化工进展 ›› 2018, Vol. 37 ›› Issue (05): 1633-1645.DOI: 10.16085/j.issn.1000-6613.2017-1848
傅楠, 陈晓东
收稿日期:
2017-09-03
修回日期:
2017-11-17
出版日期:
2018-05-05
发布日期:
2018-05-05
通讯作者:
陈晓东,教授,博士生导师,主要研究方向为食品工程、仿生化工、乳制品科学与技术及生物颗粒技术。
作者简介:
傅楠(1984-),女,副教授,硕士生导师,主要研究方向为食品与生物工程、食品颗粒工程、乳制品科学与技术。E-mail:nan.fu@suda.edu.cn。
基金资助:
FU Nan, CHEN Xiaodong
Received:
2017-09-03
Revised:
2017-11-17
Online:
2018-05-05
Published:
2018-05-05
摘要: 肠道菌群对于人体健康具有重要影响。口服足量的活性益生菌,有助于缓解急慢性肠炎、治疗腹泄、改善消化,已在临床治疗中得到一定应用。在食品市场上,益生菌干粉制剂亟需一种生产成本低、制粉简便的生产方法。喷雾干燥的生产能力强、制粉快速,但干燥过程中,雾化液滴经历一个快速升温与脱水过程,对其中的益生菌带来热胁迫、脱水胁迫、氧化胁迫等多种不利因素,造成菌体活性的大量损失。而喷雾干燥塔的结构,使塔内的液滴干燥过程难以追踪,不利于研究益生菌的失活历程以及探索益生菌与载体材料间的相互作用。本文从雾化液滴在干燥塔内的干燥历程着眼,回顾了益生菌活性随液滴干燥动力学变化的趋势,讨论了益生菌在喷雾干燥中经受的亚细胞结构损伤与功能性损伤,并系统总结了目前文献中报道的提升干燥后益生菌活性的主要方法,包括提升菌体耐受性、优化喷雾干燥条件和采用合适的保护性载体,并着重阐述了载体材料与益生菌细胞间的相互作用关系以及干燥历程的重要影响。文章指出为最大程度上保存喷雾干燥粉末中益生菌的活性,应综合微生物、干燥过程与食品化学(材料学)等领域的保护策略,设计一体化统合生产方案。依据微生物-保护载体间的相互作用设计高效保护配方载体,研发统合从微生物细胞培养至粉末储藏的新型生产工艺,是实验室及工业中合理设计工业级喷雾干燥过程、大量生产高活性益生菌制剂的关键。
中图分类号:
傅楠, 陈晓东. 益生菌在喷雾干燥过程中的活性变化与保护策略[J]. 化工进展, 2018, 37(05): 1633-1645.
FU Nan, CHEN Xiaodong. Changes in the viability of probiotics during spray drying process and the strategies to protect probiotic cells[J]. Chemical Industry and Engineering Progress, 2018, 37(05): 1633-1645.
[1] BANSAL T,GARG S. Probiotics:from functional foods to pharmaceutical products[J]. Current Pharmaceutical Biotechnology,2008,9:267-287. [2] KOSIN B,RAKSHIT S K. Microbial and processing criteria for production of probiotics:a review[J]. Food Technology and Biotechnology,2006,44(3):371-379. [3] PARVEZ S,MALIK K A,KANG S A,et al. Probiotics and their fermented food products are beneficial for health[J]. Journal of Applied Microbiology,2006,100:1171-1185. [4] VASILJEVIC T,SHAH N P. Probiotics - from Metchnikoff to bioactives[J]. International Dairy Journal,2008,18:714-728. [5] GOMES A M P,MALCATA F X. Bifidobacterium spp. and Lactobacillus acidophilus:biological,biochemical,technological and therapeutical properties relevant for use as probiotics[J]. Trends in Food Science & Technology,1999,10:139-157. [6] MARTEAU P R,DE VRESE M,CELLIER C J,et al. Protection from gastrointestinal diseases with the use of probiotics[J]. American Journal of Clinical Nutrition,2001,73(2):430S-436S. [7] FORSTER S C,LAWLEY T D. Systematic discovery of probiotics[J]. Nature Biotechnology,2015,33(1):47-49. [8] PAMER E G. Resurrecting the intestinal microbiota to combat antibiotic-resistant pathogens[J]. Science,2016,352(6285):535-538. [9] KLAENHAMMER T R,KLEEREBEZEM M,KOPP M V,et al. The impact of probiotics and prebiotics on the immune system[J]. Nature Review,2012,12:728-734. [10] GILBERT J A,KRAJMALNIK-BROWN R,PORAZINSKA DOROTA L,et al. Toward effective probiotics for autism and other neurodevelopmental disorders[J]. Cell,2013,155(7):1446-1448. [11] WILLIAMS N T. Probiotics[J]. American Journal of Health:System Pharmacy,2010,67(15):449-458. [12] KASSAM Z,LEE C H,YUAN Y,et al. Fecal microbiota transplantation for clostridium difficile infection:systematic review and meta-analysis[J]. The American Journal of Gastroenterology,2013,108(4):500-508. [13] Transparency-Market-Research. Probiotic market by application (food and beverages,dietary supplements,animal feed) by end users(human probiotics,animal probiotics)——global industry analysis,size,share,growth,and forecast. 2014-2020.[R/OL].https://www.transparencymarketresearch.com/probiotics-market.html. 2015. [14] Grand-View-Research. Probiotics market size,share & trends analysis report by application (food & beverages,dietary supplements,animal feed),by end-use,by region,and segment forecast,2014- 2024[R/OL]. 2018. https://www.grandviewresearch.com/industry-analysis/ probiotics-market. [15] 徐庆,耿县如,李占勇. 喷雾冷冻干燥对颗粒产品形态的影响[J]. 化工进展,2013,32(2):270-275. XU Q,GENG X R,LI Z Y. Morphology of particle produced by spray-freeze drying[J]. Chemical Industry and Engineering Progress,2013,32(2):270-275. [16] RATTI C. Hot air and freeze-drying of high-value foods:a review[J]. Journal of Food Engineering,2001,49:311-319. [17] IACONELLI C,LEMETAIS G,KECHAOU N,et al. Drying process strongly affects probiotics viability and functionalities[J]. Journal of Biotechnology,2015,214:17-26. [18] ROONGRUANGSRI W,BRONLUND J E. A review of drying processes in the production of pumpkin powder[J]. International Journal of Food Engineering,2015,11(6):789-799. [19] FU N,WOO M W,CHEN X D. Single droplet drying technique to study drying kinetics measurement and particle functionality:a review[J]. Drying Technology,2012,30(15):1771-1785. [20] 陈晓东. 食品工程——化工精英应该关注的领域[J]. 化工进展,2016,35(6):1852-1864. CHEN X D. Food engineering——chemical engineering elite should pay attention to the field[J]. Chemical Industry and Engineering Progress,2016,35(6):1852-1864. [21] FU N,ZHOU Z,JONES T B,et al. Production of monodisperse epigallocatechin gallate (EGCG) microparticles by spray drying for high antioxidant activity retention[J]. International Journal of Pharmaceutics,2011,413:155-166. [22] DESOBRY S A,NETTO F M,LABUZA T P. Comparison of spray-drying,drum-drying and freeze-drying for β-carotene encapsulation and preservation[J]. Journal of Food Science,1997,62(6):1158-1162. [23] STRASSER S,NEUREITER M,GEPPL M,et al. Influence of lyophilization,fluidized bed drying,addition of protectants,and storage on the viability of lactic acid bacteria[J]. Journal of Applied Microbiology,2009,107:167-177. [24] GARRE E,RAGINEL F,PALACIOS A,et al. Oxidative stress responses and lipid peroxidation damage are induced during dehydration in the production of dry active wine yeasts[J]. International Journal of Food Microbiology,2010,136(3):295-303. [25] FU N,CHEN X D. Towards a maximal cell survival in convective thermal drying processes[J]. Food Research International,2011,44:1127-1149. [26] SANTIVARANGKNA C,KULOZIK U,FOERST P. Inactivation mechanisms of lactic acid starter cultures preserved by drying processes[J]. Journal of Applied Microbiology,2008,105:1-13. [27] CORCORAN B M,STANTON C,FITZGERALD G,et al. Life under stress:the probiotic stress response and how it may be manipulated[J]. Current Pharmaceutical Design,2008,14:1382-1399. [28] GOLOWCZYC M A,SILVA J,TEIXEIRA P,et al. Celluar injuries of spray-dried Lactobacillus spp. isolated from kefir and their impact on probiotic properties[J]. International Journal of Food Microbiology,2011,144:556-560. [29] REDDY K B P K,MADHU A N,PRAPULLA S G. Comparative survival and evaluation of functional probiotic properties of spray-dried lactic acid bacteria[J]. International Journal of Dairy Technology,2009,62(2):240-248. [30] CAL K,SOLLOHUB K. Spray drying technique. I:Hardware and process parameters[J]. Journal of Pharmaceutical Sciences,2010,99(2):575-586. [31] WU W D,PATEL K C,ROGERS S,et al. Monodisperse droplet generators as potential atomizers for spray drying technology[J]. Drying Technology,2007,25(12):1907-1916. [32] ORMES J D,ZHANG D,CHEN A M,et al. Design of experiments utilization to map the processing capabilities of a micro-spray dryer:particle design and throughput optimization in support of drug discovery[J]. Pharmaceutical Development and Technology,2013,18(1):121-129. [33] CHEN X D,PATEL K C. Micro-organism inactivation during drying of small droplets or thin-layer slabs——a critical review of existing kinetics models and an appraisal of the drying rate dependent model[J]. Journal of Food Engineering,2007,82:1-10. [34] LI X,LIN S X Q,CHEN X D,et al. Inactivation kinetics of probiotic bacteria during the drying of single milk droplets[J]. Drying Technology,2006,24:695-701. [35] GHANDI A,POWELL I,CHEN X D,et al. Drying kinetics and survival studies of dairy fermentation bacteria in convective air drying environment using single droplet drying[J]. Journal of Food Engineering,2012,110:405-417. [36] FU N,WOO M W,SELOMULYA C,et al. Inactivation of Lactococcus lactis ssp. cremoris cells in a droplet during convective drying[J]. Biochemical Engineering Journal,2013,79:46-56. [37] ZHENG X,FU N,DUAN M,et al. The mechanisms of the protective effects of reconstituted skim milk during convective droplet drying of lactic acid bacteria[J]. Food Research International,2015,76:478-488. [38] SUNKEL J,KING C J. Influence of the development of particle morphology upon rates of loss of volatile solutes during drying of drops[J]. Industrial & Engineering Chemistry Research,1993,32:2357-2364. [39] VEHRING R,FOSS W R,LECHUGA-BALLESTEROS D. Particle formation in spray drying[J]. Journal of Aerosol Science,2007,38:728-746. [40] SCHIFFTER H,LEE G. Single-droplet evaporation kinetics and particle formation in an acoustic levitator. Part 2:drying kinetics and particle formation from microdroplets of aqueous mannitol,trehalose or catalase[J]. Journal of Pharmaceutical Sciences,2007,96(9):2284-2295. [41] GROSSHANS H,GRIESING M,MÖNCKEDIECK M,et al. Numerical and experimental study of the drying of bi-component droplets under various drying conditions[J]. International Journal of Heat and Mass Transfer,2016,96:97-109. [42] LIN S X Q,CHEN X D. Improving the glass-filament method for accurate measurement of drying kinetics of liquid droplets[J]. Chemical Engineering Research and Design A,2002,80:401-410. [43] FU N,WOO M W,LIN S X Q,et al. Reaction Engineering Approach (REA) to model the drying kinetics of droplets with different initial sizes - experiments and analyses[J]. Chemical Engineering Science,2011,66(8):1738-1747. [44] SADEK C,TABUTEAU H,SCHUCK P,et al. Shape,shell and vacuole formation during the drying of a single concentrated whey protein droplet[J]. Langmuir,2013,29:15606-15613. [45] PERDANA J,FOX M B,SIWEI C,et al. Interactions between formulation and spray drying conditions related to survival of Lactobacillus plantarum WCFS1[J]. Food Research International,2014,56:9-17. [46] PERDANA J,BERESCHENKO L,FOX M B,et al. Dehydration and thermal inactivation of Lactobacillus plantarum WCFS1:comparing single droplet drying to spray and freeze drying[J]. Food Research International,2013,54(2):1351-1359. [47] FU N,WOO M W,MOO F T,et al. Microcrystallization of lactose during droplet drying and its effect on the property of the dried particle[J]. Chemical Engineering Research and Design,2012,90(1):138-149. [48] FU N,WOO M W,CHEN X D. Colloidal transport phenomena of milk components during convective droplet drying[J]. Colloids and Surfaces B:Biointerfaces,2011,87(2):255-266. [49] WANG Y,CHE L,FU N,et al. Surface formation phenomena of DHA-containing emulsion during convective droplet drying[J]. Journal of Food Engineering,2015,150:50-61. [50] KHEM S,WOO M W,SMALL D M,et al. Agent selection and protective effects during single droplet drying of bacteria[J]. Food Chemistry,2015,166:206-214. [51] WANG J,HUANG S,FU N,et al. Thermal aggregation of calcium-fortified skim milk enhances probiotic protection during convective droplet drying[J]. Journal of Agricultural and Food Chemistry,2016,64(30):6003-6010. [52] TEIXEIRA P,CASTRO H,MOHACSI-FARKAS C,et al. Identification of sites of injury in Lactobacillus bulgaricus during heat stress[J]. Journal of Applied Microbiology,1997,83:219-226. [53] LIU H,GONG J,CHABOT D,et al. Protection of heat-sensitive probiotic bacteria during spray-drying by sodium caseinate stabilized fat particles[J]. Food Hydrocolloids,2015,51:459-467. [54] GARDINER G E,O'SULLIVAN E,KELLY J,et al. Comparative survival rates of human-derived probiotic Lactobacillus paracasei and L. salivarius strains during heat treatment and spray drying[J]. Applied and Environmental Microbiology,2000,66(6):2605-2612. [55] CORCORAN B M,ROSS R P,FITZGERALD G F,et al. Comparative survival of probiotic lactobacilli spray-dried in the presence of prebiotic substances[J]. Journal of Applied Microbiology,2004,96:1024-1039. [56] SUNNY-ROBERTS E O,KNORR D. The protective effect of monosodium glutamate on survival of Lactobacillus rhamnosus GG and Lactobacillus rhamnosus E-97800(E800) strains during spray-drying and storage in trehalose-containing powders[J]. International Dairy Journal,2009,19:209-214. [57] ZHENG X,FU N,HUANG S,et al. Exploring the protective effects of calcium-containing carrier against drying-induced cellular injuries of probiotics using single droplet drying technique[J]. Food Research International,2016,90:226-234. [58] PERDANA J,BERESCHENKO L,ROGHAIR M,et al. Novel method for enumeration of viable lactobacillus plantarum WCFS1 cells after single-droplet drying[J]. Applied and Environmental Microbiology,2012,78(22):8082-8088. [59] SALAR-BEHZADI S,WU S,TOEGEL S,et al. Impact of heat treatment and spray drying on cellular properties and culturability of Bifidobacterium bifidum BB-12[J]. Food Research International,2013,54:93-101. [60] TYMCZYSZYN E E,DEL ROSARIO DIAZ M,GOMEZ-ZAVAGLIA A,et al. Volume recovery,surface properties and membrane integrity of Lactobacillus delbrueckii subsp. bulgaricus dehydrated in the presence of trehalose or sucrose[J]. Journal of Applied Microbiology,2007,103:2410-2419. [61] PERDANA J,DEN BESTEN H M W,ARYANI D C,et al. Inactivation of Lactobacillus plantarum WCFS1 during spray drying and storage assessed with complementary viability determination methods[J]. Food Research International,2014,64:212-217. [62] RAJAM R,ANANDHARAMAKRISHNAN C. Microencapsulation of Lactobacillus plantarum (MTCC 5422) with fructooligosaccharide as wall material by spray drying[J]. Lwt-Food Science and Technology,2015,60(2):773-780. [63] DE CASTRO-CISLAGHI F P,SILVA C D R E,FRITZEN-FREIRE C B,et al. Bifidobacterium Bb-12 microencapsulated by spray drying with whey:survival under simulated gastrointestinal conditions,tolerance to NaCl,and viability during storage[J]. Journal of Food Engineering,2012,113(2):186-193. [64] KHEM S,SMALL D M,MAY B K. The behaviour of whey protein isolate in protecting Lactobacillus plantarum[J]. Food Chemistry,2016,190:717-723. [65] DESMOND C,STANTON C,FITZGERALD G F,et al. Environmental adaptation of probiotic lactobacilli towards improvement of performance during spray drying[J]. International Dairy Journal,2001,11:801-808. [66] DIJKSTRA A R,ALKEMA W,STARRENBURG M J C,et al. Fermentation-induced variation in heat and oxidative stress phenotypes of Lactococcus lactis MG1363 reveals transcriptome signatures for robustness[J]. Microbial Cell Factories,2014,13:Article 148. [67] HUANG S,CAUTY C,DOLIVET A,et al. Double use of highly concentrated sweet whey to improve the biomass production and viability of spray-dried probiotic bacteria[J]. Journal of Functional Foods,2016,23:453-463. [68] WANG Y-C,YU R-C,CHOU C-C. Viability of lactic acid bacteria and bifidobacteria in fermented soymilk after drying,subsequent rehydration and storage[J]. International Journal of Food Microbiology,2004,93:209-217. [69] LIAN W-C,HSIAO H-C,CHOU C-C. Survival of bifidobacteria after spray-drying[J]. International Journal of Food Microbiology,2002,74:79-86. [70] KIM S S,BHOWMIK S R. Survival of lactic acid bacteria during spray drying of plain yogurt[J]. Journal of Food Science,1990,55(4):1008-1010. [71] HUANG S,MEJEAN S,RABAH H,et al. Double use of concentrated sweet whey for growth and spray drying of probiotics:towards maximal viability in pilot scale spray dryer[J]. Journal of Food Engineering,2017,196:11-17. [72] HUANG S,RABAH H,JARDIN J,et al. Hyperconcentrated sweet whey,a new culture medium that enhances Propionibacterium freudenreichii stress tolerance[J]. Applied and Environmental Microbiology,2016,82(15):4641-4651. [73] TRIBOLI E P D,GUT J A W. Study of spray-dried yoghurt production in a pilot-scale equipment using drying agents to reduce wall deposition[J]. International Journal of Food Engineering,2016,12(8):793-803. [74] FU W-Y,ETZEL M R. Spray drying of Lactococcus lactis ssp. lactis C2 and cellular injury[J]. Journal of Food Science,1995,60(1):195-200. [75] O'RIORDAN K,ANDREWS D,BUCKLE K,et al. Evaluation of microencapsulation of a Bifidobacterium strain with starch as an approach to prolonging vaibility during storage[J]. Journal of Applied Microbiology,2001,91:1059-1066. [76] TEERA-ARUNSIRI A,SUPHANTHARIKA M,KETUNUTI U. Preparation of spray-dried wettable powder formulations of Bacillus thuringiensis-based biopesticides[J]. Journal of Economic Entomology,2003,96(2):292-299. [77] BUCIO A,HARTEMINK R,SCHRAMA J W,et al. Survival of Lactobacillus plantarum 44a after spraying and drying in feed and during exposure to gastrointestinal tract fluids in vitro[J]. The Journal of General and Applied Microbiology,2005,51:221-227. [78] KHEM S,BANSAL V,SMALL D M,et al. Comparative influence of pH and heat on whey protein isolate in protecting Lactobacillus plantarum A17 during spray drying[J]. Food Hydrocolloids,Part A,2016,54:162-169. [79] DUONGTHINGOC D,GEORGE P,KATOPO L,et al. Effect of whey protein agglomeration on spray dried microcapsules containing Saccharomyces boulardii[J]. Food Chemistry,2013,141:1782-1788. [80] KILBURN D,TOWNROW S,MEUNIER V,et al. Organization and mobility of water in amorphous and crystalline trehalose[J]. Nature Materials,2006,5:632-635. [81] CROWE L M. Lessons from nature:the role of sugars in anhydrobiosis[J]. Comparative Biochemistry and Physiology Part A:Molecular & Integrative Physiology,2002,131:505-513. [82] SUN W Q,LEOPOLD A C. Cytoplasmic vitrification and survival of anhydrobiotic organisms[J]. Comparative Biochemistry and Physiology A,1997,117(3):327-333. [83] LINDERS L J M,WOLKERS W F,HOEKSTRA F A,et al. Effect of added carbohydrates on membrane phase behavior and survival of dried Lactobacillus plantarum[J]. Cryobiology,1997,35(1):31-40. [84] CERRUTTI P,DE HUERGO M S,GALVAGNO M,et al. Commercial baker's yeast stability as affected by intracellular content of trehalose,dehydration procedure and the physical properties of external matrices[J]. Applied Microbiology and Biotechnology,2000,54:575-580. [85] OBUCHI K,IWAHASHI H,LEPOCK J R,et al. Calorimetric characterization of critical targets for killing and acquired thermotolerance in yeast[J]. Yeast,2000,16:111-119. [86] HERDEIRO R S,PEREIRA M D,PANEK A D,et al. Trehalose protects Saccharomyces cerevisiae from lipid peroxidation during oxidative stress[J]. Biochimica et Biophysica Acta (BBA):General Subjects,2006,1760(3):340-346. [87] HUANG S,CHEN X D. Significant effect of Ca2+ on improving the heat resistance of lactic acid bacteria[J]. FEMS Microbiology Letters,2013,344:31-38. [88] YANG Y,HUANG S,WANG J,et al. Mg2+ improves the thermotolerance of probiotic Lactobacillus rhamnosus GG,Lactobacillus casei Zhang and Lactobacillus plantarum P-8[J]. Letters in Applied Microbiology,2017,64(4):283-288. [89] HURST A,HUGHES A. Stability of ribosomes of Staphylococcus aureus S6 sublethally heated in different buffers[J]. Journal of Bacteriology,1978,133(2):564-568. [90] HUANG S,YANG Y,FU N,et al. Calcium-aggregated milk:a potential new option for improving the viability of lactic acid bacteria under heat stress[J]. Food and Bioprocess Technology,2014,7:3147-3155. [91] MARECHAL P A,MARTINEZ DE MARNANON I,POIRIER I,et al. The importance of the kinetics of application of physical stresses on the viability of microorganisms:significance for minimal food processing[J]. Trends in Food Science & Technology,1999,10:15-20. [92] GERVAIS P,MARECHAL P A. Yeast resistance to high levels of osmotic pressure:influence of kinetics[J]. Journal of Food Engineering,1994,22:399-407. [93] GERVAIS P,MARTINEZ DE MARNANON I. Effect of the kinetics of temperature variation on Saccharomyces cerevisiae viability and permeability[J]. Biochimica et Biophysica Acta,1995,1235:52-56. [94] RIVEROS B,FERRER J,BORQUEZ R. Spray drying of a vaginal probiotic strain of Lactobacillus acidophilus[J]. Drying Technology,2009,27:123-132. |
[1] | 孙闫晨昊, 王维, 李一喆, 祝妍妮, 刘学武, 张大为. 橘皮油微胶囊制备及其产品质量评价[J]. 化工进展, 2023, 42(5): 2626-2637. |
[2] | 刘畅, 李玉宝, 左奕, 李吉东. 羟基磷灰石负载黄芩苷的不同载药方法比较分析[J]. 化工进展, 2022, 41(9): 4995-5002. |
[3] | 赵宁, 冯永新, 林廷坤, 谢志文. 热烟气环境下脱硫废水液滴蒸发特性研究进展[J]. 化工进展, 2021, 40(8): 4508-4514. |
[4] | 李丽, 严月根, 吴华明. 一株污泥减量菌喷雾干燥条件的优化[J]. 化工进展, 2019, 38(s1): 193-200. |
[5] | 李玲芳,范长岭,文政,曾斌. 喷雾干燥法制备球形Li3V2(PO4)3/C正极材料及其电化学性能[J]. 化工进展, 2019, 38(03): 1482-1486. |
[6] | 刘开放, 席志文, 黄林娜, 惠丰立. 复合壁材布拉酵母微胶囊的制备[J]. 化工进展, 2019, 38(02): 1045-1052. |
[7] | 张利辉, 徐宇兴, 刘振法, 魏爱佳, 李文. 钛酸锂/石墨烯复合负极材料的制备及电化学性能[J]. 化工进展, 2019, 38(02): 949-955. |
[8] | 郭义, 胡建华, 杨梓剑, 梁浩. 核黄素结晶母液的处理及回收利用[J]. 化工进展, 2016, 35(S2): 324-327. |
[9] | 郑玲玲, 程榕, 郑燕萍, 杨阿三, 孙勤. MVR空心桨叶干燥污泥的特性及动力学[J]. 化工进展, 2016, 35(S1): 53-57. |
[10] | 陈 何,王 红,吴继平,阳炳检,廖小珍,何雨石,马紫峰. 制备方法对Li1.2Ni0.17Co0.07Mn0.56O2富锂正极材料电化学性能的影响[J]. 化工进展, 2012, 31(11): 2526-2530. |
[11] | 赵志福,朱宏吉,于津津,李 超,高贵彦,曾艺伟. 菊粉生产新技术研究进展 [J]. 化工进展, 2008, 27(10): 1522-. |
[12] | 祖小京,林 舸,陈 伟,姜 涛. 新型MgCl2/SiO2复合载体丙烯聚合催化剂的研究 [J]. 化工进展, 2006, 25(12): 1439-. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 683
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 536
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |