Xiangfeng, et al. A review of the characterization and revegetation of bauxite residues (red mud)[J]. Environmental Science and Pollution Research, 2016, 23(2): 1120-1132. |
24 | SHI Ben, QU Yang, LI Hui. Gypsum alleviated hydroxyl radical-mediated oxidative damages caused by alkaline bauxite residue in leaves of Atriplex canescens[J]. Ecological Engineering, 2017, 98: 166-171. |
25 | COURTNEY R G, TIMPSON J P. Reclamation of fine fraction bauxite processing residue (red mud) amended with coarse fraction residue and gypsum[J]. Water, Air, and Soil Pollution, 2005, 164(1-4): 91-102. |
26 | ZHU Feng, HOU Jingtao, XUE Shengguo, et al. Vermicompost and gypsum amendments improve aggregate formation in bauxite residue[J]. Land Degradation & Development, 2017, 28(7): 2109-2120. |
27 | DANIELS W, EVANYLO G, NAGLE S, et al. Effects of biosolids loading rate and sawdust additions on row crop yield and nitrate leaching potentials in Virginia sand and gravel mine reclamation[J]. Journal American Society of Mining and Reclamation, 2001(1): 399-406. |
28 | LIU Zhaobo, LI Hongxu, HUANG Mengmeng, et al. Effects of cooling method on removal of sodium from active roasting red mud based on water leaching[J]. Hydrometallurgy, 2017, 167: 92-100. |
29 | RAI S, WASEWAR K L, AGNIHOTRI A. Treatment of alumina refinery waste (red mud) through neutralization techniques: a review[J]. Waste Management & Research, 2017, 35(6): 563-580. |
30 | LI Xiaofei, YE Yuzhen, XUE Shengguo, et al. Leaching optimization and dissolution behavior of alkaline anions in bauxite residue[J]. Transactions of Nonferrous Metals Society of China, 2018, 28(6): 1248-1255. |
31 | ZHU Xiaobo, LI Wang, GUAN Xuemao. An active dealkalization of red mud with roasting and water leaching[J]. Journal of Hazardous Materials, 2015, 286: 85-91. |
32 | BORRA C R, BLANPAIN B, PONTIKES Y, et al. Recovery of rare earths and other valuable metals from bauxite residue (red mud): a review[J]. Journal of Sustainable Metallurgy, 2016, 2(4): 365-386. |
33 | 薛生国, 李晓飞, 孔祥峰, 等. 赤泥碱性调控研究进展[J]. 环境科学学报, 2017, 37(8): 2815-2828. |
XUE Shengguo, LI Xiaofei, KONG Xiangfeng, et al. Alkaline regulation of bauxite residue: a comprehensive review[J]. Acta Scientiae Circumstantiae, 2017, 37(8): 2815-2828. | |
34 | CUSACK P B, HEALY M G, RYAN P C, et al. Enhancement of bauxite residue as a low-cost adsorbent for phosphorus in aqueous solution, using seawater and gypsum treatments[J]. Journal of Cleaner Production, 2018, 179: 217-224. |
35 | KISHIDA M, HARATO T, TOKORO C, et al. In situ remediation of bauxite residue by sulfuric acid leaching and bipolar-membrane electrodialysis[J]. Hydrometallurgy, 2017, 170: 58-67. |
36 | RAI S, WASEWAR K L, LATAYE D H, et al. Neutralization of red mud with pickling waste liquor using Taguchi’s design of experimental methodology[J]. Waste Management & Research, 2012, 30(9): 922-930. |
37 | WONG J W C, HO G E. Use of waste gypsum in the revegetation on red mud deposits: a greenhouse study[J]. Waste Management & Research, 1993, 11(3): 249-256. |
38 | CLARK M W, JOHNSTON M, REICHELT-BRUSHETT A J. Comparison of several different neutralisations to a bauxite refinery residue: potential effectiveness environmental ameliorants[J]. Applied Geochemistry, 2015, 56: 1-10. |
39 | 饶轶晟, 王凤霞. 磷石膏资源化利用途径及展望[J]. 化工矿物与加工, 2020, 49(8): 30-33. |
RAO Yisheng, WANG Fengxia. Utilization of phosphogypsum as resource and its prospect[J]. Industrial Minerals & Processing, 2020, 49(8): 30-33. | |
40 | 崔姗姗, 王宁, 顾汉念. CaCl2废液在赤泥脱碱中的应用[J]. 化工环保, 2016, 36(5): 553-556. |
CUI Shanshan, WANG Ning, GU Hannian. Application of CaCl2 waste liqior in dealkalizition of red mud[J]. Environmental Protection of Chemical Industry, 2016, 36(5): 553-556. | |
41 | 朱晓波, 李望, 管学茂, 等. 拜耳法赤泥脱碱研究现状[J]. 硅酸盐通报, 2014, 33(9): 2254-2257, 2263. |
ZHU Xiaobo, LI Wang, GUAN Xuemao, et al. Research status on dealkalization of the red mud by bayer process[J]. Bulletin of the Chinese Ceramic Society, 2014, 33(9): 2254-2257, 2263. | |
42 | 张毅, 莫皓然. 赤泥脱碱技术研究进展[J]. 中国有色冶金, 2019, 48(2): 26-29, 33. |
ZHANG Yi, MO Haoran. Research progress on dealkalization technology for red mud[J]. China Nonferrous Metallurgy, 2019, 48(2): 26-29, 33. | |
43 | Fei LYU, SUN Ning, SUN Wei, et al. Preliminary assessment of revegetation potential through ryegrass growing on bauxite residue[J]. Journal of Central South University, 2019, 26(2): 404-409. |
[1] | 张鹏, 王绍庆, 李志合, 张安东, 高亮, 万震, 宋宁. 赤泥/木质素共热解制备复合吸附材料及其性能[J]. 化工进展, 2022, 41(S1): 407-414. |
[2] | 韩轩, 王丽红, 柏雪源, 易维明, 李永军, 李志合, 张安东. 脱碱赤泥催化剂制备及对秸秆催化热解生物油成分的影响[J]. 化工进展, 2022, 41(9): 4723-4732. |
[3] | 何畅帆, 赵小航, 章雪莹, 何林, 隋红, 李鑫钢. 过一硫酸盐-高铁酸盐-FeS体系土柱淋洗修复邻二氯苯污染土壤[J]. 化工进展, 2022, 41(5): 2743-2752. |
[4] | 刘钦, 周新涛, 黄静, 罗中秋, 邵周军, 王路星, 韦宇, 雒云龙. 赤泥吸附重金属离子性能及其机理研究进展[J]. 化工进展, 2021, 40(6): 3455-3465. |
[5] | 刘江龙,郭焱,席艺慧. FeCl3和十六烷基三甲基溴化铵改性赤泥对水中铜离子的吸附性能和机理[J]. 化工进展, 2020, 39(2): 776-789. |
[6] | 杨世诚, 孙琦, 谌伦建, 张玉龙, 薛晓晓, 仪桂云. 赤泥改性及其对丁苯橡胶复合材料微观结构和力学性能的影响[J]. 化工进展, 2019, 38(07): 3297-3303. |
[7] | 宋剑峰, 李曼, 梁小良, 粟海锋. 改性赤泥协同膨胀型阻燃剂阻燃聚乙烯[J]. 化工进展, 2018, 37(11): 4412-4418. |
[8] | 顾汉念, 郭腾飞, 马时成, 代杨, 王宁. 赤泥中铁的提取与回收利用研究进展[J]. 化工进展, 2018, 37(09): 3599-3608. |
[9] | 王博, 郭庆杰. CuO修饰的赤泥载氧体废弃活性炭化学链燃烧[J]. 化工进展, 2018, 37(07): 2837-2845. |
[10] | 燕希敏, 苗鹏, 常国璋, 郭庆杰. Fe/赤泥催化水蒸气气化煤焦的反应性与微结构特性[J]. 化工进展, 2018, 37(05): 1753-1759. |
[11] | 李彬, 张宝华, 宁平, 何力为, 左晓琳. 赤泥资源化利用和安全处理现状与展望[J]. 化工进展, 2018, 37(02): 714-723. |
[12] | 李诗杰, 韩奎华, 郝力勇, 路春美. 钙基废弃物对生物质燃烧脱氯的影响[J]. 化工进展, 2017, 36(05): 1914-1918. |
[13] | 葛琦1,王恒1,2,满毅1,李富杰1,庞立伟1. 粒度对赤泥直接还原动力学的影响[J]. 化工进展, 2014, 33(12): 3215-3220. |
[14] | 吴素彬,聂登攀,王振杰,刘安荣,薛安. 逆流浸取法回收赤泥中的碱[J]. 化工进展, 2014, 33(06): 1607-1609. |
[15] | 王小雨1,王晓龙2,吴丽梅1,吕国诚1,何文会1. 赤泥多孔材料负载微生物去除苯酚[J]. 化工进展, 2012, 31(09): 2031-2035. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |