化工进展 ›› 2020, Vol. 39 ›› Issue (2): 776-789.DOI: 10.16085/j.issn.1000-6613.2019-0788
收稿日期:
2019-05-14
出版日期:
2020-02-05
发布日期:
2020-03-12
通讯作者:
郭焱
作者简介:
刘江龙(1995—),男,硕士研究生,研究方向为废水处理及固体废弃物资源化处理技术。E-mail:Jianglong LIU(),Yan GUO(),Yihui XI
Received:
2019-05-14
Online:
2020-02-05
Published:
2020-03-12
Contact:
Yan GUO
摘要:
含铜废水主要来自电镀、有色冶炼、有色金属矿山开采、染料生产等过程。因Cu(Ⅱ)具有高毒性和生物富集性,严重威胁生态环境和人类健康。利用浓盐酸、三氯化铁(FeCl3)、十六烷基三甲基溴化铵(CTAB)依次对拜耳法赤泥(RM)进行处理、改性,制备出了一种去除率高、吸附量大、吸附效果好的重金属离子吸附剂。通过SEM、TEM、XRD、BET、元素分析、FTIR、热重分析等手段对其进行表征,并探究溶液pH、吸附剂投加量以及吸附温度等条件对水溶液中Cu(Ⅱ)吸附效果的影响。结果表明:酸浸赤泥(RM-HCl)比表面积比RM增大20倍,经过FeCl3和CTAB改性后赤泥表面负载了大量羟基氧化铁(FeOOH)并且改善了吸附材料的表面性质,提高了吸附材料与Cu(Ⅱ)之间的亲和力和单层吸附能力。综合改性赤泥(FeCl3/CTAB/RM)对铜的吸附时间在100min达到平衡,其最佳吸附pH为6、最佳吸附剂投加量为2g/L、饱和吸附量为221mg/g。吸附过程较好地符合准二级动力学模型和Langmuir吸附等温模型,热力学数据说明该吸附是吸热、自发的过程。吸附机理主要是FeCl3/CTAB/RM表面的羟基(Si-OH、α-FeOOH和β-FeOOH)以及掺杂的氯原子和表面活性剂,通过物理吸附(微胶束、静电引力)和化学吸附(离子交换、氢键)有效地去除Cu(Ⅱ)离子。
中图分类号:
刘江龙,郭焱,席艺慧. FeCl3和十六烷基三甲基溴化铵改性赤泥对水中铜离子的吸附性能和机理[J]. 化工进展, 2020, 39(2): 776-789.
Jianglong LIU,Yan GUO,Yihui XI. Adsorption and mechanism of copper ions in water by red mud modified with FeCl3 and hexadecyl trimethyl ammonium bromide (CTAB)[J]. Chemical Industry and Engineering Progress, 2020, 39(2): 776-789.
液固比 | 盐酸浓度/mol·L-1 | 反应时间/h | 粒径/μm |
---|---|---|---|
8∶1 | 12 | 1 | 17.8 |
8∶1 | 6 | 0.5 | 19.5 |
6∶1 | 12 | 1 | 19.9 |
6∶1 | 6 | 0.5 | 21.7 |
5∶1 | 12 | 1 | 16.3 |
5∶1 | 6 | 0.5 | 22.6 |
表1 拜耳法赤泥与盐酸反应实验
液固比 | 盐酸浓度/mol·L-1 | 反应时间/h | 粒径/μm |
---|---|---|---|
8∶1 | 12 | 1 | 17.8 |
8∶1 | 6 | 0.5 | 19.5 |
6∶1 | 12 | 1 | 19.9 |
6∶1 | 6 | 0.5 | 21.7 |
5∶1 | 12 | 1 | 16.3 |
5∶1 | 6 | 0.5 | 22.6 |
样品 | SBET/m2·g-1 | V/cm3·g-1 | R/nm |
---|---|---|---|
RM | 12.97 | 0.16 | 24.86 |
RM-HCl | 233.09 | 0.59 | 9.37 |
FeCl3/CTAB/RM | 201.2 | 0.38 | 10.11 |
表2 RM、RM-HCl和FeCl3/CTAB/RM的表面特性参数
样品 | SBET/m2·g-1 | V/cm3·g-1 | R/nm |
---|---|---|---|
RM | 12.97 | 0.16 | 24.86 |
RM-HCl | 233.09 | 0.59 | 9.37 |
FeCl3/CTAB/RM | 201.2 | 0.38 | 10.11 |
成分 | RM | RM-HCl | FeCl3/CTAB/RM |
---|---|---|---|
C | 1 | 0.9 | 1.97 |
N | 0.45 | 0.17 | 0.24 |
H | 0.90 | 0.81 | 1.52 |
表3 RM、RM-HCl和FeCl3/CTAB/RM样品的元素分析 %
成分 | RM | RM-HCl | FeCl3/CTAB/RM |
---|---|---|---|
C | 1 | 0.9 | 1.97 |
N | 0.45 | 0.17 | 0.24 |
H | 0.90 | 0.81 | 1.52 |
C0/mg·L-1 | Qe,exp/mg·g-1 | 准一级动力学模型 | 准二级动力学模型 | Simple Elovich方程 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
k1/min-1 | Qe,cal/mg·g-1 | R2 | k2/min-1 | Qe,cal/mg·g-1 | R2 | α/mg·g-1·min-1 | β/mg·g-1 | R2 | ||
200 | 86 | 0.513 | 82.36 | 0.972 | 0.011 | 86.7 | 0.994 | 62.54 | 4.82 | 0.936 |
300 | 126.6 | 0.497 | 121.84 | 0.989 | 0.009 | 127.03 | 0.998 | 98.31 | 5.88 | 0.854 |
400 | 161.6 | 0.341 | 153.89 | 0.972 | 0.002 | 163.85 | 0.997 | 104.39 | 12.19 | 0.887 |
表4 不同初始Cu(Ⅱ)浓度下吸附的动力学参数
C0/mg·L-1 | Qe,exp/mg·g-1 | 准一级动力学模型 | 准二级动力学模型 | Simple Elovich方程 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
k1/min-1 | Qe,cal/mg·g-1 | R2 | k2/min-1 | Qe,cal/mg·g-1 | R2 | α/mg·g-1·min-1 | β/mg·g-1 | R2 | ||
200 | 86 | 0.513 | 82.36 | 0.972 | 0.011 | 86.7 | 0.994 | 62.54 | 4.82 | 0.936 |
300 | 126.6 | 0.497 | 121.84 | 0.989 | 0.009 | 127.03 | 0.998 | 98.31 | 5.88 | 0.854 |
400 | 161.6 | 0.341 | 153.89 | 0.972 | 0.002 | 163.85 | 0.997 | 104.39 | 12.19 | 0.887 |
T/K | Langmuir模型 | Freundlich模型 | Temkin方程 | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Qm,cal/mg·g-1 | KL/L·mg-1 | R2 | Qm,exp/mg·g-1 | KF/(mg·g-1)(mg·L-1)-n | 1/n | R2 | bT/J·mol-1 | KT/L·mg-1 | R2 | |
288 | 304.9 | 0.01 | 0.998 | 219.8 | 11.59 | 0.58 | 0.996 | 31.34 | 9.97 | 0.982 |
298 | 313.6 | 0.014 | 0.998 | 221 | 16.5 | 0.52 | 0.985 | 36.43 | 6.89 | 0.986 |
308 | 315.7 | 0.016 | 0.996 | 224.2 | 18.92 | 0.5 | 0.991 | 37.77 | 6.05 | 0.975 |
表5 在不同温度下Cu(Ⅱ)吸附的等温线参数
T/K | Langmuir模型 | Freundlich模型 | Temkin方程 | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Qm,cal/mg·g-1 | KL/L·mg-1 | R2 | Qm,exp/mg·g-1 | KF/(mg·g-1)(mg·L-1)-n | 1/n | R2 | bT/J·mol-1 | KT/L·mg-1 | R2 | |
288 | 304.9 | 0.01 | 0.998 | 219.8 | 11.59 | 0.58 | 0.996 | 31.34 | 9.97 | 0.982 |
298 | 313.6 | 0.014 | 0.998 | 221 | 16.5 | 0.52 | 0.985 | 36.43 | 6.89 | 0.986 |
308 | 315.7 | 0.016 | 0.996 | 224.2 | 18.92 | 0.5 | 0.991 | 37.77 | 6.05 | 0.975 |
T/K | ΔH0/kJ·mol-1 | ΔS0/J·mol-1·K-1 | ΔG0/kJ·mol-1 |
---|---|---|---|
288 | -0.77 | ||
298 | 37.82 | 137.8 | -1.56 |
308 | -1.92 |
表6 FeCl3/CTAB/RM吸附Cu(Ⅱ)热力学参数
T/K | ΔH0/kJ·mol-1 | ΔS0/J·mol-1·K-1 | ΔG0/kJ·mol-1 |
---|---|---|---|
288 | -0.77 | ||
298 | 37.82 | 137.8 | -1.56 |
308 | -1.92 |
