化工进展 ›› 2022, Vol. 41 ›› Issue (6): 2806-2817.DOI: 10.16085/j.issn.1000-6613.2021-1441
徐涵卓(), 刘志浩, 孙宝昌, 张亮亮, 邹海魁, 罗勇, 初广文()
收稿日期:
2021-07-08
修回日期:
2021-09-30
出版日期:
2022-06-10
发布日期:
2022-06-21
通讯作者:
初广文
作者简介:
徐涵卓(1998—),男,硕士研究生,研究方向为超重力反应器。E-mail:基金资助:
XU Hanzhuo(), LIU Zhihao, SUN Baochang, ZHANG Liangliang, ZOU Haikui, LUO Yong, CHU Guangwen()
Received:
2021-07-08
Revised:
2021-09-30
Online:
2022-06-10
Published:
2022-06-21
Contact:
CHU Guangwen
摘要:
流体驱动旋转装备在能量转换及能量回收等过程中应用广泛。近年来,流体驱动旋转装备新结构不断涌现,其应用也得到了拓展,逐步与海水淡化、制冷、混合、测速等过程结合。在此发展过程中,计算流体力学为流体驱动旋转装备的设计优化提供了新途径。本文综述了流体驱动旋转装备在能源工程、化学工程等领域的应用,总结了流体驱动旋转装备数值模拟方法研究进展,对比了主动旋转及被动旋转两种模拟方法,指出被动旋转模拟在流体驱动旋转装备研究中的意义,展望了流体驱动旋转技术在超重力装备中的应用前景。
中图分类号:
徐涵卓, 刘志浩, 孙宝昌, 张亮亮, 邹海魁, 罗勇, 初广文. 流体驱动旋转装备应用与数值模拟方法研究进展[J]. 化工进展, 2022, 41(6): 2806-2817.
XU Hanzhuo, LIU Zhihao, SUN Baochang, ZHANG Liangliang, ZOU Haikui, LUO Yong, CHU Guangwen. Research progress in applications and numerical simulation of fluid-driven rotating equipment[J]. Chemical Industry and Engineering Progress, 2022, 41(6): 2806-2817.
水轮机分类 | 现代常用形式 | 结构描述 | 特点 | 水头范围/m |
---|---|---|---|---|
反击式水轮机 | ||||
混流式水轮机 | 弗朗西斯水轮机 | 叶片截面为翼型,叶片垂直布置,与上冠下环相连 | 水流沿径向流入,轴向流出 | 20~700 |
轴流式水轮机 | 卡普兰水轮机 | 叶片结构为螺旋桨式,并且可调桨叶角度 | 水流沿轴向流入,轴向流出 | 200~850 |
斜流式水轮机 | — | 结构介于混流式与轴流式之间,桨叶倾斜布置 | 水流相对于轴线斜向流入 | 150~350 |
贯流式水轮机 | — | 转轮结构与轴流式类似,流道一般为直线状 | 水流在流道内沿轴向流动 | 1~25 |
冲击式水轮机 | ||||
斜击式水轮机 | — | 喷嘴与桨叶呈一夹角 | 射流沿斜向冲击叶轮叶片 | 20~300 |
切击式水轮机 | 佩尔顿水轮机 | 叶片结构为双碗型,喷嘴与桨叶呈切向布置 | 射流沿切向冲击叶轮叶片 | 40~1700 |
双击式水轮机 | — | 包含喷嘴和叶轮,结构介于冲击式与反击式之间 | 运行过程中存在两次冲击过程 | 5~100 |
表1 水轮机分类、结构及特点
水轮机分类 | 现代常用形式 | 结构描述 | 特点 | 水头范围/m |
---|---|---|---|---|
反击式水轮机 | ||||
混流式水轮机 | 弗朗西斯水轮机 | 叶片截面为翼型,叶片垂直布置,与上冠下环相连 | 水流沿径向流入,轴向流出 | 20~700 |
轴流式水轮机 | 卡普兰水轮机 | 叶片结构为螺旋桨式,并且可调桨叶角度 | 水流沿轴向流入,轴向流出 | 200~850 |
斜流式水轮机 | — | 结构介于混流式与轴流式之间,桨叶倾斜布置 | 水流相对于轴线斜向流入 | 150~350 |
贯流式水轮机 | — | 转轮结构与轴流式类似,流道一般为直线状 | 水流在流道内沿轴向流动 | 1~25 |
冲击式水轮机 | ||||
斜击式水轮机 | — | 喷嘴与桨叶呈一夹角 | 射流沿斜向冲击叶轮叶片 | 20~300 |
切击式水轮机 | 佩尔顿水轮机 | 叶片结构为双碗型,喷嘴与桨叶呈切向布置 | 射流沿切向冲击叶轮叶片 | 40~1700 |
双击式水轮机 | — | 包含喷嘴和叶轮,结构介于冲击式与反击式之间 | 运行过程中存在两次冲击过程 | 5~100 |
装备类型 | 应用场合 | 存在问题 | 优化方法/解决方案 |
---|---|---|---|
水轮机 | 水能发电 | 超低水头利用效率较低 | 使用碳纤维增强热塑性材料叶片[ |
水力取风冷却塔 | 冷却塔 | 效率较低,振动严重 | 设计专用混流式水轮机[ |
水力风机 | 船舶消防除烟防爆 | 效率较低 | — |
风力机 | 风能发电 | 启动过程存在动态失速 | 使用4D打印叶片及仿生叶片自动调节叶片攻角[ |
震荡水柱型波能转换器 | 波浪能发电 | 启动过程存在动态失速 | 被动流动控制方法[ |
液力透平 | 压力能回收 | 缺少流量控制系统,选择方法及性能曲线预测不够成熟 | 可变操作策略,不同转速流量关系形成数据库,拟合最优曲线[ |
透平膨胀机 | 制冷及能量回收 | 小型膨胀机中微型叶轮加工复杂 | 使用复合材料仿生轻量化叶轮[ |
旋转射流混合器 | 储罐混合 | 国产装备减速比大,防沉积效果差 | 增加液力阻尼器,设计超大减速比齿轮机构[ |
表2 流体驱动旋转装备存在的问题及优化方法/解决方案
装备类型 | 应用场合 | 存在问题 | 优化方法/解决方案 |
---|---|---|---|
水轮机 | 水能发电 | 超低水头利用效率较低 | 使用碳纤维增强热塑性材料叶片[ |
水力取风冷却塔 | 冷却塔 | 效率较低,振动严重 | 设计专用混流式水轮机[ |
水力风机 | 船舶消防除烟防爆 | 效率较低 | — |
风力机 | 风能发电 | 启动过程存在动态失速 | 使用4D打印叶片及仿生叶片自动调节叶片攻角[ |
震荡水柱型波能转换器 | 波浪能发电 | 启动过程存在动态失速 | 被动流动控制方法[ |
液力透平 | 压力能回收 | 缺少流量控制系统,选择方法及性能曲线预测不够成熟 | 可变操作策略,不同转速流量关系形成数据库,拟合最优曲线[ |
透平膨胀机 | 制冷及能量回收 | 小型膨胀机中微型叶轮加工复杂 | 使用复合材料仿生轻量化叶轮[ |
旋转射流混合器 | 储罐混合 | 国产装备减速比大,防沉积效果差 | 增加液力阻尼器,设计超大减速比齿轮机构[ |
装备类型 | 几何维度 | 流体驱动旋转模拟实现方法 | 湍流模型 | 旋转区域网格 | 多相流模型 | 网格数量 | 参考文献 |
---|---|---|---|---|---|---|---|
垂直轴风机 | 二维/三维 | CFX表达式语言 | 标准k-ε模型 | 变形网格 | — | 1.36×105(二维) 7.9×106(三维) | [ |
垂直轴水轮机 | 二维 | Fluent用户自定义函数 | 剪切应力输运k-ω模型 | 滑移网格 | — | 未提及 | [ |
垂直轴风机 | 二维/三维 | Fluent六自由度模型 | 剪切应力输运k-ω模型 | 滑移网格 | — | 129450(二维) 1512783(三维) | [ |
垂直轴风机 | 二维 | Fluent用户自定义函数 | 重整化数群k-ε模型 | 动网格 | — | 1.40×105 | [ |
达里厄型垂直轴风机 | 二维 | Fluent用户自定义函数 | 剪切应力输运k-ω模型 | 未提及 | — | 2×105 | [ |
垂直轴水轮机 | 二维 | Fluent用户自定义函数 | 剪切应力输运k-ω模型 | 滑移网格 | — | 9.8×104 | [ |
佩尔顿水轮机 | 二维/三维 | Fluent用户自定义函数 | 重整化数群k-ε模型 | 滑移网格 | 流体体积法 | 20000(二维) 1500000(三维) | [ |
震荡水柱冲击式水轮机 | 三维 | Fluent用户自定义函数 | 标准k-ε模型 | 滑移网格 | — | 1750000 | [ |
水平轴潮流能水轮机 | 三维 | Fluent用户自定义函数 | 标准k-ε模型 | 滑移网格 | — | 17250000 | [ |
高水基过滤器 | 三维 | Fluent六自由度模型 | 可实现k-ε模型 | 未提及 | 未提及 | 4.9×106~6.9×106 | [ |
涡轮流量计 | 三维 | Fluent六自由度模型 | 雷诺应力模型 | 未提及 | — | 未提及 | [ |
井下涡轮 | 三维 | Fluent六自由度模型 | 可实现k-ε模型 | 滑移网格 | — | 400000 | [ |
水平轴风机 | 三维 | Fluent六自由度模型 | 标准k-ε模型 | 动网格 | — | 689820 | [ |
表3 被动旋转模拟研究进展
装备类型 | 几何维度 | 流体驱动旋转模拟实现方法 | 湍流模型 | 旋转区域网格 | 多相流模型 | 网格数量 | 参考文献 |
---|---|---|---|---|---|---|---|
垂直轴风机 | 二维/三维 | CFX表达式语言 | 标准k-ε模型 | 变形网格 | — | 1.36×105(二维) 7.9×106(三维) | [ |
垂直轴水轮机 | 二维 | Fluent用户自定义函数 | 剪切应力输运k-ω模型 | 滑移网格 | — | 未提及 | [ |
垂直轴风机 | 二维/三维 | Fluent六自由度模型 | 剪切应力输运k-ω模型 | 滑移网格 | — | 129450(二维) 1512783(三维) | [ |
垂直轴风机 | 二维 | Fluent用户自定义函数 | 重整化数群k-ε模型 | 动网格 | — | 1.40×105 | [ |
达里厄型垂直轴风机 | 二维 | Fluent用户自定义函数 | 剪切应力输运k-ω模型 | 未提及 | — | 2×105 | [ |
垂直轴水轮机 | 二维 | Fluent用户自定义函数 | 剪切应力输运k-ω模型 | 滑移网格 | — | 9.8×104 | [ |
佩尔顿水轮机 | 二维/三维 | Fluent用户自定义函数 | 重整化数群k-ε模型 | 滑移网格 | 流体体积法 | 20000(二维) 1500000(三维) | [ |
震荡水柱冲击式水轮机 | 三维 | Fluent用户自定义函数 | 标准k-ε模型 | 滑移网格 | — | 1750000 | [ |
水平轴潮流能水轮机 | 三维 | Fluent用户自定义函数 | 标准k-ε模型 | 滑移网格 | — | 17250000 | [ |
高水基过滤器 | 三维 | Fluent六自由度模型 | 可实现k-ε模型 | 未提及 | 未提及 | 4.9×106~6.9×106 | [ |
涡轮流量计 | 三维 | Fluent六自由度模型 | 雷诺应力模型 | 未提及 | — | 未提及 | [ |
井下涡轮 | 三维 | Fluent六自由度模型 | 可实现k-ε模型 | 滑移网格 | — | 400000 | [ |
水平轴风机 | 三维 | Fluent六自由度模型 | 标准k-ε模型 | 动网格 | — | 689820 | [ |
模拟方法 | 应用场合 | 优势 | 不足 |
---|---|---|---|
主动旋转模拟方法 | 特定转速或稳定状态模拟 | 计算成本相对较低,主动旋转模拟模型成熟 | 无法真实反映流场信息,忽略了流体流动与叶片间耦合关系 |
被动旋转模拟方法 | 运行全过程模拟(主要用于启动过程) | 能真实完整反映流场信息 | 发展较晚,实现手段有限,计算成本相对较高,目前以二维模拟为主 |
表4 流体驱动旋转装备数值模拟方法对比
模拟方法 | 应用场合 | 优势 | 不足 |
---|---|---|---|
主动旋转模拟方法 | 特定转速或稳定状态模拟 | 计算成本相对较低,主动旋转模拟模型成熟 | 无法真实反映流场信息,忽略了流体流动与叶片间耦合关系 |
被动旋转模拟方法 | 运行全过程模拟(主要用于启动过程) | 能真实完整反映流场信息 | 发展较晚,实现手段有限,计算成本相对较高,目前以二维模拟为主 |
1 | 赖喜德,徐永. 叶片式流体机械动力学分析及应用[M]. 北京: 科学出版社, 2017. |
LAI Xide, XU Yong. Dynamics analysis and application of turbomachinery[M]. Beijing: Science Press, 2017. | |
2 | 向伟. 流体机械[M]. 西安: 西安电子科技大学出版社, 2016: 2. |
XIANG Wei. Fluid Machinery[M]. Xi’an: Xidian University Press, 2016: 2. | |
3 | LEIJON J, BOSTRÖM C. Freshwater production from the motion of ocean waves—A review[J]. Desalination, 2018, 435: 161-171. |
4 | KUN L C, SENTZ R H, 胡宝福. 空气分离和液化装置中的高效率透平膨胀机[J]. 深冷技术, 1987(2): 11-18. |
KUN L C, SENTZ R H, HU Baofu. High efficiency turbine expander in air separation and liquefaction plant[J]. Cryogenic Technology, 1987(2): 11-18. | |
5 | WAN Dongdong, QU Yanpeng, CHEN Songying, et al. Research on the features of gasoline mixture flow field with rotary jet mixing[C]//LIU G R, HAN X, Li Z R. Proceedings at the 8th ICCM2017. Guilin, Guangxi: Scientech Publisher LLC, 2017: 416-425. |
6 | GUO Suna, SUN Lijun, ZHANG Tao, et al. Analysis of viscosity effect on turbine flowmeter performance based on experiments and CFD simulations[J]. Flow Measurement and Instrumentation, 2013, 34: 42-52. |
7 | SABOOHI Z, SORKHKHAH S, SHAKERI H. Developing a model for prediction of helical turbine flowmeter performance using CFD[J]. Flow Measurement and Instrumentation, 2015, 42: 47-57. |
8 | VIOLLET P L. From the water wheel to turbines and hydroelectricity. Technological evolution and revolutions[J]. Comptes Rendus Mécanique, 2017, 345(8): 570-580. |
9 | SHOURANGIZ-HAGHIGHI A, HAGHNEGAHDAR M A, WANG L, et al. State of the art in the optimisation of wind turbine performance using CFD[J]. Archives of Computational Methods in Engineering, 2020, 27(2): 413-431. |
10 | IRANZO A. CFD applications in energy engineering research and simulation: an introduction to published reviews[J]. Processes, 2019, 7(12): 883. |
11 | LETCHER T M. Future energy: improved, sustainable and clean options for our planet[M]. New York: Elsevier, 2013: 218-330. |
12 | CHITRAKAR S, SOLEMSLIE B W, NEOPANE H P, et al. Review on numerical techniques applied in impulse hydro turbines[J]. Renewable Energy, 2020, 159: 843-859. |
13 | RANJAN R K, ALOM N, SINGH J, et al. Performance investigations of cross flow hydro turbine with the variation of blade and nozzle entry arc angle[J]. Energy Conversion and Management, 2019, 182: 41-50. |
14 | OKOT D K. Review of small hydropower technology[J]. Renewable and Sustainable Energy Reviews, 2013, 26: 515-520. |
15 | JOŠT D, ŠKERLAVAJ A, LIPEJ A. Improvement of efficiency prediction for a kaplan turbine with advanced turbulence models[J]. Strojniški Vestnik, 2014, 60(2): 124-134. |
16 | ABBAS A I, QANDIL M D, AL-HADDAD M, et al. Investigation of horizontal micro kaplan hydro turbine performance using multi-disciplinary design optimization[J]. Journal of Energy Resources Technology, 2020, 142(5): 052101. |
17 | LOOTS I, DIJK M VAN, BARTA B, et al. A review of low head hydropower technologies and applications in a South African context[J]. Renewable and Sustainable Energy Reviews, 2015, 50: 1254-1268. |
18 | SAFDAR I, SULTAN S, AHMAD RAZA H, et al. Empirical analysis of turbine and generator efficiency of a pico hydro system[J]. Sustainable Energy Technologies and Assessments, 2020, 37: 100605. |
19 | JAIN S V, PATEL R N. Investigations on pump running in turbine mode: a review of the state-of-the art[J]. Renewable and Sustainable Energy Reviews, 2014, 30: 841-868. |
20 | LI Huidong, ZHOU Daqing, MARTINEZ J J, et al. Design and performance of composite runner blades for ultra low head turbines[J]. Renewable Energy, 2019, 132: 1280-1289. |
21 | 张飞狂. “免风机电机”水力取风冷却塔的设计和应用[J]. 给水排水, 2000, 26(1): 98-100. |
ZHANG Feikuang. Design and application of cooling tower with hydraulic turbine driven fan[J]. Water & Wastewater Engineering, 2000, 26(1): 98-100. | |
22 | 周波, 王志成, 周长西. 水力通风冷却塔的发展与应用现状[J]. 工业用水与废水, 2010, 41(3): 73-75. |
ZHOU Bo, WANG Zhicheng, ZHOU Changxi. Development and application status of hydraulic phoenix cooling tower[J]. Industrial Water & Wastewater, 2010, 41(3): 73-75. | |
23 | 白欢欢. 水力风机的数值模拟和设计研究[D]. 杭州: 浙江大学, 2014. |
BAI Huanhuan. Numerical simulation and design study of water driven fan[D]. Hangzhou: Zhejiang University, 2014. | |
24 | EBERHARDT A H. Water driven fan system for firefighting: US4907654[P]. 1990-03-13. |
25 | 卢宇鹏, 黄锐, 李亚威, 等. 水力通风换热机设计及其在封闭高温高湿环境中的应用[J]. 黄金, 2011, 32(2): 41-45. |
LU Yupeng, HUANG Rui, LI Yawei, et al. Design and applications of a hydraulic-driving fan & heat exchanger in closed high temperature and humidity environment[J]. Gold, 2011, 32(2): 41-45. | |
26 | 赵丹平, 徐宝清. 风力机设计理论及方法[M]. 北京:北京大学出版社, 2012: 1-11. |
ZHAO Danping, XU Baoqing. Theory and method of wind turbine design[M]. Beijing: Peking University Press, 2012: 1-11. | |
27 | LI Jinjiang, WANG Guandao, LI Zhiheng, et al. A review on development of offshore wind energy conversion system[J]. International Journal of Energy Research, 2020, 44(12): 9283-9297. |
28 | CHU Y J, LAM H F, PENG H Y. Numerical investigation of the power and self-start performance of a folding-blade horizontal axis wind turbine with a downwind configuration[J]. International Journal of Green Energy, 2022, 19(1): 28-51. |
29 | DUMITRESCU H, CARDOŞ V, MĂLĂEL I. The physics of starting process for vertical axis wind turbines[M]. Cham: Springer International Publishing, 2015: 69-81. |
30 | CHONG W T, MUZAMMIL W K, ONG H C, et al. Performance analysis of the deflector integrated cross axis wind turbine[J]. Renewable Energy, 2019, 138: 675-690. |
31 | CHONG W T, MUZAMMIL W K, WONG K H, et al. Cross axis wind turbine: pushing the limit of wind turbine technology with complementary design[J]. Applied Energy, 2017, 207: 78-95. |
32 | CHU Y J, CHONG W T. A biomimetic wind turbine inspired by Dryobalanops aromatica seed: numerical prediction of rigid rotor blade performance with OpenFOAM® [J]. Computers & Fluids, 2017, 159: 295-315. |
33 | MOMENI F, SABZPOUSHAN S, VALIZADEH R, et al. Plant leaf-mimetic smart wind turbine blades by 4D printing[J]. Renewable Energy, 2019, 130: 329-351. |
34 | FALCÃO A F D O. Wave energy utilization: a review of the technologies[J]. Renewable and Sustainable Energy Reviews, 2010, 14(3): 899-918. |
35 | SHEHATA A S, XIAO Q, SAQR K M, et al. Passive flow control for aerodynamic performance enhancement of airfoil with its application in Wells turbine—Under oscillating flow condition[J]. Ocean Engineering, 2017, 136(15): 31-53. |
36 | SAMRAT N H, AHMAD N, CHOUDHURY I A. Prospect of stand-alone wave-powered water desalination system[J]. Desalination and Water Treatment, 2016, 57(1): 51-57. |
37 | CUI Ying, LIU Zhen. Effects of solidity ratio on performance of OWC impulse turbine[J]. Advances in Mechanical Engineering, 2015, 7(1): 121373. |
38 | DREW B, PLUMMER A R, SAHINKAYA M N. A review of wave energy converter technology[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2009, 223(8): 887-902. |
39 | 史广泰,苗森春. 液力透平理论、设计与优化[M]. 北京: 机械工业出版社, 2017: 1-2. |
SHI Guangtai, MIAO Senchun. Theory, design and optimization of hydraulic turbine[M]. Beijing: China Machine Press, 2017: 1-2. | |
40 | BANSAL P, MARSHALL N. Feasibility of hydraulic power recovery from waste energy in bio-gas scrubbing processes[J]. Applied Energy, 2010, 87(3): 1048-1053. |
41 | WILLIAMS A A. Pumps as turbines for low cost micro hydro power[J]. Renewable Energy, 1996, 9(1/2/3/4): 1227-1234. |
42 | WANG Tao, WANG Chuan, KONG Fanyu, et al. Theoretical, experimental, and numerical study of special impeller used in turbine mode of centrifugal pump as turbine[J]. Energy, 2017, 130: 473-485. |
43 | PUGLIESE F, DE PAOLA F, FONTANA N, et al. Performance of vertical-axis pumps as turbines[J]. Journal of Hydraulic Research, 2018, 56(4): 482-493. |
44 | LIU Yabin, HAN Yadong, TAN Lei, et al. Blade rotation angle on energy performance and tip leakage Vortex in a mixed flow pump as turbine at pump mode[J]. Energy, 2020, 206: 118084 |
45 | SENGPANICH K, BOHEZ E L J, THONGKRUER P, et al. New mode to operate centrifugal pump as impulse turbine[J]. Renewable Energy, 2019, 140: 983-993. |
46 | ANTWERPEN H J VAN, GREYVENSTEIN G P. Use of turbines for simultaneous pressure regulation and recovery in secondary cooling water systems in deep mines[J]. Energy Conversion and Management, 2005, 46(4): 563-575. |
47 | RAJA W A, PIAZZA R W. Reverse running centrifugal pumps as hydraulic power recovery turbines for seawater reverse osmosis systems[J]. Desalination, 1981, 38: 123-134. |
48 | MOHAMED E S, PAPADAKIS G, MATHIOULAKIS E, et al. An experimental comparative study of the technical and economic performance of a small reverse osmosis desalination system equipped with an hydraulic energy recovery unit[J]. Desalination, 2006, 194(1/2/3): 239-250. |
49 | AMELIO M, BARBARELLI S, SCHINELLO D. Review of methods used for selecting pumps as turbines (PATs) and predicting their characteristic curves[J]. Energies, 2020, 13(23): 6341. |
50 | BINAMA M, KAN Kan, CHEN Huixiang, et al. A numerical investigation into the PAT hydrodynamic response to impeller rotational speed variation[J]. Sustainability, 2021, 13(14): 7998. |
51 | MACÍAS ÁVILA C A, SÁNCHEZ-ROMERO F J, LÓPEZ-JIMÉNEZ P A, et al. Definition of the operational curves by modification of the affinity laws to improve the simulation of PATs[J]. Water, 2021, 13(14): 1880. |
52 | YOON S, BINNS M, PARK S, et al. Development of energy-efficient processes for natural gas liquids recovery[J]. Energy, 2017, 128: 768-775. |
53 | 朱朝辉, 姚艳霞, 杨金焕, 等. 低温氦透平膨胀机的研究进展[J]. 低温与特气, 2003, 21(1): 1-6. |
ZHU Zhaohui, YAO Yanxia, YANG Jinhuan, et al. The research development of cryogenic helium turboexpander[J]. Low Temperature and Specialty Gases, 2003, 21(1): 1-6. | |
54 | REIF-ACHERMAN S. Several motivations, improved procedures, and different contexts: the first liquefactions of helium around the world[J]. International Journal of Refrigeration, 2009, 32(5): 738-762. |
55 | TALLURI L, LOMBARDI G. Simulation and design tool for ORC axial turbine stage[J]. Energy Procedia, 2017, 129: 277-284. |
56 | MORGESE G, FORNARELLI F, ORESTA P, et al. Fast design procedure for turboexpanders in pressure energy recovery applications[J]. Energies, 2020, 13(14): 3669. |
57 | KUMAR M, PANDA D, SAHOO R K, et al. Performance prediction, numerical and experimental investigation to characterize the flow field and thermal behavior of a cryogenic turboexpander[J]. Heat and Mass Transfer, 2020, 56(3): 1015-1036. |
58 | GAD-EL-HAK I. Fluid-structure interaction for biomimetic design of an innovative lightweight turboexpander[J]. Biomimetics, 2019, 4(1): 27. |
59 | 计光华. 透平膨胀机(修订本)[M]. 西安: 西安交通大学出版社, 1982: 9-11. |
JI G H. Turbine expander (revised version)[M]. Xi’an: Xi’an Jiaotong University Press, 1982: 9-11. | |
60 | SADYKOV R A, DAMINOV A Z, SOLOMIN I N, et al. Use of a turboexpander in steam power units for heat energy recovery in heat supply systems[J]. Thermal Engineering, 2016, 63(5): 360-366. |
61 | HUANG Guangdai, SHU Gequn, TIAN Hua, et al. Development and experimental study of a supercritical CO2 axial turbine applied for engine waste heat recovery[J]. Applied Energy, 2020, 257: 113997. |
62 | DELIGANT M, DANEL Q, BAKIR F. Performance assessment of a standard radial turbine as turbo expander for an adapted solar concentration ORC[J]. Energy Procedia, 2017, 129: 1085-1092. |
63 | 郑志国, 谭学军. 向心透平膨胀机气动设计软件的开发[C]//孙铁珩, 汝信. 自主创新振兴东北高层论坛暨第二届沈阳科学学术年会论文集. 沈阳: 沈阳出版社, 2005: 452-455. |
ZHENG Z G, TAN X J. Development of aerodynamic design software for centripetal turbine expander[C]//SUN Tieheng, RU Xin. Proceedings of Independent Innovation Revitalization Northeast High-level Forum and the Second Shenyang Scientific Academic Annual Conference. Shenyang: Shenyang Publishing House, 2005: 452-455. | |
64 | KUCZYŃSKI S, ŁACIAK M, OLIJNYK A, et al. Techno-economic assessment of turboexpander application at natural gas regulation stations[J]. Energies, 2019, 12(4): 755. |
65 | HOWARD C, OOSTHUIZEN P, PEPPLEY B. An investigation of the performance of a hybrid turboexpander-fuel cell system for power recovery at natural gas pressure reduction stations[J]. Applied Thermal Engineering, 2011, 31(13): 2165-2170. |
66 | CHEN Songying, XIANG Longhao, QU Yanpeng. Numerical investigation on the features of gasoline mixture flow field with rotary jet mixing[J]. Journal of Beijing Institute of Technology, 2018, 27(3): 399-405. |
67 | 王强强, 陈家庆, 丁国栋, 等. 原油储罐防沉积用旋转喷射搅拌器研发进展[J]. 油气储运, 2018, 37(2): 135-142. |
WANG Qiangqiang, CHEN Jiaqing, DING Guodong, et al. Development progress of rotary jet mixer for the anti-deposition of crude oil tanks[J]. Oil & Gas Storage and Transportation, 2018, 37(2): 135-142. | |
68 | 田艳丽, 黄列群, 潘东杰, 等. 旋转射流搅拌器全场数值模拟分析[J]. 机电工程, 2008, 25(10): 86-90. |
TIAN Yanli, HUANG Liequn, PAN Dongjie, et al. Full flow numerical simulation and analysis of rotary jet mixing system[J]. Mechanical & Electrical Engineering Magazine, 2008, 25(10): 86-90. | |
69 | RAHIMI M, PARVAREH A. CFD study on mixing by coupled jet-impeller mixers in a large crude oil storage tank[J]. Computers & Chemical Engineering, 2007, 31(7): 737-744. |
70 | 王军丽. 液力驱动旋转射流搅拌器内部流动数值仿真及水力特性研究[D]. 杭州: 浙江大学, 2007. |
WANG Junli. Numerical simulation and hydraulic characteristics study on rotary jet mixing system driven by liquid[D]. Hangzhou: Zhejiang University, 2007. | |
71 | RAHIMI M, PARVAREH A. Experimental and CFD investigation on mixing by a jet in a semi-industrial stirred tank[J]. Chemical Engineering Journal, 2005, 115(1/2): 85-92. |
72 | 李洪河, 王红艳, 杨光发, 等. RJM喷射搅拌混合器在仪征15万m3储油罐上的应用[J]. 石油化工建设, 2006, 28(5): 38-39. |
LI Honghe, WANG Hongyan, YANG Guangfa, et al. Introduction of the application of RJM spray mixing mill in the first 150,000 m3 storage in China[J]. Petroleum and Chemical Construction, 2006, 28(5): 38-39. | |
73 | RADTKE R, GLOWKA D, RAI M M, et al. High-power turbodrill and drill bit for drilling with coiled tubing[R]. Office of Scientific and Technical Information (OSTI), 2008. |
74 | MOKARAMIAN A, RASOULI V, CAVANOUGH G, et al. Turbodrill design and performance analysis[J]. Journal of Applied Fluid Mechanics, 2015, 8(3): 377-390. |
75 | ZHANG Delong, WANG Yu, SHA Junjie, et al. Performance prediction of a turbodrill based on the properties of the drilling fluid[J]. Machines, 2021, 9(4): 76. |
76 | SEALE R A, CONROY D. PDC bits Run on turbodrills: the history, facts, and current developments[C]//All Days. June 20-23, 2005. Rio de Janeiro, Brazil. SPE, 2005. |
77 | SAHNOUNE K, BENBRIK A, OUSSAMA R, et al. Flow simulation and performance analysis of a drilling turbine[J]. Journal of Engineering Research, 2020, 8(3): 255-270. |
78 | ZHEN Wang, TAO Zhang. Computational study of the tangential type turbine flowmeter[J]. Flow Measurement and Instrumentation, 2008, 19(5): 233-239. |
79 | 陈勇, 张合, 马少杰, 等. 水下测速涡轮传感器动态实验研究[J]. 传感器与微系统, 2014, 33(7): 42-44, 48. |
CHEN Yong, ZHANG He, MA Shaojie, et al. Dynamic experiment study on underwater turbine velocity measurement sensor[J]. Transducer and Microsystem Technologies, 2014, 33(7): 42-44, 48. | |
80 | 沈德璋, 张合, 李豪杰. 一种小型水下高速运动体的自主测速方法[J]. 仪器仪表学报, 2012, 33(12): 2697-2702. |
SHEN Dezhang, ZHANG He, LI Haojie. Autonomous velocity measurement method for small underwater high velocity moving body[J]. Chinese Journal of Scientific Instrument, 2012, 33(12): 2697-2702. | |
81 | HARIRI S, HASHEMABADI S H, NOROOZI S, et al. Analysis of operational parameters, distorted flow and damaged blade effects on accuracy of industrial crude oil turbine flow meter by CFD techniques[J]. Journal of Petroleum Science and Engineering, 2015, 127: 318-328. |
82 | HSU C Y, LIANG C C, TENG T L, et al. A numerical study on high-speed water jet impact[J]. Ocean Engineering, 2013, 72: 98-106. |
83 | TEIMOURIAN H, SHABGARD M R, MOMBER A W. De-painting with high-speed water jets: paint removal process and substrate surface roughness[J]. Progress in Organic Coatings, 2010, 69(4): 455-462. |
84 | 张宏, 刘峰, 张婉茹, 等. 基于多孔射流冲击的高水基过滤器反冲洗技术研究[J]. 煤炭学报, 2019, 44(S2): 784-790. |
ZHANG Hong, LIU Feng, ZHANG Wanru, et al. Research on backwashing technology of high water-based filter based on multihole jet impact[J]. Journal of China Coal Society, 2019, 44(S2):784-790. | |
85 | 车晓红, 成立, 汤方平. 高精度水力机械试验台流量原位标定研究进展[J]. 南水北调与水利科技, 2009, 7(5): 49-51, 65. |
CHE Xiaohong, CHENG Li, TANG Fangping. Review on the flow calibration of high-precision-hydromachine-test-rig[J]. South-to-North Water Transfers and Water Science & Technology, 2009, 7(5): 49-51, 65. | |
86 | FALCÃO A F O, HENRIQUES J C C. Model-prototype similarity of oscillating-water-column wave energy converters[J]. International Journal of Marine Energy, 2014, 6: 18-34. |
87 | SANG L Q, LI Q A, CAI C A, et al. Wind tunnel and numerical study of a floating offshore wind turbine based on the cyclic pitch control[J]. Renewable Energy, 2021, 172: 453-464. |
88 | BAYATI I, BELLOLI M, BERNINI L, et al. Aerodynamic design methodology for wind tunnel tests of wind turbine rotors[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2017, 167: 217-227. |
89 | AARAJ Y, MORTADA S, CLODIC D, et al. Design of a turgo two-phase turbine runner [C]//International refrigeration and air condition conference. West Lafayette: Purdue University. 2014: 2169. |
90 | ZENG Chongji, XIAO Yexiang, LUO Yongyao, et al. Hydraulic performance prediction of a prototype four-nozzle Pelton turbine by entire flow path simulation[J]. Renewable Energy, 2018, 125: 270-282. |
91 | LIU Bingcheng, WANG Shaoyi, ZHANG Mengmeng, et al. Simulation study on the flow field of guide vane and impeller of turbo expander[J]. Energy Science & Engineering, 2019, 7(6): 2306-2320. |
92 | ZHU Jianyang, HUANG Hailin, SHEN Hao. Self-starting aerodynamics analysis of vertical axis wind turbine[J]. Advances in Mechanical Engineering, 2015, 7(12): 1-12. |
93 | UNTAROIU A, WOOD H G, ALLAIRE P E, et al. Investigation of self-starting capability of vertical axis wind turbines using a computational fluid dynamics approach[J]. Journal of Solar Energy Engineering, 2011, 133(4): 041010. |
94 | LE T Q, LEE K S, PARK J S, et al. Flow-driven rotor simulation of vertical axis tidal turbines: a comparison of helical and straight blades[J]. International Journal of Naval Architecture and Ocean Engineering, 2014, 6(2): 257-268. |
95 | 蒋勇其, 程永光, 尤建锋. 水斗式水轮机启动过程CFD模拟分析[J]. 水电能源科学, 2017, 35(1): 172-176. |
JIANG Yongqi, CHENG Yongguang, YOU Jianfeng. CFD simulation of starting process of pelton turbine[J]. Water Resources and Power, 2017, 35(1): 172-176. | |
96 | LIU Zhen, QU Hengliang, SHI Hongda. Numerical study on self-starting performance of darrieus vertical axis turbine for tidal stream energy conversion[J]. Energies, 2016, 9(10): 789. |
97 | LIU Zhen, CUI Ying, XU Chuanli, et al. Transient simulation of OWC impulse turbine based on fully passive flow-driving model[J]. Renewable Energy, 2018, 117: 459-473. |
98 | 张永胜, 于小丽, 刘彦军. 6DOF模型在涡轮流量计流体仿真中的应用[J]. 计量科学与技术, 2020 (8): 55-57, 64. |
ZHANG Yongsheng, YU Xiaoli, LIU Yanjun. Application of 6DOF model in fluid simulation of turbine flowmeter[J]. Metrology Science and Technology, 2020(8): 55-57, 64. | |
99 | 张学伟, 张亮, 李志川, 等. 垂直轴自由变偏角水轮机的多体耦合数值求解方法[J]. 计算力学学报, 2013, 30(3): 370-375. |
ZHANG Xuewei, ZHANG Liang, LI Zhichuan, et al. Multi-body coupling numerical algorithms for free variable-pitch vertical axis tidal turbine[J]. Chinese Journal of Computational Mechanics, 2013, 30(3): 370-375. | |
100 | 孙科, 张亮, 何环宇. 三叶片垂直轴水轮机自启动性能数值计算[J]. 哈尔滨工业大学学报, 2016, 48(4): 144-148. |
SUN Ke, ZHANG Liang, HE Huanyu. Numerical computation on self-starting position of a three-blade vertical axis hydro-turbine[J]. Journal of Harbin Institute of Technology, 2016, 48(4): 144-148. | |
101 | 陈文鹏, 刘胤超, 陈立卫. 基于UDF的水平轴潮流能水轮机被动旋转水动力性能研究[J]. 海洋工程, 2018, 36(2): 119-126. |
CHEN Wenpeng, LIU Yinchao, CHEN Liwei. Study on hydrodynamic performance of horizontal tidal turbine rotating passively based on UDF[J]. The Ocean Engineering, 2018, 36(2): 119-126. | |
102 | ZENG Yijin, WANG Jin, DING Shidong, et al. Simulation study on dynamics of hydraulic turbines used in drilling engineering[J]. Shock and Vibration, 2020, 2020: 1-14. |
103 | HSU C H, CHEN Junliang, YUAN Shanchi, et al. CFD simulations on the rotor dynamics of a horizontal axis wind turbine activated from stationary[J]. Applied Mechanics, 2021, 2(1): 147-158. |
104 | SITTE D, SUTANTO H. Performance analysis of hydraulic machines using impellers made from conventional steel and 3D printing co-polymer[J]. IOP Conference Series: Materials Science and Engineering, 2021, 1115(1): 012049. |
105 | HAN Nuomin, ZHAO Dan, SCHLUTER J U, et al. Performance evaluation of 3D printed miniature electromagnetic energy harvesters driven by air flow[J]. Applied Energy, 2016, 178: 672-680. |
106 | CORTES GARCIA G E, SCHAAF J VAN DER, KISS A A. A review on process intensification in HiGee distillation[J]. Journal of Chemical Technology & Biotechnology, 2017, 92(6): 1136-1156. |
107 | CHU Guangwen, FEI Jia, CAI Yong, et al. Removal of SO2 with sodium sulfite solution in a rotating packed bed[J]. Industrial & Engineering Chemistry Research, 2018, 57(6): 2329-2335. |
[1] | 王云飞, 秦蕊, 郑利军, 李焱, 李清平. 旋转填充床CFD模拟研究进展[J]. 化工进展, 2023, 42(S1): 1-9. |
[2] | 赵晨, 苗天泽, 张朝阳, 洪芳军, 汪大海. 负压状态窄缝通道乙二醇水溶液传热特性[J]. 化工进展, 2023, 42(S1): 148-157. |
[3] | 孙继鹏, 韩靖, 唐杨超, 闫汉博, 张杰瑶, 肖苹, 吴峰. 硫黄湿法成型过程数值模拟与操作参数优化[J]. 化工进展, 2023, 42(S1): 189-196. |
[4] | 陈匡胤, 李蕊兰, 童杨, 沈建华. 质子交换膜燃料电池气体扩散层结构与设计研究进展[J]. 化工进展, 2023, 42(S1): 246-259. |
[5] | 孙玉玉, 蔡鑫磊, 汤吉海, 黄晶晶, 黄益平, 刘杰. 反应精馏合成甲基丙烯酸甲酯工艺优化及节能[J]. 化工进展, 2023, 42(S1): 56-63. |
[6] | 王晨, 白浩良, 康雪. 大功率UV-LED散热与纳米TiO2光催化酸性红26耦合系统性能[J]. 化工进展, 2023, 42(9): 4905-4916. |
[7] | 罗成, 范晓勇, 朱永红, 田丰, 崔楼伟, 杜崇鹏, 王飞利, 李冬, 郑化安. 中低温煤焦油加氢反应器不同分配器中液体分布的CFD模拟[J]. 化工进展, 2023, 42(9): 4538-4549. |
[8] | 刘炫麟, 王驿凯, 戴苏洲, 殷勇高. 热泵中氨基甲酸铵分解反应特性及反应器结构优化[J]. 化工进展, 2023, 42(9): 4522-4530. |
[9] | 陈林, 徐培渊, 张晓慧, 陈杰, 徐振军, 陈嘉祥, 密晓光, 冯永昌, 梅德清. 液化天然气绕管式换热器壳侧混合工质流动及传热特性[J]. 化工进展, 2023, 42(9): 4496-4503. |
[10] | 卜治丞, 焦波, 林海花, 孙洪源. 脉动热管计算流体力学模型与研究进展[J]. 化工进展, 2023, 42(8): 4167-4181. |
[11] | 李蓝宇, 黄新烨, 王笑楠, 邱彤. 化工科研范式智能化转型的思考与展望[J]. 化工进展, 2023, 42(7): 3325-3330. |
[12] | 周龙大, 赵立新, 徐保蕊, 张爽, 刘琳. 电场-旋流耦合强化多相介质分离研究进展[J]. 化工进展, 2023, 42(7): 3443-3456. |
[13] | 薛凯, 王帅, 马金鹏, 胡晓阳, 种道彤, 王进仕, 严俊杰. 工业园区分布式综合能源系统的规划与调度[J]. 化工进展, 2023, 42(7): 3510-3519. |
[14] | 孙征楠, 李洪晶, 荆国林, 张福宁, 颜飚, 刘晓燕. EVA及其改性聚合物在原油降凝剂领域的应用[J]. 化工进展, 2023, 42(6): 2987-2998. |
[15] | 顾诗亚, 董亚超, 刘琳琳, 张磊, 庄钰, 都健. 考虑中间节点的碳捕集管路系统设计与优化[J]. 化工进展, 2023, 42(6): 2799-2808. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |