化工进展 ›› 2022, Vol. 41 ›› Issue (9): 5011-5021.DOI: 10.16085/j.issn.1000-6613.2021-2310
程鹏1(), 赵山山1, 杨文龙1, 齐跃2(), 丁晓墅1, 杨秋生1,3, 张东升1,3(), 王延吉1,3
收稿日期:
2021-11-11
修回日期:
2022-04-07
出版日期:
2022-09-25
发布日期:
2022-09-27
通讯作者:
齐跃,张东升
作者简介:
程鹏(1996—),男,硕士研究生,研究方向为绿色催化过程与工艺。E-mail: champion0806@163.com。
基金资助:
CHENG Peng1(), ZHAO Shanshan1, YANG Wenlong1, QI Yue2(), DING Xiaoshu1, YANG Qiusheng1,3, ZHANG Dongsheng1,3(), WANG Yanji1,3
Received:
2021-11-11
Revised:
2022-04-07
Online:
2022-09-25
Published:
2022-09-27
Contact:
QI Yue, ZHANG Dongsheng
摘要:
1,5-二氨基萘是一种重要的化工原料。本文首先简要介绍了合成1,5-二氨基萘的卤代氨化、二萘酚氨解、环合等生产方法;并以工业上经典的硝化还原法制备1,5-二氨基萘反应为重点,从绿色化学和本质安全角度出发,对硝化反应阶段从“强酸混酸”至“非酸”体系,以及还原反应阶段从贵金属催化剂至非贵金属催化剂的研究进展分别进行了阐述。同时指出硝化还原法的还原反应阶段相对比较绿色、环保,但硝化反应阶段仍然存在环境不友好的问题,且整体工艺流程烦琐复杂。针对上述合成工艺中普遍存在的环境污染、效率低等不足之处,进一步讨论了以氨水、羟胺盐等为胺化剂,由萘一步合成1,5-二氨基萘的最新研究进展,并指出温和条件下、清洁高效的一步合成萘胺将成为今后的研究方向。
中图分类号:
程鹏, 赵山山, 杨文龙, 齐跃, 丁晓墅, 杨秋生, 张东升, 王延吉. 1,5-二氨基萘合成技术研究进展[J]. 化工进展, 2022, 41(9): 5011-5021.
CHENG Peng, ZHAO Shanshan, YANG Wenlong, QI Yue, DING Xiaoshu, YANG Qiusheng, ZHANG Dongsheng, WANG Yanji. Research progress of 1,5- diaminonaphthalene synthesis[J]. Chemical Industry and Engineering Progress, 2022, 41(9): 5011-5021.
序号 | 催化剂 | 时间/h | 转化率/% | 收率/% | 异构比 |
---|---|---|---|---|---|
1 | HZSM-5 | 48 | 26 | 41 | 3.51 |
2 | HZSM-5 | 48 | 88 | 37 | 0.59 |
3 | CuZSM-5 | 48 | 85 | 40 | 1.79 |
4 | MgZSM-5 | 48 | 67 | 31 | 0.79 |
5 | CoZSM-5 | 48 | 56 | 41 | 0.82 |
6 | LaZSM-5 | 48 | 50 | 38 | 1.27 |
7 | CdZSM-5 | 48 | 43 | 24 | 0.60 |
8 | CuZSM-5 | 8 | 45 | 37 | 0.69 |
9 | HBEA-25 | 48 | 91 | 65 | 2.57 |
10 | HBEA-280 | 48 | 72 | 49 | 1.39 |
11 | HBEA-500 | 48 | 59 | 53 | 1.27 |
12 | CuBEA-25 | 48 | 37 | 28 | 1.23 |
13 | MgBEA-25 | 48 | 44 | 34 | 0.49 |
14 | CoBEA-25 | 48 | 29 | 52 | 0.64 |
15 | LaBEA-25 | 48 | 38 | 22 | 0.90 |
16 | CdBEA-25 | 48 | 39 | 56 | 0.52 |
表1 不同沸石催化剂下二氧化氮与1-硝基萘的硝化反应[15]
序号 | 催化剂 | 时间/h | 转化率/% | 收率/% | 异构比 |
---|---|---|---|---|---|
1 | HZSM-5 | 48 | 26 | 41 | 3.51 |
2 | HZSM-5 | 48 | 88 | 37 | 0.59 |
3 | CuZSM-5 | 48 | 85 | 40 | 1.79 |
4 | MgZSM-5 | 48 | 67 | 31 | 0.79 |
5 | CoZSM-5 | 48 | 56 | 41 | 0.82 |
6 | LaZSM-5 | 48 | 50 | 38 | 1.27 |
7 | CdZSM-5 | 48 | 43 | 24 | 0.60 |
8 | CuZSM-5 | 8 | 45 | 37 | 0.69 |
9 | HBEA-25 | 48 | 91 | 65 | 2.57 |
10 | HBEA-280 | 48 | 72 | 49 | 1.39 |
11 | HBEA-500 | 48 | 59 | 53 | 1.27 |
12 | CuBEA-25 | 48 | 37 | 28 | 1.23 |
13 | MgBEA-25 | 48 | 44 | 34 | 0.49 |
14 | CoBEA-25 | 48 | 29 | 52 | 0.64 |
15 | LaBEA-25 | 48 | 38 | 22 | 0.90 |
16 | CdBEA-25 | 48 | 39 | 56 | 0.52 |
序号 | 催化剂 | 反应条件 | 产物 | (转化率/选择性)/% | 参考文献 |
---|---|---|---|---|---|
1 | 20%Ni/CNTs-1 | DMF, 120℃, 330min, 0.6MPa | 1,5-二氨基萘 | 100/92.0 | [ |
2 | 10%Ni/C | THF, 320℃, 360min, 5.2MPa | 1,5-二氨基萘 | 96.6/2.4 | [ |
3 | 10%Ni-Zn/AC-350 | DMF, 110℃, 300min, 0.6MPa | 1,5-二氨基萘 | 100/95.6 | [ |
4 | 20%Ni/N-AC-800 | DMF, 100℃, 300min, 0.6MPa | 1,5-二氨基萘 | 100/94.8 | [ |
5 | 20%Ni/N,P-AC-900 | DMF, 100℃, 150min, 0.6MPa | 1,5-二氨基萘 | 100/95.8 | [ |
表2 碳材料负载镍基催化剂催化1,5-二硝基萘加氢反应性能[41]
序号 | 催化剂 | 反应条件 | 产物 | (转化率/选择性)/% | 参考文献 |
---|---|---|---|---|---|
1 | 20%Ni/CNTs-1 | DMF, 120℃, 330min, 0.6MPa | 1,5-二氨基萘 | 100/92.0 | [ |
2 | 10%Ni/C | THF, 320℃, 360min, 5.2MPa | 1,5-二氨基萘 | 96.6/2.4 | [ |
3 | 10%Ni-Zn/AC-350 | DMF, 110℃, 300min, 0.6MPa | 1,5-二氨基萘 | 100/95.6 | [ |
4 | 20%Ni/N-AC-800 | DMF, 100℃, 300min, 0.6MPa | 1,5-二氨基萘 | 100/94.8 | [ |
5 | 20%Ni/N,P-AC-900 | DMF, 100℃, 150min, 0.6MPa | 1,5-二氨基萘 | 100/95.8 | [ |
1 | ACERCE M, CHIOVOLONI S, HERNANDEZ Y, et al. Poly(1,5-diaminonaphthalene)-grafted monolithic 3D hierarchical carbon as highly capacitive and stable supercapacitor electrodes[J]. ACS Applied Materials & Interfaces, 2021, 13(45): 53736-53745. |
2 | NGUYEN M T T, NGUYEN H L, NGUYEN D T. Poly(1,5-diaminonaphthalene)-modified screen-printed device for electrochemical lead ion sensing[J]. Advances in Polymer Technology, 2021, 2021: 6637316. |
3 | HU Shikai, SHOU Tao, ZHAO Xiuying, et al. Rational design of a novel NDI-based thermoplastic polyurethane elastomer with superior heat resistance[J]. Polymer, 2020, 205: 122764. |
4 | SENICHEV V, MAKAROVA M, SLOBODINYUK A, et al. New urethane multiblock-copolymers obtained using naphthalene diisocyanate[J]. Journal of Physics Conference Series, 2020, 1515(4): 042025. |
5 | QIN Xuan, WANG Jiadong, HAN Bingyong, et al. Novel design of eco-friendly super elastomer materials with optimized hard segments micro-structure: toward next-generation high-performance tires[J]. Frontiers in Chemistry, 2018, 6: 240. |
6 | 李文骁, 李付刚. 1,5-二氨基萘的技术进展[J]. 精细化工原料及中间体, 2009(12): 38-39, 24. |
LI Wenxiao, LI Fugang. The synthesis of 1,5-naphthalenediamine[J]. Fine Chemical Industrial Raw Materials & Intermediates, 2009(12): 38-39, 24. | |
7 | MÖHLE S, HEROLD S, RICHTER F, et al. Twofold electrochemical amination of naphthalene and related arenes[J]. ChemElectroChem, 2017, 4(9): 2196-2210. |
8 | KOSKIN A P, KENZHIN R V, VEDYAGIN A A, et al. Sulfated perfluoropolymer-CNF composite as a gas-phase benzene nitration catalyst[J]. Catalysis Communications, 2014, 53: 83-86. |
9 | 邢其毅, 裴伟伟, 徐瑞秋. 基础有机化学(下册) [M]. 4版. 北京: 北京大学出版社, 2017: 756-757. |
XING Qi Yi, PEI Weiwei, XU Ruiqiu. Basic organic chemistry (Ⅱ) [M]. 4th ed. Beijing: Peking University Press, 2017: 756-757. | |
10 | DOMINGO L R, SEIF A, MAZAREI E, et al. Quasi-RRHO approximation and DFT study for understanding the mechanism and kinetics of nitration reaction of benzonitrile with nitronium ion[J]. Computational and Theoretical Chemistry, 2021, 1199: 113209. |
11 | 杜存彬. 二硝基萘异构体溶剂结晶分离过程的相平衡热力学研究[D]. 扬州: 扬州大学, 2017. |
DU Cunbin. Thermodynamic research on phase equilibrium in separation process of dinitronaphthalene isomer via solvent crystallization[D]. Yangzhou: Yangzhou University, 2017. | |
12 | 张晓鹏, 于胜姿, 苗江欢, 等. 1,5-二硝基萘的合成与分离纯化[J]. 河南师范大学学报(自然科学版), 2017, 45(2): 35-37. |
ZHANG Xiaopeng, YU Shengzi, MIAO Jianghuan, et al. Synthesis and purification of 1,5-dinitronaphthalene[J]. Journal of Henan Normal University (Natural Science Edition), 2017, 45(2): 35-37. | |
13 | PAUL N, MAITY S, PANJA S, et al. Recent advances in the nitration of olefins[J]. The Chemical Record, 2021, 21(10): 2896-2908. |
14 | 邰燕芳, 石春杰, 魏清. 萘在硝酸/醋酸酐体系下选择性硝化[J]. 光谱实验室, 2013, 30(2): 595-598. |
TAI Yanfang, SHI Chunjie, WEI Qing. The selective nitration of naphthalene in the system of nitric acid and acetic anhydride[J]. Chinese Journal of Spectroscopy Laboratory, 2013, 30(2): 595-598. | |
15 | WANG Haocai, PENG Xinhua, SHI Chunjie, et al. Zeolite-assisted regioselective synthesis of dinitronaphthalene[J]. Research on Chemical Intermediates, 2014, 40(4): 1495-1500. |
16 | LIU Pingle, XIONG Wei, WANG Xiaofei, et al. Regioselective nitration of naphthalene over HZSM-5-supported phosphotungstic acid[J]. Research on Chemical Intermediates, 2015, 41(7): 4533-4543. |
17 | 汪浩才. 二硝基萘的催化选择性合成反应特性研究[D]. 合肥: 合肥工业大学, 2013. |
WANG Haocai. Study on catalytic selective synthesis of dinitronaphthalene[D]. Hefei: Hefei University of Technology, 2013. | |
18 | GAO Xi, PENG Xinhua, CHEN Kaihao. The application of nitrogen oxides in industrial preparations of nitro compounds[J]. The Canadian Journal of Chemical Engineering, 2018, 96(10): 2059-2072. |
19 | VASUDEVAN A, SCHOENITZ M, DREIZIN E L. Effect of metal nitrate on mechanochemical nitration of toluene[J]. Reaction Chemistry & Engineering, 2021, 6(11): 2050-2057. |
20 | DENG Renjie, ZENG Manlin, TIAN Yao. Para-selective nitration of bromobenzene catalyzed by Hβ zeolite with NO2 and its theoretical studies[J]. Research on Chemical Intermediates, 2022, 48(3): 1095-1109. |
21 | YOU Kuiyi, ZHOU Zhongcang, JIAN Jian, et al. A simple approach for preparation of dinitronaphthalene compounds from the nitration reaction of 1-nitronaphthalene with NO2 as nitration reagent[J]. Research on Chemical Intermediates, 2015, 41(11): 8307-8315. |
22 | DENG Renjie, YOU Kuiyi, ZHAO Fangfang, et al. Highly selective preparation of valuable dinitronaphthalene from catalytic nitration of 1-nitronaphthalene with NO2 over HY zeolite[J]. The Canadian Journal of Chemical Engineering, 2018, 96(12): 2586-2592. |
23 | YAN G Xu, WANG Anqi, WACHS I E, et al. Critical review on the active site structure of sulfated zirconia catalysts and prospects in fuel production[J]. Applied Catalysis A: General, 2019, 572: 210-225. |
24 | YAN Jiaqi, NI Wenjin, YOU Kuiyi, et al. Highly selective catalytic nitration of 1-nitronaphthalene with NO2 to 1,5-dinitronaphthalene over solid superacid SO4 2-/ZrO2 promoted by molecular oxygen and acetic anhydride under mild conditions[J]. Research on Chemical Intermediates, 2021, 47(9): 3569-3582 |
25 | YAN Jiaqi, YOU Kuiyi, NI Wenjin, et al. Fe-and Mn-modified SO4 2-/ZrO2 conjoined O2-Ac2O as a composite catalytic system for highly selective nitration of 1-nitronaphthalene with NO2 to valuable 1,5-dinitronaphthalene[J]. Reaction Chemistry & Engineering, 2021, 6(11): 2204-2213. |
26 | 邓人杰, 游奎一, 周忠仓, 等. NO2催化硝化萘制备二硝基萘[J]. 中国科技论文, 2015, 10(12): 1435-1438. |
DENG Renjie, YOU Kuiyi, ZHOU Zhongcang, et al. Preparation of dinitronaphthalene compounds from the nitration of naphthalene with NO2 as nitration reagent[J]. China Sciencepaper, 2015, 10(12): 1435-1438. | |
27 | TIAN Shubo, HU Min, XU Qi, et al. Single-atom Fe with Fe1N3 structure showing superior performances for both hydrogenation and transfer hydrogenation of nitrobenzene[J]. Science China Materials, 2021, 64(3): 642-650. |
28 | HE Tianwei, ZHANG Chunmei, ZHANG Lei, et al. Single Pt atom decorated graphitic carbon nitride as an efficient photocatalyst for the hydrogenation of nitrobenzene into aniline[J]. Nano Research, 2019, 12(8): 1817-1823. |
29 | KURUNINA G M, IVANKINA O M, BUTOV G M. Hydrogenation of para-nitrotoluene on catalytic systems containing oxides of rare earth elements[J]. Defect and Diffusion Forum, 2021, 410: 389-393. |
30 | 黄刚. 1,5-二硝基萘加氢过程的研究[D]. 湘潭: 湘潭大学, 2013. |
HUANG Gang. Study on the process of hydrogenation of 1,5-dinitronaphthalene[D]. Xiangtan: Xiangtan University, 2013. | |
31 | 倪海平, 陈玉忠. 一种催化加氢制备 1,5-二氨基萘的方法: CN101544569[P]. 2009-09-30. |
NI Haiping, CHEN Yuzhong. A method for preparing 1,5-diaminonaphthalene by catalytic hydrogenation: CN101544569[P]. 2009-09-30. | |
32 | ZHAO Xueyang, LI Ailin, QUAN Xie, et al. Efficient electrochemical reduction of nitrobenzene by nitrogen doped porous carbon[J]. Chemosphere, 2020, 238: 124636. |
33 | WANG Shuang, WANG Zhongxu, SHANG Yongchen, et al. A Pt3 cluster anchored on a C2N monolayer as an efficient catalyst for electrochemical reduction of nitrobenzene to aniline: a computational study[J]. New Journal of Chemistry, 2021, 45(45): 21270-21277. |
34 | LIMA A P, ALMEIDA P L M R, SOUSA R M F, et al. Effect of alumina supported on glassy-carbon electrode on the electrochemical reduction of 2,4,6-trinitrotoluene: a simple strategy for its selective detection[J]. Journal of Electroanalytical Chemistry, 2019, 851: 113385. |
35 | 张伟, 孙建芝, 李明时, 等. 一种二硝基萘催化加氢制备二氨基萘的方法: CN101575295[P]. 2009-11-11. |
ZHANG Wei, SUN Jianzhi, LI Mingshi, et al. A method for preparing diaminonaphthalene by catalytic hydrogenation of dinitronaphthalene: CN101575295[P]. 2009-11-11. | |
36 | 胡曼. 二氨基萘的合成工艺研究[D]. 南京: 南京理工大学, 2013. |
HU Man. Study on the process of diaminonaphthalene[D]. Nanjing: Nanjing University of Science and Technology, 2013. | |
37 | 李彦飞, 严生虎, 马晓明, 等. 一步法合成Pd@酚醛树脂催化剂及其催化加氢性能[J].常州大学学报(自然科学版), 2017, 29(5): 22-27. |
LI Yanfei, YAN Shenghu, MA Xiaoming, et al. One-step synthesis of PD@phenolic resin catalyses and their catalytic performance for catalytic hydrogenation[J]. Journal of Changzhou University (Natural Science Edition), 2017, 29(5): 22-27. | |
38 | XIONG Wei, WANG Kaijun, LIU Xiwang, et al. 1,5-Dinitronaphthalene hydrogenation to 1,5-diaminonaphthalene over carbon nanotube supported non-noble metal catalysts under mild conditions[J]. Applied Catalysis A: General, 2016, 514: 126-134. |
39 | LU X H, WEI X L, ZHOU D, et al. Synthesis, structure and catalytic activity of the supported Ni catalysts for highly efficient one-step hydrogenation of 1,5-dinitronaphthalene to 1,5-diaminodecahydronaphthalene[J]. Journal of Molecular Catalysis A: Chemical, 2015, 396: 196-206. |
40 | XIONG Wei, WANG Liping, CAI Guoxiao, et al. Nitrogen-functionalized active carbon-supported non-noble nickel nanoparticles with high dispersity and enhanced catalytic performance in nitro naphthalene hydrogenation[J]. ChemistrySelect, 2017, 2(34): 11244-11249. |
41 | XIONG Wei, ZHOU Susu, ZHAO Zeyonget al. Highly uniform Ni particles with phosphorus and adjacent defects catalyze 1,5-dinitronaphthalene hydrogenation with excellent catalytic performance[J]. Frontiers of Chemical Science and Engineering, 2021, 15(4): 998-1007. |
42 | HUANG Lei, Yang LYU, WU Shengtao, et al. Activated carbon supported bimetallic catalysts with combined catalytic effects for aromatic nitro compounds hydrogenation under mild conditions[J]. Applied Catalysis A: General, 2019, 577: 76-85. |
43 | 胡征宇. 萘氧化胺化制备1,5-二氨基萘过程研究[D]. 湘潭: 湘潭大学,2014. |
HU Zhengyu. Process research of preparing 1,5-diaminonaphthalene via naphthalene’s amine oxidation[D]. Xiangtan: Xiangtan University, 2014. | |
44 | 高丽雅, 檀学军, 张东升, 等. 羟胺(盐)的合成及其应用研究进展[J]. 化工进展, 2012, 31(9): 2043-2048. |
GAO Liya, TAN Xuejun, ZHANG Dongsheng . et al. Progress of synthesis and application of hydroxylamine (salts)[J]. Chemical Industry and Engineering Progress, 2012, 31(9): 2043-2048. | |
45 | 刘家琪, 刘连永, 王双瑜, 等. 酮肟水解反应及其羟胺产品分离的研究进展[J]. 化工进展, 2020, 39(10): 4147-4154. |
LIU Jiaqi, LIU Lianyong, WANG Shuangyu, et al. Research progress of ketoxime hydrolysis reaction and its hydroxylamine product separation[J]. Chemical Industry and Engineering Progress, 2020, 39(10): 4147-4154. | |
46 | GAO Liya, ZHANG Dongsheng, WANG Yanji, et al. Direct amination of toluene to toluidine with hydroxylamine over CuO-V2O5/Al2O3 catalysts[J]. Reaction Kinetics, Mechanisms and Catalysis, 2011, 102(2): 377-391. |
47 | GAO Liya, TAN Xuejun, XUE Wei, et al. An eco-friendly catalytic route for one-pot synthesis of phenols from aromatics and hydroxylamine[J]. Advanced Materials Research, 2013, 2606(781/782/783/784): 163-168. |
48 | 王延吉, 檀学军, 徐元媛, 等.对二甲苯与羟胺盐反应体系的产物调控规律[J]. 化学反应工程与工艺, 2012, 28(5): 405-411. |
WANG Yanji, TAN Xuejun, XU Yuanyuan, et al. Regulating product distribution for reaction of p-xylene with hydroxylamine salts[J]. Chemical Reaction Engineering and Technology, 2012, 28(5):405-411. | |
49 | ZHANG Dongsheng, GAO Liya, WANG Yanji, et al. One-pot synthesis of cresols from toluene and hydroxylamine catalyzed by ammonium molybdate[J]. Catalysis Communications, 2011, 12(12): 1109-1112. |
50 | 王恺君. 钒系催化剂催化萘与羟胺盐反应过程研究[D]. 湘潭: 湘潭大学, 2016. |
WANG Kaijun. Research of reaction process of naphthalene and hydroxylamine salt catalyzed by vanadium catalyst[D]. Xiangtan: Xiangtan University, 2016. | |
51 | HAO Fang, WANG Xin, HUANG Linfang, et al. One-step catalytic amination of naphthalene to naphthylamine with exceptional yield[J]. Green Chemistry, 2020, 22(9): 2744-2749. |
52 | 张杰, 李颖华. 我国聚氨酯行业弹性体市场发展现状[J]. 聚氨酯工业, 2019, 34(6): 1-5. |
ZHANG Jie, LI Yinghua. Development status of polyurethane elastomers industry in China[J]. Polyurethane Industry, 2019, 34(6): 1-5. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[3] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[4] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[5] | 高雨飞, 鲁金凤. 非均相催化臭氧氧化作用机理研究进展[J]. 化工进展, 2023, 42(S1): 430-438. |
[6] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[7] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[8] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[9] | 王晋刚, 张剑波, 唐雪娇, 刘金鹏, 鞠美庭. 机动车尾气脱硝催化剂Cu-SSZ-13的改性研究进展[J]. 化工进展, 2023, 42(9): 4636-4648. |
[10] | 王鹏, 史会兵, 赵德明, 冯保林, 陈倩, 杨妲. 过渡金属催化氯代物的羰基化反应研究进展[J]. 化工进展, 2023, 42(9): 4649-4666. |
[11] | 张启, 赵红, 荣峻峰. 质子交换膜燃料电池中氧还原反应抗毒性电催化剂研究进展[J]. 化工进展, 2023, 42(9): 4677-4691. |
[12] | 葛全倩, 徐迈, 梁铣, 王凤武. MOFs材料在光电催化领域应用的研究进展[J]. 化工进展, 2023, 42(9): 4692-4705. |
[13] | 王伟涛, 鲍婷玉, 姜旭禄, 何珍红, 王宽, 杨阳, 刘昭铁. 醛酮树脂基非金属催化剂催化氧气氧化苯制备苯酚[J]. 化工进展, 2023, 42(9): 4706-4715. |
[14] | 葛亚粉, 孙宇, 肖鹏, 刘琦, 刘波, 孙成蓥, 巩雁军. 分子筛去除VOCs的研究进展[J]. 化工进展, 2023, 42(9): 4716-4730. |
[15] | 许中硕, 周盼盼, 王宇晖, 黄威, 宋新山. 硫铁矿介导的自养反硝化研究进展[J]. 化工进展, 2023, 42(9): 4863-4871. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 804
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 404
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |