1 |
CHEN Jianchu, LI Zhaoliang, CHEN Allen Y, et al. Inhibitory effect of baicalin and baicalein on ovarian cancer cells[J]. International Journal of Molecular Sciences, 2013, 14(3): 6012-6025.
|
2 |
余诗强, 蒋林树, 熊本海. 黄芩素结构与生物学功能关系研究进展[J]. 动物营养学报, 2021, 33(6): 3106-3114.
|
|
YU Shiqiang, JIANG Linshu, XIONG Benhai. Research progress on relationship between structure and biological functions of baicalein[J]. Chinese Journal of Animal Nutrition, 2021, 33(6): 3106-3114.
|
3 |
LEE Wonhwa, KU Sae Kwang, Jong Sup BAE. Anti-inflammatory effects of baicalin, baicalein, and wogonin in vitro and in vivo [J]. Inflammation, 2015, 38(1): 110-125.
|
4 |
朱亚南, 杨七妹, 张硕, 等. 黄芩苷与黄芩素药理作用及机制研究进展[J]. 时珍国医国药, 2020, 31(4): 921-925.
|
|
ZHU Yanan, YANG Qimei, ZHANG Shuo, et al. Advances in pharmacological effects and mechanisms of baicalin and baicalein[J]. Lishizhen Medicine and Materia Medica Research, 2020, 31(4): 921-925.
|
5 |
任正肖, 车萍, 李紫薇, 等. 黄芩化学成分和药理作用的研究进展[J]. 山东化工, 2021, 50(3): 65-67.
|
|
REN Zhengxiao, CHE Ping, LI Ziwei, et al. Research progress on chemical composition and pharmacological effects of scutellaria baicalensis Georgi[J]. Shandong Chemical Industry, 2021, 50(3): 65-67.
|
6 |
YIN Z, CHEN E, CAI X, et al. Baicalin attenuates XRCC1-mediated DNA repair to enhance the sensitivity of lung cancer cells to cisplatin[J]. Journal of Receptor and Signal Transduction Research, 2021: 2021Mar15;1-2021Mar1510.
|
7 |
GUO Ava J Y, CHOI Roy C Y, CHEUNG Anna W H, et al. Baicalin, a flavone, induces the differentiation of cultured osteoblasts: an action via the Wnt/beta-catenin signaling pathway[J]. the Journal of Biological Chemistry, 2011, 286(32): 27882-27893.
|
8 |
ZYMAN Z, IVANOV I, GLUSHKO V, et al. Inorganic phase composition of remineralisation in porous CaP ceramics[J]. Biomaterials, 1998, 19(14): 1269-1273.
|
9 |
CHANG B S, LEE C K, HONG K S, et al. Osteoconduction at porous hydroxyapatite with various pore configurations[J]. Biomaterials, 2000, 21(12): 1291-1298.
|
10 |
WANG Huanan, LI Yubao, ZUO Yi, et al. Biocompatibility and osteogenesis of biomimetic nano-hydroxyapatite/polyamide composite scaffolds for bone tissue engineering[J]. Biomaterials, 2007, 28(22): 3338-3348.
|
11 |
YASUKAWA Akemi, YOKOYAMA Takashi, KANDORI Kazuhiko, et al. Ion-exchange property and mechanism of magnesium-calcium hydroxyapatite solid solutions[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 238(1/2/3): 133-139.
|
12 |
DU Mingzu, CHEN Jingdi, LIU Kaihua, et al. Recent advances in biomedical engineering of nano-hydroxyapatite including dentistry, cancer treatment and bone repair[J]. Composites Part B: Engineering, 2021, 215: 108790.
|
13 |
王雷, 王学艳, 周雪琴, 等. 黄芩苷在不同溶媒中的稳定性研究[J]. 中国药师, 2006, 9(2): 129-131.
|
|
WANG Lei, WANG Xueyan, ZHOU Xueqin, et al. Study on the stability of baicalin in different solvents[J]. China Pharmacist, 2006, 9(2): 129-131.
|
14 |
高可新, 李利霞, 王小康. 不同炮制方法对黄芩活性成份含量及抗氧化作用的影响[J]. 中国合理用药探索, 2021, 18(9): 109-113.
|
|
GAO Kexin, LI Lixia, WANG Xiaokang. Effects of different processing methods on the content of active ingredients and antioxidation of scutellaria baicalensis Georgi[J]. Chinese Journal of Rational Drug Use, 2021, 18(9): 109-113.
|
15 |
RAHIMI Vafa Baradaran, ASKARI Vahid Reza, HOSSEINZADEH Hossein. Promising influences of Scutellaria baicalensis and its two active constituents, baicalin, and baicalein, against metabolic syndrome: a review[J]. Phytotherapy Research: PTR, 2021, 35(7): 3558-3574.
|
16 |
师若云, 许静远, 谢国勇, 等. 黄芩药材质量的影响因素研究进展[J]. 中国野生植物资源, 2021, 40(6): 42-46.
|
|
SHI Ruoyun, XU Jingyuan, XIE Guoyong, et al. Research progress of influencing factors of the quality of scutellaria baicalensis Georgi[J]. Chinese Wild Plant Resources, 2021, 40(6): 42-46.
|
17 |
YUBAO L, WIJN J, KLEIN C P A T, et al. Preparation and characterization of nanograde osteoapatite-like rod crystals[J]. Journal of Materials Science: Materials in Medicine, 1994, 5(5): 252-255.
|
18 |
黄金会, 李玉宝, 左奕, 等. 磷酸缓冲液快速洗涤纳米羟基磷灰石[J]. 化工进展, 2018, 37(9): 3508-3511.
|
|
HUANG Jinhui, LI Yubao, ZUO Yi, et al. Rapid wash of nano-hydroxyapatite with phosphate buffer solution[J]. Chemical Industry and Engineering Progress, 2018, 37(9): 3508-3511.
|
19 |
LI Gen, HUANG Jinhui, WEI Jiawei, et al. Fabrication of strontium and simvastatin loaded hydroxyapatite microspheres by one-step approach[J]. Materials Letters, 2021, 300: 130234.
|
20 |
JIN Shue, GAO Jing, YANG Renli, et al. A baicalin-loaded coaxial nanofiber scaffold regulated inflammation and osteoclast differentiation for vascularized bone regeneration[J]. Bioactive Materials, 2021, 8: 559-572.
|
21 |
左奕, 李玉宝, 魏杰, 等. 纳米羟基磷灰石的常压合成与表征[J]. 高技术通讯, 2003, 13(4): 58-61.
|
|
ZUO Yi, LI Yubao, WEI Jie, et al. The synthesis at normal atmospheric pressure and characterization of nano hydroxyapatite crystals[J]. High Technology Letters, 2003, 13(4): 58-61.
|
22 |
廖建国, 李艳群, 段星泽, 等. CO3 2-掺杂纳米羟基磷灰石晶体的合成与表征[J]. 光谱学与光谱分析, 2014, 34(11): 3011-3014.
|
|
LIAO Jianguo, LI Yanqun, DUAN Xingze, et al. Synthesis and characterization of CO3 2- doping nano-hydroxyapatite[J]. Spectroscopy and Spectral Analysis, 2014, 34(11): 3011-3014.
|
23 |
洪丹菁. 羟基磷灰石结构及性能研究[D]. 上海: 华东理工大学, 2013.
|
|
HONG Danjing. Structure and application performance of HAP nanomaterials[D]. Shanghai: East China University of Science and Technology, 2013.
|
24 |
张春晖, 张贵君, 孙素琴, 等. 黄芩及其提取物红外光谱与二维相关光谱的鉴别[J]. 光谱学与光谱分析, 2010, 30(7): 1774-1779.
|
|
ZHANG Chunhui, ZHANG Guijun, SUN Suqin, et al. Study on the identification of radix scutellariae and extract using Fourier transsform infrared spectroscopy and two-dimensional IR correlation spectroscopy[J]. Spectroscopy and Spectral Analysis, 2010, 30(7): 1774-1779.
|
25 |
CHEN Jia, LIU Jiawei, DENG Haishan, et al. Regulatory synthesis and characterization of hydroxyapatite nanocrystals by a microwave-assisted hydrothermal method[J]. Ceramics International, 2020, 46(2): 2185-2193.
|
26 |
于波涛, 张志荣, 刘文胜, 等. 黄芩苷稳定性研究[J]. 中草药, 2002, 33(3): 218-220.
|
|
YU Botao, ZHANG Zhirong, LIU Wensheng, et al. Studies on stability of baicalin[J]. Chinese Traditional and Herbal Drugs, 2002, 33(3): 218-220.
|
27 |
NANDIYANTO Asep Bayu Dani, OKUYAMA Kikuo. Progress in developing spray-drying methods for the production of controlled morphology particles: from the nanometer to submicrometer size ranges[J]. Advanced Powder Technology, 2011, 22(1): 1-19.
|
28 |
SOBULSKA Mariia, ZBICINSKI Ireneusz. Advances in spray drying of sugar-rich products[J]. Drying Technology, 2021, 39(12): 1774-1799.
|
29 |
尹兆益, 宁成云, 郑华德, 等. PVP为模板控制合成纳米羟基磷灰石及其机理[J]. 功能材料, 2009, 40(6): 1042-1045.
|
|
YIN Zhaoyi, NING Chengyun, ZHENG Huade, et al. Controlled synthesis of nano-hydroxyapatite using polyvinylpyrrolidone as a template[J]. Journal of Functional Materials, 2009, 40(6): 1042-1045.
|
30 |
林文, 王志祥. 喷雾干燥技术及其在制药工业的应用[J]. 机电信息, 2009(11): 36-41.
|
|
LIN Wen, WANG Zhixiang. Spray drying technology and its application in pharmaceutical industry[J]. Mechanical and Electrical Information, 2009(11): 36-41.
|
31 |
郭奇喆, 黄浩, 何海冰, 等. 喷雾干燥法固化姜黄素纳米混悬剂工艺及体外溶出度研究[J]. 沈阳药科大学学报, 2018, 35(5): 339-343.
|
|
GUO Qizhe, HUANG Hao, HE Haibing, et al. Process and in vitro dissolution study of curcumin nanosuspension solidified by spray drying method[J]. Journal of Shenyang Pharmaceutical University, 2018, 35(5): 339-343.
|