吸附剂 | 实验方法 | 吸附量/mg·g-1 | 参考文献 |
---|---|---|---|
FeCl3/CTAB/RM | 12mol·L-1 HCl+0.5mol·L-1 FeCl3+0.5%CTAB | 221 | 本文 |
RM/HCl | 2.25mol·L-1 HCl | 78.13 | [ |
RM/壳聚糖 | 0.01g·mL-1壳聚糖 | 7.2 | [ |
RM/NaHSO4 | 0.32mol·L-1 NaHSO4 | 200 | [ |
表7 不同吸附剂材料对铜离子的吸附性能比较
吸附剂 | 实验方法 | 吸附量/mg·g-1 | 参考文献 |
---|---|---|---|
FeCl3/CTAB/RM | 12mol·L-1 HCl+0.5mol·L-1 FeCl3+0.5%CTAB | 221 | 本文 |
RM/HCl | 2.25mol·L-1 HCl | 78.13 | [ |
RM/壳聚糖 | 0.01g·mL-1壳聚糖 | 7.2 | [ |
RM/NaHSO4 | 0.32mol·L-1 NaHSO4 | 200 | [ |
样品 | C | N | O | Si | Fe | Cl | Cu |
---|---|---|---|---|---|---|---|
RM | 5.57 | 1.66 | 66.84 | 25.84 | 0.05 | 0.03 | 0 |
RM-HCl | 7.65 | 1.61 | 45.82 | 44.68 | 0.23 | 0 | 0 |
FeCl3/CTAB/RM | 29.86 | 2.45 | 27.13 | 35.51 | 3.1 | 1.64 | 0 |
FeCl3/CTAB/RM-Cu | 25.54 | 2.32 | 30.95 | 36.25 | 2.7 | 0.58 | 1.05 |
表8 FeCl3/CTAB/RM吸附Cu(Ⅱ)前后EDS元素分析数据
样品 | C | N | O | Si | Fe | Cl | Cu |
---|---|---|---|---|---|---|---|
RM | 5.57 | 1.66 | 66.84 | 25.84 | 0.05 | 0.03 | 0 |
RM-HCl | 7.65 | 1.61 | 45.82 | 44.68 | 0.23 | 0 | 0 |
FeCl3/CTAB/RM | 29.86 | 2.45 | 27.13 | 35.51 | 3.1 | 1.64 | 0 |
FeCl3/CTAB/RM-Cu | 25.54 | 2.32 | 30.95 | 36.25 | 2.7 | 0.58 | 1.05 |
1 | FAN L, LUO C, LÜ Z, et al. Preparation of magnetic modified chitosan and adsorption of Zn from aqueous solutions[J]. Colloids & Surfaces B: Biointerfaces, 2011, 88(2): 574-581. |
2 | 余伟光, 黎吉辉, 王敦, 等. 香蕉茎秆生物炭的制备及其对铜离子的吸附特性[J]. 化工进展, 2017, 36(4): 1499-1505. |
YU Weiguang, LI Jihui, WANG Dun, et al. The preparation of biochar from pre-oxidation of banana stem and its adsorption of Cu2+[J]. Chemical Industry and Engineering Progress, 2017, 36(4): 1499-1505. | |
3 | BHATNAGAR A, VILAR V J, BOTELHO C M, et al. A review of the use of red mud as adsorbent for the removal of toxic pollutants from water and wastewater[J]. Environmental Technology, 2011, 32(3): 231-249. |
4 | SOYLAK M, MURAT I. A new coprecipitation methodology with lutetium hydroxide for preconcentration of heavy metal ions in herbal plant samples[J]. Journal of Aoac International, 2014, 97(4): 1189. |
5 | BULGARIU L, BULGARIU D. Selective extraction of Hg(Ⅱ), Cd(Ⅱ) and Zn(Ⅱ) ions from aqueous media by a green chemistry procedure using aqueous two-phase systems[J]. Separation & Purification Technology, 2013, 118(43): 209-216. |
6 | PENG W, LI H, LIU Y, et al. A review on heavy metal ions adsorption from water by graphene oxide and its composites[J]. Journal of Molecular Liquids, 2017, 230: 496-504. |
7 | 文小年. 氧化铝工业废渣(赤泥)的吸附特性及其环境修复材料制备[D]. 桂林: 桂林理工大学, 2006. |
WEN X N. Adsorption characteristics of alumina industrial waste(red mud) and preparation of environmental remediation materials[D]. Guilin: Guilin University of Technology, 2006. | |
8 | 潘嘉芬, 李梦红. 拜耳法赤泥陶粒改性及吸附废水中氟离子试验[J]. 有色金属(冶炼部分), 2015(2): 63-65. |
PAN Jiafen, LI Menghong. Modification of porous ceramsite with red mud of Bayer process and adsorbing fluoride from waste water[J]. Nonferrous Metals (Extractive Metallurgy), 2015(2): 63-65. | |
9 | LI D, DING Y, LI L, et al. Removal of hexavalent chromium by using red mud activated with cetyltrimethylammonium bromide[J]. Environmental Technology, 2015, 36(9): 1084-1090. |
10 | 吴建锋, 方斌正, 徐晓虹, 等. 用于去除电镀废水中As(V)的赤泥基环境修复材料的研究[C]//第7届亚洲陶瓷技术研讨会, 中国, 江西, 2011. |
WU J F, FANG B Z, XU X H, et al. Study on red mud environmental remediation materials for removal As(V) ions in electroplating wastewater[C]//The 7th Asian Ceramic Technology Seminar. Jiangxi, China, 2011. | |
11 | VENKATESAN G, NARAYANAN S L. Synthesis of Fe2O3 coated and HCl treated bauxite ore waste for the adsorption of arsenic (Ⅲ) from aqueous solution: isotherm and kinetic models[J]. Chemical Engineering Communications, 2017, 205(1): 34-46. |
12 | CUI Y W, LI J, DU Z F, et al. Cr(Ⅵ) adsorption on red mud modified by lanthanum: performance, kinetics and mechanisms[J]. PloS One, 2016, 11(9): e0161780. |
13 | JIE C, NING W, MA H, et al. Facile Modification of a polythiophene/TiO2 composite using surfactants in an aqueous medium for an enhanced Pb(Ⅱ) adsorption and mechanism investigation[J]. Journal of Chemical & Engineering Data, 2017, 62(7): 2208-2221. |
14 | 张多, 张盼月, 田帅, 等. 用于磷吸附的载铁(β-FeOOH)沸石制备及特性[J]. 环境工程学报, 2014, 8(2): 499-504. |
ZHANG Duo, ZHANG Panyue, TIAN Shuai, et al. Preparation of β-FeOOH loaded-zeolite and its characteristics for phosphorus adsorption[J]. Chinese Journal of Environmental Engineering, 2014, 8(2): 499-504. | |
15 | CUI H, YANG X, XU L, et al. Effects of goethite on the fractions of Cu, Cd, Pb, P and soil enzyme activity with hydroxyapatite in heavy metal-contaminated soil[J]. RSC Advances, 2017, 7(72): 45869-45877. |
16 | 刘俊, 楼跃丰, 李军. 石英砂表面负载铁氧化物的方法和特性[J]. 化工进展, 2016, 35(2): 624-628. |
LIU Jun, LOU Yuefeng, LI Jun. Method and characteristics of iron oxides coated on quartz sand surface[J]. Chemical Industry and Engineering Progress, 2016, 35(2): 624-628. | |
17 | WEI W, CONG Haibing, XIONG Huixin. The properties of FeOOH precipitates formed in CTAB-rich FeCl3 solutions at various pH and ethanol contents[J]. Colloid & Polymer Science, 2018, 296(7): 1205-1212. |
18 | SAHU M K, MANDAL S, DASH S S, et al. Removal of Pb(Ⅱ) from aqueous solution by acid activated red mud[J]. Journal of Environmental Chemical Engineering, 2013, 1(4): 1315-1324. |
19 | 高鹏杰. 氧化铝赤泥改性及对废水中Cr(Ⅵ)的吸附研究[D]. 郑州: 郑州大学, 2016. |
GAO P J. Modification of alumina red mud and research on the adsorption of Cr(VI) in polluted water[D]. Zhengzhou: Zhengzhou University, 2016. | |
20 | 徐翔丽. 氨基功能化氧化石墨烯重金属吸附剂的制备与应用[D]. 长沙: 湖南大学, 2014. |
XU Xiangli. The preparation and and characterization of amino-functionalized graphene oxide as heavy metal adsorbents [D]. Changsha: Hunan University, 2014. | |
21 | 石太宏, 吕灿, 左莉娜. 硅烷化改性沸石对重金属离子的吸附性能[J]. 环境工程学报, 2013, 7(3): 1045-1052. |
SHI Taihong, Can LÜ, ZUO Lina. Adsorption of heavy metal ions by silylation modified zeolite[J]. Chinese Journal of Environmental Engineering, 2013, 7(3): 1045-1052. | |
22 | 柏珊珊. 介孔分子筛的表面修饰及其对重金属离子的吸附性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2010. |
BAI S S. Study on the modification of mesoporous molecular sieve and their adsorption properties of heavy metals[D]. Harbin: Harbin Institute of Technology, 2010. | |
23 | 韩毅, 王京刚, 唐明述. 赤泥氯化铁改性材料的制备及其表征[J]. 有色金属(选矿部分), 2004(2): 37-40. |
HAN Yi, WANG Jinggang, TANG Mingshu. Modification and characterization of red mud activated by FeCl3[J]. Nonferrous Metals, 2004(2): 37-40. | |
24 | LYU W, YU M, FENG J, et al. Highly crystalline polyaniline nanofibers coating with low-cost biomass for easy separation and high efficient removal of anionic dye ARG from aqueous solution[J]. Applied Surface Science, 2018, 458: 413-424. |
25 | TSAMO C, DJONGA P N D, DIKDIM J M D, et al. Kinetic and equilibrium studies of Cr(VI), Cu(Ⅱ) and Pb(Ⅱ) removal from aqueous solution using red mud, a low-cost adsorbent[J]. Arabian Journal for Science & Engineering, 2017, 43(5): 1-16. |
26 | 李孟, 刘丹, 吴梓鸿. 赤泥基多孔陶瓷材料及其改性物除Cu2+研究[J]. 武汉理工大学学报, 2010, 32(18): 29-32. |
LI Meng, LIU Dan, WU Zihong. Research on the removal of Cu2+ by red mud-based porous ceramic material and its modification[J]. Journal of Wuhan University of Technology, 2010, 32(18): 29-32. | |
27 | PELLERA F, GIANNIS A, ANASTASIADOU K, et al. Adsorption of Cu(Ⅱ) ions from aqueous solutions using biochar prepared from agricultural byproducts[J]. Journal of Environmental Management, 2012, 96(1): 35-42. |
28 | RUI F P P, VALENTE A J M, BURROWS H D. The interaction of long chain sodium carboxylates and sodium dodecylsulfate with lead(Ⅱ) ions in aqueous solutions[J]. Journal of Colloid & Interface Science, 2014, 414(414C): 66-72. |
[1] | 崔守成, 徐洪波, 彭楠. 两种MOFs材料用于O2/He吸附分离的模拟分析[J]. 化工进展, 2023, 42(S1): 382-390. |
[2] | 陈崇明, 陈秋, 宫云茜, 车凯, 郁金星, 孙楠楠. 分子筛基CO2吸附剂研究进展[J]. 化工进展, 2023, 42(S1): 411-419. |
[3] | 李世霖, 胡景泽, 王毅霖, 王庆吉, 邵磊. 电渗析分离提取高值组分的研究进展[J]. 化工进展, 2023, 42(S1): 420-429. |
[4] | 许春树, 姚庆达, 梁永贤, 周华龙. 共价有机框架材料功能化策略及其对Hg(Ⅱ)和Cr(Ⅵ)的吸附性能研究进展[J]. 化工进展, 2023, 42(S1): 461-478. |
[5] | 顾永正, 张永生. HBr改性飞灰对Hg0的动态吸附及动力学模型[J]. 化工进展, 2023, 42(S1): 498-509. |
[6] | 赵景超, 谭明. 表面活性剂对电渗析减量化工业含盐废水的影响[J]. 化工进展, 2023, 42(S1): 529-535. |
[7] | 郭强, 赵文凯, 肖永厚. 增强流体扰动强化变压吸附甲硫醚/氮气分离的数值模拟[J]. 化工进展, 2023, 42(S1): 64-72. |
[8] | 王胜岩, 邓帅, 赵睿恺. 变电吸附二氧化碳捕集技术研究进展[J]. 化工进展, 2023, 42(S1): 233-245. |
[9] | 王谨航, 何勇, 史伶俐, 龙臻, 梁德青. 气体水合物阻聚剂研究进展[J]. 化工进展, 2023, 42(9): 4587-4602. |
[10] | 葛亚粉, 孙宇, 肖鹏, 刘琦, 刘波, 孙成蓥, 巩雁军. 分子筛去除VOCs的研究进展[J]. 化工进展, 2023, 42(9): 4716-4730. |
[11] | 李卫华, 于倩雯, 尹俊权, 吴寅凯, 孙英杰, 王琰, 王华伟, 杨玉飞, 龙於洋, 黄启飞, 葛燕辰, 何依洋, 赵灵燕. 酸雨环境下填埋飞灰吨袋破损后重金属的溶出行为[J]. 化工进展, 2023, 42(9): 4917-4928. |
[12] | 李志远, 黄亚继, 赵佳琪, 于梦竹, 朱志成, 程好强, 时浩, 王圣. 污泥与聚氯乙烯共热解重金属特性[J]. 化工进展, 2023, 42(9): 4947-4956. |
[13] | 杨莹, 侯豪杰, 黄瑞, 崔煜, 王兵, 刘健, 鲍卫仁, 常丽萍, 王建成, 韩丽娜. 利用煤焦油中酚类物质Stöber法制备碳纳米球用于CO2吸附[J]. 化工进展, 2023, 42(9): 5011-5018. |
[14] | 张振, 李丹, 陈辰, 吴菁岚, 应汉杰, 乔浩. 吸附树脂对唾液酸的分离纯化[J]. 化工进展, 2023, 42(8): 4153-4158. |
[15] | 姜晶, 陈霄宇, 张瑞妍, 盛光遥. 载锰生物炭制备及其在环境修复中应用研究进展[J]. 化工进展, 2023, 42(8): 4385-4397. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |