32 |
LI W, WANG K C, HUANG J J, et al. M x O y -ZrO2 (M = Zn, Co, Cu) solid solutions derived from schiff base-bridged UiO-66 composites as high-performance catalysts for CO2 hydrogenation[J]. ACS Applied Materials & Interfaces, 2019, 11(36): 33263-33272.
|
33 |
LI G, WANG B D, SUN Q, et al. Novel synthesis of fly-ash-derived Cu-loaded SAPO-34 catalysts and their use in selective catalytic reduction of NO with NH3 [J]. Green Energy & Environment, 2019, 4(4): 470-482.
|
34 |
CHEN J Y, WANG X, WU D K, et al. Hydrogenation of CO2 to light olefins on CuZnZr@(Zn-)SAPO-34 catalysts: strategy for product distribution[J]. Fuel, 2019, 239: 44-52.
|
35 |
BAKHTIAR S U H, ALI S, DONG Y L, et al. Selective synthesis of the SAPO-5 and SAPO-34 mixed phases by controlling Si/Al ratio and their excellent catalytic methanol to olefins performance[J]. Journal of Porous Materials, 2018, 25(5): 1455-1461.
|
36 |
RAVI M, SUSHKEVICH V L, BOKHOVEN J A VAN. Towards a better understanding of Lewis acidic aluminium in zeolites[J]. Nature Materials, 2020, 19(10): 1047-1056.
|
37 |
DAI W L, WANG X, WU G J, et al. Methanol-to-olefin conversion on silicoaluminophosphate catalysts: effect of Brønsted acid sites and framework structures[J]. ACS Catalysis, 2011, 1(4): 292-299.
|
38 |
DAI W L, SCHEIBE M, GUAN N J, et al. Fate of Brønsted acid sites and benzene-based carbenium ions during methanol-to-olefin conversion on SAPO-34[J]. ChemCatChem, 2011, 3(7): 1130-1133.
|
39 |
CHEN J R, LI J Z, YUAN C Y, et al. Elucidating the olefin formation mechanism in the methanol to olefin reaction over AlPO-18 and SAPO-18[J]. Catalysis Science & Technology, 2014, 4(9): 3268.
|
40 |
WANG M H, WANG Z W, LIU S H, et al. Synthesis of hierarchical SAPO-34 to improve the catalytic performance of bifunctional catalysts for syngas-to-olefins reactions[J]. Journal of Catalysis, 2021, 394: 181-192.
|
41 |
WANG M H, KANG J C, XIONG X W, et al. Effect of zeolite topology on the hydrocarbon distribution over bifunctional ZnAlO/SAPO catalysts in syngas conversion[J]. Catalysis Today, 2021, 371: 85-92.
|
42 |
WESTGÅRD ERICHSEN M, SVELLE S, OLSBYE U. The influence of catalyst acid strength on the methanol to hydrocarbons (MTH) reaction[J]. Catalysis Today, 2013, 215: 216-223.
|
43 |
YE R P, DING J, GONG W B, et al. CO2 hydrogenation to high-value products via heterogeneous catalysis[J]. Nature Communications, 2019, 10(1): 5698.
|
1 |
GOUD D, GUPTA R, MALIGAL-GANESH R, et al. Review of catalyst design and mechanistic studies for the production of olefins from anthropogenic CO2 [J]. ACS Catalysis, 2020, 10(23): 14258-14282.
|
2 |
ARESTA M, DIBENEDETTO A, ANGELINI A. Catalysis for the valorization of exhaust carbon: from CO2 to chemicals, materials, and fuels. technological use of CO2 [J]. Chemical Reviews, 2014, 114(3): 1709-1742.
|
44 |
CHENG K, ZHOU W, KANG J C, et al. Bifunctional catalysts for one-step conversion of syngas into aromatics with excellent selectivity and stability[J]. Chem., 2017, 3(2): 334-347.
|
45 |
WANG J Y, ZHANG A F, JIANG X, et al. Highly selective conversion of CO2 to lower hydrocarbons (C2-C4) over bifunctional catalysts composed of In2O3-ZrO2 and zeolite[J]. Journal of CO2 Utilization, 2018, 27: 81-88.
|
46 |
ZHOU W, CHENG K, KANG J, et al. New horizon in C1 chemistry: breaking the selectivity limitation in transformation of syngas and hydrogenation of CO2 into hydrocarbon chemicals and fuels[J]. Chemical Society Reviews, 2019, 48(12): 3193-3228.
|
47 |
WANG Y, TAN L, TAN M H, et al. Rationally designing bifunctional catalysts as an efficient strategy to boost CO2 hydrogenation producing value-added aromatics[J]. ACS Catalysis, 2019, 9(2): 895-901.
|
48 |
WANG S, ZHANG L, ZHANG W Y, et al. Selective conversion of CO2 into propene and butene[J]. Chem, 2020, 6(12): 3344-3363.
|
49 |
LI Z L, QU Y Z, WANG J J, et al. Highly selective conversion of carbon dioxide to aromatics over tandem catalysts[J]. Joule, 2019, 3(2): 570-583.
|
50 |
LI Z L, WANG J J, QU Y Z, et al. Highly selective conversion of carbon dioxide to lower olefins[J]. ACS Catalysis, 2017, 7(12): 8544-8548.
|
51 |
WANG Y H, WANG G Y, VAN DER WAL L I, et al. Visualizing element migration over bifunctional metal-zeolite catalysts and its impact on catalysis[J]. Angewandte Chemie International Edition, 2021, 60(32): 17735-17743.
|
3 |
ALVAREZ A, BANSODE A, URAKAWA A, et al. Challenges in the greener production of formates/formic acid, methanol, and DME by heterogeneously catalyzed CO2 hydrogenation processes[J]. Chemical Reviews, 2017, 117(14): 9804-9838.
|
4 |
MA Z Q, POROSOFF M D. Development of tandem catalysts for CO2 hydrogenation to olefins[J]. ACS Catalysis, 2019, 9(3): 2639-2656.
|
5 |
成康, 张庆红, 康金灿, 等. 二氧化碳直接制备高值化学品中的接力催化方法[J]. 中国科学: 化学, 2020, 50(7): 743-755.
|
|
CHENG K, ZHANG Q H, KANG J C, et al. Relay catalysis in the direct conversion of carbon dioxide to high-value chemicals[J]. Scientia Sinica (Chimica),2020, 50(7): 743-755.
|
6 |
LIU X L, WANG M H, YIN H R, et al. Tandem catalysis for hydrogenation of CO and CO2 to lower Olefins with bifunctional catalysts composed of spinel oxide and SAPO-34[J]. ACS Catalysis, 2020, 10(15): 8303-8314.
|
7 |
CHENG K, GU B, LIU X L, et al. Direct and highly selective conversion of synthesis gas into lower olefins: design of a bifunctional catalyst combining methanol synthesis and carbon-carbon coupling[J]. Angewandte Chemie International Edition, 2016, 55(15): 4725-4728.
|
8 |
JIAO F, LI J, PAN X, et al. Selective conversion of syngas to light olefins[J]. Science, 2016, 351(6277): 1065-1068.
|
9 |
YANG H Y, ZHANG C, GAO P, et al. A review of the catalytic hydrogenation of carbon dioxide into value-added hydrocarbons[J]. Catalysis Science & Technology, 2017, 7(20): 4580-4598.
|
10 |
DANG S S, GAO P, LIU Z Y, et al. Role of zirconium in direct CO2 hydrogenation to lower olefins on oxide/zeolite bifunctional catalysts[J]. Journal of Catalysis, 2018, 364: 382-393.
|
11 |
WANG C M, WANG Y D, XIE Z K. Insights into the reaction mechanism of methanol-to-olefins conversion in HSAPO-34 from first principles: are olefins themselves the dominating hydrocarbon pool species?[J]. Journal of Catalysis, 2013, 301: 8-19.
|
12 |
SUN Q M, WANG N, GUO G Q, et al. Synthesis of tri-level hierarchical SAPO-34 zeolite with intracrystalline micro-meso-macroporosity showing superior MTO performance[J]. Journal of Materials Chemistry A, 2015, 3(39): 19783-19789.
|
13 |
ZHANG Q, YU J H, CORMA A. Applications of zeolites to C1 chemistry: recent advances, challenges, and opportunities[J]. Advanced Materials, 2020, 32(44): 2002927.
|
14 |
TIAN C C, ZHU X, ABNEY C W, et al. Toward the design of a hierarchical perovskite support: ultra-sintering-resistant gold nanocatalysts for CO oxidation[J]. ACS Catalysis, 2017, 7(5): 3388-3393.
|
15 |
RUTKOWSKA M, MACINA D, MIROCHA-KUBIEŃ N, et al. Hierarchically structured ZSM-5 obtained by desilication as new catalyst for DME synthesis from methanol[J]. Applied Catalysis B: Environmental, 2015, 174/175: 336-343.
|
16 |
ZHAO B, ZHAI P, WANG P F, et al. Direct transformation of syngas to aromatics over Na-Zn-Fe5C2 and hierarchical HZSM-5 tandem catalysts[J]. Chem, 2017, 3(2): 323-333.
|
17 |
BAI R S, SONG Y, LI Y, et al. Creating hierarchical pores in zeolite catalysts[J]. Trends in Chemistry, 2019, 1(6): 601-611.
|
18 |
ZHOU H, XU J, LIU X H, et al. Bio-inspired photonic materials: prototypes and structural effect designs for applications in solar energy manipulation[J]. Advanced Functional Materials, 2018, 28(24): 1705309.
|
19 |
姜霞,李雯,郭云龙,等. 生物模板法制备金属氧化物及其催化应用研究进展[J]. 化工进展, 2019, 38(1): 485-494.
|
|
JIANG X, LI W, GUO Y L, et al. Progress on bio-templated synthesis of metal oxides and their catalytic applications[J]. Chemical Industry and Engineering Progress, 2019, 38(1): 485-494.
|
20 |
GOODWIN W B, SHIN D, SABO D, et al. Tunable multimodal adhesion of 3D, nanocrystalline CoFe2O4 pollen replicas[J]. Bioinspiration & Biomimetics, 2017, 12(6): 066009.
|
21 |
CHEN L, TANG X W, XIE P W, et al. 3D printing of artificial leaf with tunable hierarchical porosity for CO2 photoreduction[J]. Chemistry of Materials, 2018, 30(3): 799-806.
|
22 |
ANDERSON M W, HOLMES S M, HANIF N, et al. Hierarchical pore structures through diatom zeolitization[J]. Angewandte Chemie International Edition, 2000, 39(15): 2707-2710.
|
23 |
LIU X, ZHAN G W, WU J Y, et al. Preparation of integrated CuO/ZnO/OS nanocatalysts by using acid-etched oyster shells as a support for CO2 hydrogenation[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(18): 7162-7173.
|
24 |
JIANG X, LIU Y, HAO H J, et al. Rape pollen-templated synthesis of C,N self-doped hierarchical TiO2 for selective hydrogenation of 1,3-butadiene[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(1): 882-888.
|
25 |
GUO Y L, YANG D P, LIU M H, et al. Enhanced catalytic benzene oxidation over a novel waste-derived Ag/eggshell catalyst[J]. Journal of Materials Chemistry A, 2019, 7(15): 8832-8844.
|
26 |
钱俊青. 稻谷壳的深加工技术[J]. 中国商办工业, 2001, 13(1): 44-46.
|
|
QIAN J Q. Deep processing technology of rice husk[J]. China Commercial Industry, 2001, 13(1): 44-46.
|
27 |
LIOU T H. Preparation and characterization of nano-structured silica from rice husk[J]. Materials Science and Engineering: A, 2004, 364(1/2): 313-323.
|
28 |
YELETSKY P M, YAKOVLEV V A, MEL’GUNOV M S, et al. Synthesis of mesoporous carbons by leaching out natural silica templates of rice husk[J]. Microporous and Mesoporous Materials, 2009, 121(1/2/3): 34-40.
|
29 |
LIANG Y R, YANG C, DONG H W, et al. Facile synthesis of highly porous carbon from rice husk[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(8): 7111-7117.
|
30 |
YANG D L, DU B, YAN Y X, et al. Rice-husk-templated hierarchical porous TiO2/SiO2 for enhanced bacterial removal[J]. ACS Applied Materials & Interfaces, 2014, 6(4): 2377-2385.
|
31 |
PASTOR A, BALBUENA J, CRUZ-YUSTA M, et al. ZnO on rice husk: a sustainable photocatalyst for urban air purification[J]. Chemical Engineering Journal, 2019, 368: 659-667.
|