1 |
黄翔, 陶蕾, 杨燃, 等. 复合乳酸菌发酵蛋壳制备乳酸钙[J]. 食品科学, 2019, 40(20): 159-165.
|
|
HUANG Xiang, TAO Lei, YANG Ran, et al. Preparation of calcium lactate from eggshell by mixed-culture fermentation of lactic acid bacteria[J]. Food Science, 2019, 40(20): 159-165.
|
2 |
马美湖, 邱宁, 黄茜, 等. 我国蛋品加工业发展情况及特点[J]. 农业工程技术, 2015, 35(5): 26-31.
|
|
MA Meihu, QIU Ning, HUANG Qian, et al. The development situation and characteristics of China’s egg processing industry[J]. Agriculture Engineering Technology, 2015, 35(5): 26-31.
|
3 |
KANNAN M B, RONAN K. Conversion of biowastes to biomaterial: an innovative waste management approach[J]. Waste Management, 2017, 67: 67-72.
|
4 |
YE M, SUN M M, CHEN X, et al. Feasibility of sulfate-calcined eggshells for removing pathogenic bacteria and antibiotic resistance genes from landfill leachates[J]. Waste Management, 2017, 63: 275-283.
|
5 |
WANG B W, SONG X Y, WANG Z H, et al. Preparation and application of the sol-gel combustion synthesis-made CaO/CaZrO3 sorbent for cyclic CO2 capture through the severe calcination condition[J]. Chinese Journal of Chemical Engineering, 2014, 22(9): 991-999.
|
6 |
孙超颖, 李英杰, 闫宪尧, 等. 钙循环辅集CO2后CaO的水合/脱水热化学储热性能[J].化工进展, 2020, 39(5): 1734-1743.
|
|
SUN Chaoying, LI Yingjie, YAN Xianyao, et al. Hydration/dehydration thermochemical heat storage performance of CaO from CO2 capture cyles[J]. Chemical Industry and Engineering Progress, 2020, 39(5): 1734-1743.
|
8 |
WITOON T. Characterization of calcium oxide derived from waste eggshell and its application as CO2 sorbent[J]. Ceramics International, 2011, 37(8): 3291-3298.
|
9 |
SALAUDEEN S A, TASNIM S H, HEIDARI M, et al. Eggshell as a potential CO2 sorbent in the calcium looping gasification of biomass[J]. Waste Management, 2018, 80: 274-284.
|
10 |
MOHAMMADI M, LAHIJANI P, MOHAMED A R. Refractory dopant-incorporated CaO from waste eggshell as sustainable sorbent for CO2 capture: experimental and kinetic studies[J]. Chemical Engineering Journal, 2014, 243: 455-464.
|
11 |
IYER M V, FAN L S. High temperature CO capture using engineered eggshells: a route to carbon management: US7678351[P]. 2010-03-16.
|
12 |
OLIVARES-MARÍN M, CUERDA-CORREA E M, NIETO-SÁNCHEZ A, et al. Influence of morphology, porosity and crystal structure of CaCO3 precursors on the CO2 capture performance of CaO-derived sorbents[J]. Chemical Engineering Journal, 2013, 217: 71-81.
|
13 |
CASTILHO S, KIENNEMANN A, COSTA PEREIRA M F, et al. Sorbents for CO2 capture from biogenesis calcium wastes[J]. Chemical Engineering Journal, 2013, 226: 146-153.
|
14 |
SHAN S Y, MA A H, HU Y C, et al. Development of sintering-resistant CaO-based sorbent derived from eggshells and bauxite tailings for cyclic CO2 capture[J]. Environmental Pollution, 2016, 208: 546-552.
|
15 |
杨彬, 余钟亮, 李春玉, 等. CeO2掺杂对CaO基吸收剂CO2捕获性能的影响[J]. 燃料化学学报, 2019, 47(3): 344-351.
|
|
YANG Bin, YU Zhongliang, LI Chunyu, et al. Influence of cerium doping on CO2 capture of CaO-based sorbents[J]. Journal of Fuel Chemistry and Technology, 2019, 47(3): 344-351.
|
16 |
耿一琪, 郭彦霞, 樊飙, 等. CaO基吸附剂捕集CO2及其抗烧结改性研究进展[J]. 燃料化学学报, 2021, 49(7): 998-1013.
|
|
GENG Yiqi, GUO Yanxia, FAN Biao, et al. Research progress of calcium-based adsorbents for CO2 capture and anti-sintering modification[J]. Journal of Fuel Chemistry and Technology, 2021, 49(7): 998-1013.
|
17 |
LIU W Q, LOW N W, FENG B, et al. Calcium precursors for the production of CaO sorbents for multicycle CO2 capture[J]. Environmental Science & Technology, 2010, 44(2): 841-847.
|
18 |
LIU W Q, FENG B, WU Y Q, et al. Synthesis of sintering-resistant sorbents for CO2 capture[J]. Environmental Science & Technology, 2010, 44(8): 3093-3097.
|
19 |
ERANS M, MANOVIC V, ANTHONY E J. Calcium looping sorbents for CO2 capture[J]. Applied Energy, 2016, 180: 722-742.
|
20 |
郭名女. 抗烧结钙基吸收剂同时捕集CO2/SO2的循环反应特性及动力学研究[D]. 重庆: 重庆大学, 2011.
|
|
GUO Mingnv. Cyclic reaction characteristic of co-capture CO2/SO2 and kinetic study for synthetized anti-sintering calcium-based sorbents[D]. Chongqing: Chongqing University, 2011.
|
21 |
刘小通. 改性钙基CO2高温吸附剂的研究[D]. 西安: 西北大学, 2017.
|
|
LIU Xiaotong. Study of modified CaO-based sorbents for CO2 at high temperature[D]. Xi’an: Northwest University, 2017.
|
22 |
任聃艳. 基于复合载体的钙铜联合循环性能研究[D]. 武汉: 华中科技大学, 2017.
|
|
REN Danyan. Development of combined calcium and copper chemical looping process using composite Cao/CuO-based materials[D]. Wuhan: Huazhong University of Science and Technology, 2017.
|
23 |
BARKER R. The reversibility of the reaction CaCO3 ⇄ CaO+CO2 [J]. Journal of Applied Chemistry and Biotechnology, 2007, 23(10): 733-742.
|
24 |
WANG B W, ZHENG Y, YAN R, et al. A new indicator for determining the fast chemical reaction stage of CaO carbonation with CO2 [J]. Asia-Pacific Journal of Chemical Engineering, 2007, 2(3): 197-202.
|
25 |
YANG Y D, LIU W Q, HU Y C, et al. Novel low cost Li4SiO4-based sorbent with naturally occurring wollastonite as Si-source for cyclic CO2 capture[J]. Chemical Engineering Journal, 2019, 374: 328-337.
|
26 |
史杰文. 基于钙基吸收剂的CO2、SO2和NO联合脱除研究[D]. 济南: 山东大学, 2018.
|
|
SHI Jiewen. Study on combined removal of CO2, SO2 and NO based on calcium-based sorbents[D]. Jinan: Shandong University, 2018.
|
27 |
彭微薇. 基于自组装模板法的新型CO2吸收剂性能研究[D]. 武汉: 华中科技大学, 2016.
|
|
PENG Weiwei. Research on novel CO2 sorbents based on self-assembly template synthesis method[D]. Wuhan: Huazhong University of Science and Technology, 2016.
|
28 |
SUN P, GRACE J R, LIM C J, et al. The effect of CaO sintering on cyclic CO2 capture in energy systems[J]. AIChE Journal, 2007, 53(9): 2432-2442.
|
29 |
ABANADES J C. The maximum capture efficiency of CO2 using a carbonation/calcination cycle of CaO/CaCO3 [J]. Chemical Engineering Journal, 2002, 90(3): 303-306.
|