化工进展 ›› 2022, Vol. 41 ›› Issue (9): 4733-4753.DOI: 10.16085/j.issn.1000-6613.2021-2449
张雨宸(), 张耀远(), 吴芹, 史大昕, 陈康成, 黎汉生()
收稿日期:
2021-11-29
修回日期:
2022-01-13
出版日期:
2022-09-25
发布日期:
2022-09-27
通讯作者:
张耀远,黎汉生
作者简介:
张雨宸(1997—),男,硕士研究生,研究方向为丙烷脱氢。E-mail:zhangyc912@163.com。
基金资助:
ZHANG Yuchen(), ZHANG Yaoyuan(), WU Qin, SHI Daxin, CHEN Kangcheng, LI Hansheng()
Received:
2021-11-29
Revised:
2022-01-13
Online:
2022-09-25
Published:
2022-09-27
Contact:
ZHANG Yaoyuan, LI Hansheng
摘要:
丙烯作为重要的有机化工原料,国内外对其需求量持续增长,造成供不应求。丙烷脱氢(PDH)工艺是以丙烷为原料定向生产丙烯的技术,具有原料来源广泛、丙烯选择性高、产物简单易分离等优势,备受人们关注。本文主要阐述了近十年PDH反应中高稳定Pt基催化剂结构调控和工艺方面的研究进展。总结发现,Pt基催化剂具有最高的反应活性和丙烯选择性,然而,Pt基催化剂在反应中易积炭失活,且在高温下容易烧结团聚,造成稳定性下降。为提高Pt基催化剂的稳定性,研究者主要从催化剂结构设计和操作工艺条件优化两个角度出发。在Pt活性中心的调控方面:①调节Pt位点的结构特性,如分散度、粒径尺寸等;②加入金属助剂,如Sn、Cu、Ga、Zn等;③调控载体的酸性、比表面积、孔结构、金属-载体的相互作用等,能有效改善Pt基催化剂的抗烧结稳定性与抗积炭性能。在操作工艺条件优化方面,通过向丙烷原料中引入CO2、H2、水蒸气或者其他烷烃可增强Pt基催化剂的抗积炭稳定性、提高丙烯的收率。最后,文章指出有效耦合Pt基催化剂结构与操作条件是进一步提高PDH反应中Pt基催化剂稳定性和丙烯收率的关键。
中图分类号:
张雨宸, 张耀远, 吴芹, 史大昕, 陈康成, 黎汉生. 丙烷脱氢用高稳定性Pt基催化剂研究进展[J]. 化工进展, 2022, 41(9): 4733-4753.
ZHANG Yuchen, ZHANG Yaoyuan, WU Qin, SHI Daxin, CHEN Kangcheng, LI Hansheng. Advances in high stable Pt based catalysts for propane dehydrogenation[J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4733-4753.
催化剂组成 | 反应温度/℃ | 原料及其摩尔分数 | 催化剂质量/g | 丙烷转化率/% | 丙烯选择性/% | 文献 |
---|---|---|---|---|---|---|
Pt-Sn/γ-Al2O3 | 600 | 纯丙烷 | 0.3 | 35.6 | 88.5 | [ |
Pt-Sn/SBA-15-IW | 520 | 8%(体积分数)C3H8+ 13%(体积分数)H2 | 0.03 | 16.0 | 99.0 | [ |
0.5Pt-1Sn/SPAO-34 | 600 | 纯丙烷 | — | 35.0 | 93.6 | [ |
0.43Pt-1.41Sn/ZSM-5 | 590 | H2/C3H8=0.25 | — | 29.7 | 77.9 | [ |
Pt(0.7%Sn)Na/AlSBA-15 | 590 | H2/C3H8=0.25 | 1.0 | 20.5 | 97.3 | [ |
PtSn/HZSM-5 | 590 | H2/C3H8=0.25 | 2.0 | 34.5 | 40.6 | [ |
PtSn/Al2O3 | 600 | H2/C3H8=0.25 | 1.0 | 41.0 | 94.5 | [ |
Pt3Ga/CeAl | 600 | 26%(体积分数)C3H8+ 26%(体积分数)H2 | 0.15 | 32.2 | 99.6 | [ |
PtSnNaGa(0.5%)/ZSM-5 | 590 | H2/C3H8=0.25 | 2.0 | 31.0 | 98.0 | [ |
GaPt@S-1 | 600 | C3H8/N2=1∶19 | 0.1 | 45.9 | 92.1 | [ |
GaPt/SiO2 | 550 | 20%(体积分数)C3H8 | — | 31.9 | 99.0 | [ |
Pt3Ga/Al2O3 | 620 | 纯丙烷 | 0.15 | 42.0 | 96.7 | [ |
Pt(0.8%,质量分数)In/Mg(Al)O | 550 | 纯丙烷 | 2.0 | 97.5 | 27.5 | [ |
PtIn/Mg(Al)O | 620 | H2/C3H8/Ar=7∶8∶35 | 0.3 | 46.1 | 96.0 | [ |
Pt14In86/SIRAL 10 | 600 | C3H8/N2=1∶9 | 0.2 | 47.0 | 98.0 | [ |
0.3%(质量分数)Pt/ Mg(0.6%,质量分数)In(Al)O | 550 | 纯丙烷 | 1.5 | 24.2 | 98.2 | [ |
0.3PtSn/1.5In-Al | 580 | H2/C3H8/Ar=7∶8∶35 | 0.3 | 58.41 | 93.0 | [ |
PtSnSr(1.2%)/HZSM-5 | 590 | H2/C3H8=0.25 | 2.0 | 33.6 | 42.2 | [ |
PtZn-Sn/SBA-15 | 576 | H2/C3H8/He=1∶1∶3 | 0.3 | 36.8 | 99.0 | [ |
PtSn-Mg(3%Zn)AlO | 550 | N2/C3H8=0.25 | 0.05 | 45.2 | 99.0 | [ |
10Zn0.1Pt/HZ | 525 | 5%(体积分数)C3H8 | 0.24 | 60.0 | 80.0 | [ |
Pt0Zn d+/SiO2 | 550 | C3H8/Ar=1∶4 | — | 35.3 | 97.6 | [ |
Zn(4%,质量分数)/TiZrO x | 550 | C3H8/N2=2∶3 | 0.05 | 30.0 | 95.0 | [ |
Pt-Zn/Na-Beta | 555 | 纯丙烷 | 0.04 | 29.0 | 90.0 | [ |
PtZn@S-1 | 600 | C3H8/H2/N2=1∶1∶2 | 0.2 | 46.7 | 99.3 | [ |
0.1Pt2Zn/Si-Beta | 550 | 10%(体积分数)C3H8 | 0.1 | 64.3 | 98.0 | [ |
PtNa/Zn(1.0%)-ZSM-5 | 590 | H2/C3H8=0.25 | 2.0 | 40.6 | 97.0 | [ |
PtZn4@S-1-H | 550 | C3H8/N2=10∶30 | 0.3 | 44.8 | 98.9 | [ |
Pt/1.2Ce-Al2O3 | 580 | H2/C3H8=1∶2 | 2.0 | 23.3 | 89.5 | [ |
PtSnNa/Ce(0.6)-MA | 590 | H2/C3H8=0.25 | 2.0 | 34.2 | 96.7 | [ |
Pt-Sn/1.1Ce-Al | 576 | H2/C3H8/Ar=1∶1∶5 | 0.3 | 43.78 | 97.2 | [ |
PtSnNa/1.0La-Al | 590 | H2/C3H8=0.25 | 2.0 | 41.1 | 96.2 | [ |
PtSnNa/ZSM-5(稀土金属质量分数3%) | 590 | H2/C3H8=0.25 | 2.0 | 28.2 | 99.5 | [ |
0.1Pt10Cu/Al2O3 | 600 | C3H8/H2/N2=8∶8∶34 | 0.25 | 13.1 | 90.0 | [ |
Pt-0.5%(质量分数)Cu/θ-Al2O3 | 600 | N2/C3H8/H2=1∶1∶1 | 0.1 | 55.0 | 50.9 | [ |
Cu0.7Pt0.1/S-1 | 610 | 纯丙烷 | 1.0 | 50.0 | 90.8 | [ |
Cu1.0Pt0.1@ZSM-5(Si/Al=150) | 610 | 纯丙烷 | 1.0 | 51.9 | 31.0 | [ |
Pt-(0.5Cu)/Al2O3 | 600 | H2/C3H8=1∶1 | — | 40.2 | 90.8 | [ |
表1 不同助剂在PDH反应中的丙烯选择性和转化率
催化剂组成 | 反应温度/℃ | 原料及其摩尔分数 | 催化剂质量/g | 丙烷转化率/% | 丙烯选择性/% | 文献 |
---|---|---|---|---|---|---|
Pt-Sn/γ-Al2O3 | 600 | 纯丙烷 | 0.3 | 35.6 | 88.5 | [ |
Pt-Sn/SBA-15-IW | 520 | 8%(体积分数)C3H8+ 13%(体积分数)H2 | 0.03 | 16.0 | 99.0 | [ |
0.5Pt-1Sn/SPAO-34 | 600 | 纯丙烷 | — | 35.0 | 93.6 | [ |
0.43Pt-1.41Sn/ZSM-5 | 590 | H2/C3H8=0.25 | — | 29.7 | 77.9 | [ |
Pt(0.7%Sn)Na/AlSBA-15 | 590 | H2/C3H8=0.25 | 1.0 | 20.5 | 97.3 | [ |
PtSn/HZSM-5 | 590 | H2/C3H8=0.25 | 2.0 | 34.5 | 40.6 | [ |
PtSn/Al2O3 | 600 | H2/C3H8=0.25 | 1.0 | 41.0 | 94.5 | [ |
Pt3Ga/CeAl | 600 | 26%(体积分数)C3H8+ 26%(体积分数)H2 | 0.15 | 32.2 | 99.6 | [ |
PtSnNaGa(0.5%)/ZSM-5 | 590 | H2/C3H8=0.25 | 2.0 | 31.0 | 98.0 | [ |
GaPt@S-1 | 600 | C3H8/N2=1∶19 | 0.1 | 45.9 | 92.1 | [ |
GaPt/SiO2 | 550 | 20%(体积分数)C3H8 | — | 31.9 | 99.0 | [ |
Pt3Ga/Al2O3 | 620 | 纯丙烷 | 0.15 | 42.0 | 96.7 | [ |
Pt(0.8%,质量分数)In/Mg(Al)O | 550 | 纯丙烷 | 2.0 | 97.5 | 27.5 | [ |
PtIn/Mg(Al)O | 620 | H2/C3H8/Ar=7∶8∶35 | 0.3 | 46.1 | 96.0 | [ |
Pt14In86/SIRAL 10 | 600 | C3H8/N2=1∶9 | 0.2 | 47.0 | 98.0 | [ |
0.3%(质量分数)Pt/ Mg(0.6%,质量分数)In(Al)O | 550 | 纯丙烷 | 1.5 | 24.2 | 98.2 | [ |
0.3PtSn/1.5In-Al | 580 | H2/C3H8/Ar=7∶8∶35 | 0.3 | 58.41 | 93.0 | [ |
PtSnSr(1.2%)/HZSM-5 | 590 | H2/C3H8=0.25 | 2.0 | 33.6 | 42.2 | [ |
PtZn-Sn/SBA-15 | 576 | H2/C3H8/He=1∶1∶3 | 0.3 | 36.8 | 99.0 | [ |
PtSn-Mg(3%Zn)AlO | 550 | N2/C3H8=0.25 | 0.05 | 45.2 | 99.0 | [ |
10Zn0.1Pt/HZ | 525 | 5%(体积分数)C3H8 | 0.24 | 60.0 | 80.0 | [ |
Pt0Zn d+/SiO2 | 550 | C3H8/Ar=1∶4 | — | 35.3 | 97.6 | [ |
Zn(4%,质量分数)/TiZrO x | 550 | C3H8/N2=2∶3 | 0.05 | 30.0 | 95.0 | [ |
Pt-Zn/Na-Beta | 555 | 纯丙烷 | 0.04 | 29.0 | 90.0 | [ |
PtZn@S-1 | 600 | C3H8/H2/N2=1∶1∶2 | 0.2 | 46.7 | 99.3 | [ |
0.1Pt2Zn/Si-Beta | 550 | 10%(体积分数)C3H8 | 0.1 | 64.3 | 98.0 | [ |
PtNa/Zn(1.0%)-ZSM-5 | 590 | H2/C3H8=0.25 | 2.0 | 40.6 | 97.0 | [ |
PtZn4@S-1-H | 550 | C3H8/N2=10∶30 | 0.3 | 44.8 | 98.9 | [ |
Pt/1.2Ce-Al2O3 | 580 | H2/C3H8=1∶2 | 2.0 | 23.3 | 89.5 | [ |
PtSnNa/Ce(0.6)-MA | 590 | H2/C3H8=0.25 | 2.0 | 34.2 | 96.7 | [ |
Pt-Sn/1.1Ce-Al | 576 | H2/C3H8/Ar=1∶1∶5 | 0.3 | 43.78 | 97.2 | [ |
PtSnNa/1.0La-Al | 590 | H2/C3H8=0.25 | 2.0 | 41.1 | 96.2 | [ |
PtSnNa/ZSM-5(稀土金属质量分数3%) | 590 | H2/C3H8=0.25 | 2.0 | 28.2 | 99.5 | [ |
0.1Pt10Cu/Al2O3 | 600 | C3H8/H2/N2=8∶8∶34 | 0.25 | 13.1 | 90.0 | [ |
Pt-0.5%(质量分数)Cu/θ-Al2O3 | 600 | N2/C3H8/H2=1∶1∶1 | 0.1 | 55.0 | 50.9 | [ |
Cu0.7Pt0.1/S-1 | 610 | 纯丙烷 | 1.0 | 50.0 | 90.8 | [ |
Cu1.0Pt0.1@ZSM-5(Si/Al=150) | 610 | 纯丙烷 | 1.0 | 51.9 | 31.0 | [ |
Pt-(0.5Cu)/Al2O3 | 600 | H2/C3H8=1∶1 | — | 40.2 | 90.8 | [ |
催化剂组成 | 反应温度/℃ | 原料及其摩尔分数 | 催化剂质量/g | 丙烷转化率/% | 丙烯选择性/% | 文献 |
---|---|---|---|---|---|---|
Pt-Sn/γ-Al2O3 | 600 | 纯丙烷 | 0.3 | 35.6 | 88.5 | [ |
PtSnNa/Ce(0.6)-介孔Al2O3 | 590 | H2/C3H8=0.25 | 2.0 | 34.2 | 96.7 | [ |
Pt-Sn/1.1Ce-Al | 576 | H2/C3H8/Ar=1∶1∶5 | 0.3 | 43.8 | 97.2 | [ |
PtSnNa/1.0La-Al | 590 | H2/C3H8=0.25 | 2.0 | 41.1 | 96.2 | [ |
PtSn/Al2O3 | 600 | H2/C3H8=0.25 | 1.0 | 41.0 | 94.5 | [ |
PtSn/Al2O3 | 590 | C3H8∶H2∶He=1∶1.25∶4 | 0.05 | 48.5 | 96.9 | [ |
PtSn/Al2O3 | 680 | — | 0.1 | 32.6 | 71.4 | [ |
Pt-Sn/SBA-15-IW | 520 | 8%(体积分数)C3H8+ 13%(体积分数)H2 | 0.03 | 16.0 | 99.0 | [ |
Pt(0.7%Sn)Na/AlSBA-15 | 590 | H2/C3H8=0.25 | 1.0 | 20.5 | 97.3 | [ |
PtSn(0.2Al)/SBA-15 | 590 | C3H8/Ar=1∶5 | 0.2 | 55.9 | 98.5 | [ |
PtZn-Sn/SBA-15 | 576 | H2/C3H8/He=1∶1∶3 | 0.3 | 36.8 | 99.0 | [ |
PtSn/NaZSM-5(Si/Al=108) | 590 | H2/C3H8=0.25 | 2.0 | 26.5 | 99.2 | [ |
PtSnNa/ZSM-5 | 590 | H2/C3H8=0.25 | 1.5 | 34.1 | 98.8 | [ |
PtSnNa/ZFS | 590 | H2/C3H8=0.25 | 1.5 | 41.9 | 99.4 | [ |
PtSnNa/ZSM-5 | 590 | H2/C3H8=0.25 | 1.5 | 35.7 | 94.6 | [ |
PtSnNa/ZQ | 590 | H2/C3H8=0.25 | 1.5 | 44.6 | 98.5 | [ |
0.5Pt-1Sn/SPAO-34 | 600 | 纯丙烷 | — | 35.0 | 93.6 | [ |
0.5%(质量分数)Pt-1%(质量分数) Sn/SAPO-34 | 600 | 纯丙烷 | — | 34.8 | 94.9 | [ |
0.41Pt-2.36Sn/ZSM-5 | 590 | H2/C3H8=0.25 | — | 28.3 | 79.8 | [ |
PtSnNaGa(0.5%)/ZSM-5 | 590 | H2/C3H8=0.25 | 2.0 | 31.0 | 98.0 | [ |
PtSn/HZSM-5 | 590 | H2/C3H8=0.25 | 2.0 | 34.5 | 40.6 | [ |
PtSnSr(1.8%)/HZSM-5 | 590 | H2/C3H8=0.25 | 2.0 | 33.8 | 45.9 | [ |
PtSnNa/ZSM-5(稀土金属质量分数3%) | 590 | H2/C3H8=0.25 | 2.0 | 28.2 | 99.5 | [ |
表2 不同载体在PDH反应中的丙烯选择性和转化率
催化剂组成 | 反应温度/℃ | 原料及其摩尔分数 | 催化剂质量/g | 丙烷转化率/% | 丙烯选择性/% | 文献 |
---|---|---|---|---|---|---|
Pt-Sn/γ-Al2O3 | 600 | 纯丙烷 | 0.3 | 35.6 | 88.5 | [ |
PtSnNa/Ce(0.6)-介孔Al2O3 | 590 | H2/C3H8=0.25 | 2.0 | 34.2 | 96.7 | [ |
Pt-Sn/1.1Ce-Al | 576 | H2/C3H8/Ar=1∶1∶5 | 0.3 | 43.8 | 97.2 | [ |
PtSnNa/1.0La-Al | 590 | H2/C3H8=0.25 | 2.0 | 41.1 | 96.2 | [ |
PtSn/Al2O3 | 600 | H2/C3H8=0.25 | 1.0 | 41.0 | 94.5 | [ |
PtSn/Al2O3 | 590 | C3H8∶H2∶He=1∶1.25∶4 | 0.05 | 48.5 | 96.9 | [ |
PtSn/Al2O3 | 680 | — | 0.1 | 32.6 | 71.4 | [ |
Pt-Sn/SBA-15-IW | 520 | 8%(体积分数)C3H8+ 13%(体积分数)H2 | 0.03 | 16.0 | 99.0 | [ |
Pt(0.7%Sn)Na/AlSBA-15 | 590 | H2/C3H8=0.25 | 1.0 | 20.5 | 97.3 | [ |
PtSn(0.2Al)/SBA-15 | 590 | C3H8/Ar=1∶5 | 0.2 | 55.9 | 98.5 | [ |
PtZn-Sn/SBA-15 | 576 | H2/C3H8/He=1∶1∶3 | 0.3 | 36.8 | 99.0 | [ |
PtSn/NaZSM-5(Si/Al=108) | 590 | H2/C3H8=0.25 | 2.0 | 26.5 | 99.2 | [ |
PtSnNa/ZSM-5 | 590 | H2/C3H8=0.25 | 1.5 | 34.1 | 98.8 | [ |
PtSnNa/ZFS | 590 | H2/C3H8=0.25 | 1.5 | 41.9 | 99.4 | [ |
PtSnNa/ZSM-5 | 590 | H2/C3H8=0.25 | 1.5 | 35.7 | 94.6 | [ |
PtSnNa/ZQ | 590 | H2/C3H8=0.25 | 1.5 | 44.6 | 98.5 | [ |
0.5Pt-1Sn/SPAO-34 | 600 | 纯丙烷 | — | 35.0 | 93.6 | [ |
0.5%(质量分数)Pt-1%(质量分数) Sn/SAPO-34 | 600 | 纯丙烷 | — | 34.8 | 94.9 | [ |
0.41Pt-2.36Sn/ZSM-5 | 590 | H2/C3H8=0.25 | — | 28.3 | 79.8 | [ |
PtSnNaGa(0.5%)/ZSM-5 | 590 | H2/C3H8=0.25 | 2.0 | 31.0 | 98.0 | [ |
PtSn/HZSM-5 | 590 | H2/C3H8=0.25 | 2.0 | 34.5 | 40.6 | [ |
PtSnSr(1.8%)/HZSM-5 | 590 | H2/C3H8=0.25 | 2.0 | 33.8 | 45.9 | [ |
PtSnNa/ZSM-5(稀土金属质量分数3%) | 590 | H2/C3H8=0.25 | 2.0 | 28.2 | 99.5 | [ |
1 | 杜凯敏, 范杰. 丙烷氧化脱氢制丙烯研究进展[J]. 化工进展, 2019, 38(6): 2697-2706. |
DU Kaimin, FAN Jie. Research progress on oxidative dehydrogenation of propane to propene[J]. Chemical Industry and Engineering Progress, 2019, 38(6): 2697-2706. | |
2 | SATTLER J J H B, RUIZ-MARTINEZ J, SANTILLAN-JIMENEZ E, et al. Catalytic dehydrogenation of light Alkanes on metals and metal oxides[J]. Chemical Reviews, 2014, 114(20): 10613-10653. |
3 | 余长林, 葛庆杰, 徐恒泳, 等. 丙烷脱氢制丙烯研究新进展[J]. 化工进展, 2006, 25(9): 977-982. |
YU Changlin, GE Qingjie, XU Hengyong, et al. New development of dehydrogenation of propane to propylene[J]. Chemical Industry and Engineering Progress, 2006, 25(9): 977-982. | |
4 | 黄燕青, 陈辉. 丙烷脱氢工艺对比[J]. 山东化工, 2020, 49(15): 89-92. |
HUANG Yanqing, CHEN Hui. Comparisonof various propane dehydrogenation processes[J]. Shandong Chemical Industry, 2020, 49(15): 89-92. | |
5 | 朱刚. 烷烃脱氢FBD工艺技术分析[J]. 技术与市场, 2015, 22(10): 42-43. |
ZHU Gang. Technical analysis of alkane dehydrogenation FBD process [J]. Technology and Market, 2015, 22(10): 42-43. | |
6 | 张彩凤, 付辉, 周大鹏, 等. 丙烷脱氢工艺及其市场分析[J]. 精细石油化工进展, 2018, 19(5): 39-42. |
ZHANG Caifeng, FU Hui, ZHOU Dapeng, et al. Technology and market analysis of propane dehydrogenation[J]. Advances in Fine Petrochemicals, 2018, 19(5): 39-42. | |
7 | 李春义, 王国玮. 丙烷/异丁烷脱氢铂系催化剂研究进展Ⅰ.烷烃脱氢反应的热力学、动力学及反应机理[J]. 石化技术与应用, 2017, 35(1):1-5. |
LI Chunyi, WANG Guowei. Progress in Pt-based catalysts for propane/isobutane dehydrogenation Ⅰ.Thermodynamics, kinetics and reaction mechanism[J]. Petrochemical Technology & Application, 2017, 35(1): 1-5. | |
8 | KUMAR M S, CHEN D, WALMSLEY J C, et al. Dehydrogenation of propane over Pt-SBA-15: effect of Pt particle size[J]. Catalysis Communications, 2008, 9(5): 747-750. |
9 | YANG Minglei, ZHU Yian, FAN Chen, et al. DFT study of propane dehydrogenation on Pt catalyst: effects of step sites[J]. Physical Chemistry Chemical Physics, 2011, 13(8): 3257-3267. |
10 | YANG Minglei, ZHU Jun, ZHU Yi’an, et al. Tuning selectivity and stability in propane dehydrogenation by shaping Pt particles: a combined experimental and DFT study[J]. Journal of Molecular Catalysis A: Chemical, 2014, 395: 329-336. |
11 | NIKNADDAF S, SOLTANI M, FARJOO A, et al. Modeling of coke formation and catalyst deactivation in propane dehydrogenation over a commercial Pt-Sn/γ-Al2O3 Catalyst[J]. Petroleum Science and Technology, 2013, 31(23): 2451-2462. |
12 | 张新平, 周兴贵, 袁渭康. 丙烷脱氢固定床反应器的动态模拟与优化[J]. 化工学报, 2009, 60(10): 2484-2489. |
ZHANG Xinping, ZHOU Xinggui, YUAN Weikang. Dynamic simulation and optimization of fixed-bed reactor for propane dehydrogenation[J]. Journal of the Chemical Industry and Engineering Society of China, 2009, 60(10): 2484-2489. | |
13 | WANG Haizhi, SUN Lili, SUI Zhijun, et al. Coke formation on Pt-Sn/Al2O3 catalyst for propane dehydrogenation[J]. Industrial & Engineering Chemistry Research, 2018, 57(26): 8647-8654. |
14 | ZHU Jun, YANG Minglei, YU Yingda, et al. Size-dependent reaction mechanism and kinetics for propane dehydrogenation over Pt catalysts[J]. ACS Catalysis, 2015, 5(11): 6310-6319. |
15 | REDEKOP E A, SAERENS S, GALVITA V V, et al. Early stages in the formation and burning of graphene on a Pt/Mg(Al)O x dehydrogenation catalyst: a temperature- and time-resolved study[J]. Journal of Catalysis, 2016, 344: 482-495. |
16 | 李庆, 隋志军, 朱贻安, 等. Pt催化丙烷脱氢过程中结焦反应的粒径效应与Sn的作用[J]. 化工学报, 2013, 64(2): 524-531. |
LI Qing, SUI Zhijun, ZHU Yi’an, et al. Formation of coke on Pt catalysts during propane dehydrogenation: effect of Pt particle size and Sn addition[J]. CIESC Journal, 2013, 64(2): 524-531. | |
17 | SHEN Liling, XIA Ke, LANG Wanzhong, et al. The effects of calcination temperature of support on PtIn/Mg(Al)O catalysts for propane dehydrogenation reaction[J]. Chemical Engineering Journal, 2017, 324: 336-346. |
18 | PHAM H N, SATTLER J J H B, WECKHUYSEN B M, et al. Role of Sn in the regeneration of Pt/γ-Al2O3 light alkane dehydrogenation catalysts[J]. ACS Catalysis, 2016, 6(4): 2257-2264. |
19 | NAWAZ Z, TANG X P, WANG Y, et al. Parametric characterization and influence of tin on the performance of Pt-Sn/SAPO-34 catalyst for selective propane dehydrogenation to propylene[J]. Industrial & Engineering Chemistry Research, 2010, 49(3): 1274-1280. |
20 | ZHANG Yiwei, ZHOU Yuming, QIU Anding, et al. Propane dehydrogenation on PtSn/ZSM-5 catalyst: effect of tin as a promoter[J]. Catalysis Communications, 2006, 7(11): 860-866. |
21 | DUAN Yongzheng, ZHOU Yuming, ZHANG Yiwei, et al. Propane dehydrogenation on PtSnNa/AlSBA-15 catalyst: influence of tin as a promoter[J]. China Petroleum Processing & Petrochemical Technology, 2012, 14(1): 37-45. |
22 | HUANG Li, ZHOU Shijian, ZHOU Yuming, et al. Effect of strontium addition to platinum catalyst for propane dehydrogenation[J]. China Petroleum Processing & Petrochemical Technology, 2012, 14(3): 75-82. |
23 | 马占华, 李帅, 姜爱晶, 等. 助剂Zn对PtSn/Al2O3催化剂丙烷脱氢性能的影响[J]. 化工进展, 2019, 38(8): 3670-3678. |
MA Zhanhua, LI Shuai, JIANG Aijing, et al. Effects of Zn on catalytic performances of PtSn/Al2O3 in propane dehydrogenation[J]. Chemical Industry and Engineering Progress, 2019, 38(8): 3670-3678. | |
24 | WANG Tuo, JIANG Feng, LIU Gang, et al. Effects of Ga doping on Pt/CeO2-Al2O3 catalysts for propane dehydrogenation[J]. AIChE Journal, 2016, 62(12): 4365-4376. |
25 | LIU Xuan, ZHOU Yuming, ZHANG Yiwei, et al. Effect of Ga addition on catalytic performance of PtSnNa/ZSM-5 catalyst for propane dehydrogenation[J]. China Petroleum Processing & Petrochemical Technology, 2011, 13(4): 45-52. |
26 | WANG Yansu, SUO Yujun, Xianwei LYU, et al. Enhanced performances of bimetallic Ga-Pt nanoclusters confined within silicalite-1 zeolite in propane dehydrogenation[J]. Journal of Colloid and Interface Science, 2021, 593: 304-314. |
27 | SEARLES K, CHAN K W, MENDES BURAK J A, et al. Highly productive propane dehydrogenation catalyst using silica-supported Ga-Pt nanoparticles generated from single-sites[J]. Journal of the American Chemical Society, 2018, 140(37): 11674-11679. |
28 | SUN Qiming, WANG Ning, FAN Qiyuan, et al. Subnanometer bimetallic platinum-zinc clusters in zeolites for propane dehydrogenation[J]. Angewandte Chemie International Edition, 2020, 59(44): 19450-19459. |
29 | TOLEK W, SURIYE K, PRASERTHDAM P, et al. Enhanced stability and propene yield in propane dehydrogenation on PtIn/Mg(Al)O catalysts with various in loadings[J]. Topics in Catalysis, 2018, 61(15/16/17): 1624-1632. |
30 | XIA Ke, LANG Wanzhong, LI Peipei, et al. Analysis of the catalytic activity induction and deactivation of PtIn/Mg(Al)O catalysts for propane dehydrogenation reaction[J]. RSC Advances, 2015, 5(79): 64689-64695. |
31 | WANG Xuchun, YANG Di, XU Yong, et al. Colloidal synthesis of Pt-In bimetallic nanoparticles for propane dehydrogenation[J]. Canadian Journal of Chemistry, 2017, 95(11): 1135-1140. |
32 | TOLEK W, SURIYE K, PRASERTHDAM P, et al. Effect of preparation method on the Pt-In modified Mg(Al)O catalysts over dehydrogenation of propane[J]. Catalysis Today, 2020, 358: 100-108. |
33 | LIU Xue, LANG Wanzhong, LONG Liuliu, et al. Improved catalytic performance in propane dehydrogenation of PtSn/γ-Al2O3 catalysts by doping indium[J]. Chemical Engineering Journal, 2014, 247: 183-192. |
34 | YU Changlin, XU Hengyong, CHEN Xirong, et al. Preparation, characterization, and catalytic performance of PtZn-Sn/SBA-15 catalyst for propane dehydrogenation[J]. Journal of Fuel Chemistry and Technology, 2010, 38(3): 308-312. |
35 | WU Xiaoping, ZHANG Qiao, CHEN Lungang, et al. Enhanced catalytic performance of PtSn catalysts for propane dehydrogenation by a Zn-modified Mg(Al)O support[J]. Fuel Processing Technology, 2020, 198: 106222. |
36 | CHEN Chong, SUN Minglei, HU Zhongpan, et al. New insight into the enhanced catalytic performance of ZnPt/HZSM-5 catalysts for direct dehydrogenation of propane to propylene[J]. Catalysis Science & Technology, 2019, 9(8): 1979-1988. |
37 | ROCHLITZ L, SEARLES K, ALFKE J, et al. Silica-supported, narrowly distributed, subnanometric Pt-Zn particles from single sites with high propane dehydrogenation performance[J]. Chemical Science, 2020, 11(6): 1549-1555. |
38 | ALY M, FORNERO E L, LEON-GARZON A R, et al. Effect of boron promotion on coke formation during propane dehydrogenation over Pt/γ-Al2O3 catalysts[J]. ACS Catalysis, 2020, 10(9): 5208-5216. |
39 | DE COLA P L, GL SER R, WEITKAMP J. Non-oxidative propane dehydrogenation over Pt-Zn-containing zeolites[J]. Applied Catalysis A: General, 2006, 306: 85-97. |
40 | ZHANG Bofeng, LI Guozhu, ZHAI Ziwei, et al. PtZn intermetallic nanoalloy encapsulated in silicalite-1 for propane dehydrogenation[J]. AIChE Journal, 2021, 67(7): e17295. |
41 | XIE Linjun, CHAI Yuchao, SUN Lanlan, et al. Optimizing zeolite stabilized Pt-Zn catalysts for propane dehydrogenation[J]. Journal of Energy Chemistry, 2021, 57: 92-98. |
42 | ZHANG Yiwei, ZHOU Yuming, HUANG Li, et al. Structure and catalytic properties of the Zn-modified ZSM-5 supported platinum catalyst for propane dehydrogenation[J]. Chemical Engineering Journal, 2015, 270: 352-361. |
43 | MA Zhanhua, WANG Jun, LI Jun, et al. Propane dehydrogenation over Al2O3 supported Pt nanoparticles: effect of cerium addition[J]. Fuel Processing Technology, 2014, 128: 283-288. |
44 | ZHOU Shijian, ZHOU Yuming, SHI Junjun, et al. Synthesis of Ce-doped mesoporous γ-alumina with enhanced catalytic performance for propane dehydrogenation[J]. Journal of Materials Science, 2015, 50(11): 3984-3993. |
45 | YU Changlin, GE Qingjie, XU Hengyong, et al. Effects of Ce addition on the Pt-Sn/γ-Al2O3 catalyst for propane dehydrogenation to propylene[J]. Applied Catalysis A: General, 2006, 315: 58-67. |
46 | ZHANG Yiwei, ZHOU Yuming, SHI Junjun, et al. Propane dehydrogenation over PtSnNa/La-doped Al2O3 catalyst: effect of La content[J]. Fuel Processing Technology, 2013, 111: 94-104. |
47 | SUN Guodong, ZHAO Zhijian, MU Rentao, et al. Breaking the scaling relationship via thermally stable Pt/Cu single atom alloys for catalytic dehydrogenation[J]. Nature Communications, 2018, 9: 4454. |
48 | LEE H, KIM W I, JUNG K D, et al. Effect of Cu promoter and alumina phases on Pt/Al2O3 for propane dehydrogenation[J]. Korean Journal of Chemical Engineering, 2017, 34(5): 1337-1345. |
49 | ZHANG Xiaotong, HE Ning, LIU Chunyan, et al. Pt-Cu alloy nanoparticles encapsulated in silicalite-1 molecular sieve: coke-resistant catalyst for alkane dehydrogenation[J]. Catalysis Letters, 2019, 149(4): 974-984. |
50 | HAN Zhiping, LI Shuirong, JIANG Feng, et al. Propane dehydrogenation over Pt-Cu bimetallic catalysts: the nature of coke deposition and the role of copper[J]. Nanoscale, 2014, 6(17): 10000-10008. |
51 | MATA-MARTINEZ A, JIMENEZ-LAM S A, TALAVERA-LÓPEZ A, et al. The effect of Sn content in a Pt/KIT-6 catalyst over its performance in the dehydrogenation of propane[J]. International Journal of Chemical Reactor Engineering, 2018, 16(10). |
52 | VU B K, SONG M B, AHN I Y, et al. Location and structure of coke generated over Pt-Sn/Al2O3 in propane dehydrogenation[J]. Journal of Industrial and Engineering Chemistry, 2011, 17(1): 71-76. |
53 | DENG L D, ZHOU Z J, SHISHIDO T. Behavior of active species on Pt-Sn/SiO2 catalyst during the dehydrogenation of propane and regeneration[J]. Applied Catalysis A: General, 2020, 606: 117826. |
54 | WANG Lei, WANG Yang, ZHANG Changwu, et al. A boron nitride nanosheet-supported Pt/Cu cluster as a high-efficiency catalyst for propane dehydrogenation[J]. Catalysis Science & Technology, 2020, 10(5): 1248-1255. |
55 | REN Guoqing, PEI Guangxian, REN Yujing, et al. Effect of group ⅠB metals on the dehydrogenation of propane to propylene over anti-sintering Pt/MgAl2O4 [J]. Journal of Catalysis, 2018, 366: 115-126. |
56 | PURDY S C, GHANEKAR P, MITCHELL G, et al. Origin of electronic modification of platinum in a Pt3V alloy and its consequences for propane dehydrogenation catalysis[J]. ACS Applied Energy Materials, 2020, 3(2): 1410-1422. |
57 | WU J, MALLIKARJUN SHARADA S, HO C, et al. Ethane and propane dehydrogenation over PtIr/Mg(Al)O[J]. Applied Catalysis A: General, 2015, 506: 25-32. |
58 | NASERI M, TAHRIRI ZANGENEH F, TAEB A. The effect of Ce, Zn and Co on Pt-based catalysts in propane dehydrogenation[J]. Reaction Kinetics, Mechanisms and Catalysis, 2019, 126(1): 477-495. |
59 | QIU Yi, LI Xinyi, ZHANG Yuanyuan, et al. Various metals (Ce, In, La, and Fe) promoted Pt/Sn-SBA-15 as highly stable catalysts for propane dehydrogenation[J]. Industrial & Engineering Chemistry Research, 2019, 58(25): 10804-10818. |
60 | ZHOU Shuai, LIU Shuangfei, JING Fangli, et al. Effects of dopants in PtSn/M-silicalite-1 on structural property and on catalytic propane dehydrogenation performance[J]. ChemistrySelect, 2020, 5(14): 4175-4185. |
61 | JANG E J, LEE J, JEONG H Y, et al. Controlling the acid-base properties of alumina for stable PtSn-based propane dehydrogenation catalysts[J]. Applied Catalysis A: General, 2019, 572: 1-8. |
62 | XIONG H F, LIN S, GOETZE J, et al. Thermally stable and regenerable platinum-tin clusters for propane dehydrogenation prepared by atom trapping on Ceria[J]. Angewandte Chemie International Edition, 2017, 56(31): 8986-8991. |
63 | FAN Xiaoqiang, LI Jianmei, ZHAO Zhen, et al. Dehydrogenation of propane over PtSnAl/SBA-15 catalysts: Al addition effect and coke formation analysis[J]. Catalysis Science & Technology, 2015, 5(1): 339-350. |
64 | 邱安定, 李恩霞, 范以宁. 载体组成对负载型PtSn/ZSM-5催化剂上丙烷脱氢反应性能的影响[J]. 催化学报, 2007, 28(11): 970-974. |
QIU Anding, LI Enxia, FAN Yining. Effect of support composition on catalytic performance of PtSn/ZSM-5 catalyst for propane dehydrogenation[J]. Chinese Journal of Catalysis, 2007, 28(11): 970-974. | |
65 | WANG Yongjuan, ZHOU Yuming, ZHOU Shijian, et al. Effect of morphological structure of PtSnNa/ZSM-5 on its catalytic performance in propane dehydrogenation[J]. China Petroleum Processing & Petrochemical Technology, 2020, 22(1): 87-97. |
66 | ZHOU Shijian, ZHOU Yuming, ZHANG Yiwei, et al. The synthesis of new coke-resistant support and its application in propane dehydrogenation to propene[J]. Journal of Chemical Technology & Biotechnology, 2016, 91(4): 1072-1081. |
67 | NAWAZ Z, TANG X P, ZHANG Q, et al. SAPO-34 supported Pt-Sn-based novel catalyst for propane dehydrogenation to propylene[J]. Catalysis Communications, 2009, 10(14): 1925-1930. |
68 | XUE Mengwei, ZHOU Yuming, HUANG Li, et al. Effect of mischmetal addition on catalytic performance of PtSnNa/ZSM-5 for propane dehydrogenation[J]. China Petroleum Processing & Petrochemical Technology, 2011, 13(3): 47-52. |
69 | ZHANG Yiwei, ZHOU Yuming, SHI Junjun, et al. Comparative study of bimetallic Pt-Sn catalysts supported on different supports for propane dehydrogenation[J]. Journal of Molecular Catalysis A: Chemical, 2014, 381: 138-147. |
70 | GUNTIDA A, WANNAKAO S, PRASERTHDAM P, et al. Acidic nanomaterials (TiO2, ZrO2, and Al2O3) are coke storage components that reduce the deactivation of the Pt-Sn/γ-Al2O3 catalyst in propane dehydrogenation[J]. Catalysis Science & Technology, 2020, 10(15): 5100-5112. |
71 | JIANG Feng, ZENG Liang, LI Shuirong, et al. Propane dehydrogenation over Pt/TiO2-Al2O3 Catalysts[J]. ACS Catalysis, 2015, 5(1): 438-447. |
72 | ZHAO Shiyong, XU Bolian, YU Lei, et al. Honeycomb-shaped PtSnNa/γ-Al2O3/cordierite monolithic catalyst with improved stability and selectivity for propane dehydrogenation[J]. Chinese Chemical Letters, 2018, 29(6): 884-886. |
73 | JUNG J W, KIM W I, KIM J R, et al. Effect of direct reduction treatment on Pt-Sn/Al2O3 catalyst for propane dehydrogenation[J]. Catalysts, 2019, 9(5): 446. |
74 | SUN Huaqian, ZHANG Yaoyuan, LI Yuming, et al. Synergistic construction of bifunctional and stable Pt/HZSM-5-based catalysts for efficient catalytic cracking of n-butane[J]. Nanoscale, 2021, 13(9): 5103-5114. |
75 | KUMAR M S, HOLMEN A, CHEN D. The influence of pore geometry of Pt containing ZSM-5, Beta and SBA-15 catalysts on dehydrogenation of propane[J]. Microporous and Mesoporous Materials, 2009, 126(1/2): 152-158. |
76 | HUANG Li, ZHOU Yuming, ZHANG Yiwei, et al. Propane dehydrogenation over PtSnNa catalyst supported on La-ZSM-5 zeolite[J]. China Petroleum Processing and Petrochemical Technology, 2010, 12(3): 18-24. |
77 | ZHANG Yiwei, ZHOU Yuming, ZHANG Shaobo, et al. Catalytic structure and reaction performance of PtSnK/ZSM-5 catalyst for propane dehydrogenation: influence of impregnation strategy[J]. Journal of Materials Science, 2015, 50(19): 6457-6468. |
78 | FENG Jing, ZHANG Mingsen, YANG Yuanyi. Dehydrogenation of propane on Pt or PtSn catalysts with Al2O3 or SBA-15 support[J]. Chinese Journal of Chemical Engineering, 2014, 22(11/12): 1232-1236. |
79 | VU B K, BOK S M, AHN I Y, et al. Oxidation of coke formed over Pt-Al2O3 and Pt-SBA-15 in propane dehydrogenation[J]. Catalysis Letters, 2009, 133(3/4): 376-381. |
80 | HUANG Lihua, XU Bolian, YANG Lili, et al. Propane dehydrogenation over the PtSn catalyst supported on alumina-modified SBA-15[J]. Catalysis Communications, 2008, 9(15): 2593-2597. |
81 | XIA Ke, LANG Wanzhong, LI Peipei, et al. The properties and catalytic performance of PtIn/Mg(Al)O catalysts for the propane dehydrogenation reaction: effects of pH value in preparing Mg(Al)O supports by the co-precipitation method[J]. Journal of Catalysis, 2016, 338: 104-114. |
82 | ZHANG Ming, SONG Zhen, GUO Mengquan, et al. Effect of reduction atmosphere on structure and catalytic performance of PtIn/Mg(Al)O/ZnO for propane dehydrogenation[J]. Catalysts, 2020, 10(5): 485. |
83 | PERECHODJUK A, ZHANG Y Y, KONDRATENKO V A, et al. The effect of supported Rh, Ru, Pt or Ir nanoparticles on activity and selectivity of ZrO2-based catalysts in non-oxidative dehydrogenation of propane[J]. Applied Catalysis A: General, 2020, 602: 117731. |
84 | WANG Yansu, HU Zhongpan, TIAN Wenwen, et al. Framework-confined Sn in Si-beta stabilizing ultra-small Pt nanoclusters as direct propane dehydrogenation catalysts with high selectivity and stability[J]. Catalysis Science & Technology, 2019, 9(24): 6993-7002. |
85 | SIDDIQI G, SUN P P, GALVITA V, et al. Catalyst performance of novel Pt/Mg(Ga)(Al)O catalysts for alkane dehydrogenation[J]. Journal of Catalysis, 2010, 274(2): 200-206. |
86 | 张海娟, 王振宇, 李江红, 等. 反应条件对丙烷脱氢催化剂积炭行为的影响[J]. 天然气化工(C1化学与化工), 2014, 39(2): 38-42. |
ZHANG Haijuan, WANG Zhenyu, LI Jianghong, et al. Effect of reaction conditions on coke formation over the catalyst for propane dehydrogenation[J]. Natural Gas Chemical Industry, 2014, 39(2): 38-42. | |
87 | SAERENS S, SABBE M K, GALVITA V V, et al. The positive role of hydrogen on the dehydrogenation of propane on Pt(111)[J]. ACS Catalysis, 2017, 7(11): 7495-7508. |
88 | GOMEZ E, XIE Z H, CHEN J G. The effects of bimetallic interactions for CO2-assisted oxidative dehydrogenation and dry reforming of propane[J]. AIChE Journal, 2019, 65(8): e16670. |
89 | ATANGA M A, REZAEI F, JAWAD A, et al. Oxidative dehydrogenation of propane to propylene with carbon dioxide[J]. Applied Catalysis B: Environmental, 2018, 220: 429-445. |
90 | REN Yingjie, ZHANG Fan, HUA Weiming, et al. ZnO supported on high silica HZSM-5 as new catalysts for dehydrogenation of propane to propene in the presence of CO2 [J]. Catalysis Today, 2009, 148(3/4): 316-322. |
91 | KOGAN S B, SCHRAMM H, HERSKOWITZ M. Dehydrogenation of propane on modified Pt/θ-alumina performance in hydrogen and steam environment[J]. Applied Catalysis A: General, 2001, 208(1/2): 185-191. |
92 | SHEINTUCH M, LIRON O, RICCA A, et al. Propane dehydrogenation kinetics on supported Pt catalyst[J]. Applied Catalysis A: General, 2016, 516: 17-29. |
93 | NAWAZ Z, WEI F. Hydrothermal study of Pt-Sn-based SAPO-34 supported novel catalyst used for selective propane dehydrogenation to propylene[J]. Journal of Industrial and Engineering Chemistry, 2010, 16(5): 774-784. |
94 | SHAN Yuling, ZHU Yian, SUI Zhijun, et al. Insights into the effects of steam on propane dehydrogenation over a Pt/Al2O3 catalyst[J]. Catalysis Science & Technology, 2015, 5(8): 3991-4000. |
95 | AVITHI KANNIAPPAN S, RAGULA U B R. Effect of reduction of Pt-Sn/α-Al2O3 on catalytic dehydrogenation of mixed-paraffin feed[J]. Catalysts, 2020, 10(1): 113. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[3] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[4] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[5] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[6] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[7] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[8] | 王晋刚, 张剑波, 唐雪娇, 刘金鹏, 鞠美庭. 机动车尾气脱硝催化剂Cu-SSZ-13的改性研究进展[J]. 化工进展, 2023, 42(9): 4636-4648. |
[9] | 王鹏, 史会兵, 赵德明, 冯保林, 陈倩, 杨妲. 过渡金属催化氯代物的羰基化反应研究进展[J]. 化工进展, 2023, 42(9): 4649-4666. |
[10] | 张启, 赵红, 荣峻峰. 质子交换膜燃料电池中氧还原反应抗毒性电催化剂研究进展[J]. 化工进展, 2023, 42(9): 4677-4691. |
[11] | 王伟涛, 鲍婷玉, 姜旭禄, 何珍红, 王宽, 杨阳, 刘昭铁. 醛酮树脂基非金属催化剂催化氧气氧化苯制备苯酚[J]. 化工进展, 2023, 42(9): 4706-4715. |
[12] | 葛亚粉, 孙宇, 肖鹏, 刘琦, 刘波, 孙成蓥, 巩雁军. 分子筛去除VOCs的研究进展[J]. 化工进展, 2023, 42(9): 4716-4730. |
[13] | 向阳, 黄寻, 魏子栋. 电催化有机合成反应的活性和选择性调控研究进展[J]. 化工进展, 2023, 42(8): 4005-4014. |
[14] | 王耀刚, 韩子姗, 高嘉辰, 王新宇, 李思琪, 杨全红, 翁哲. 铜基催化剂电还原二氧化碳选择性的调控策略[J]. 化工进展, 2023, 42(8): 4043-4057. |
[15] | 刘毅, 房强, 钟达忠, 赵强, 李晋平. Ag/Cu耦合催化剂的Cu晶面调控用于电催化二氧化碳还原[J]. 化工进展, 2023, 42(8): 4136-4142. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |