化工进展 ›› 2022, Vol. 41 ›› Issue (2): 803-815.DOI: 10.16085/j.issn.1000-6613.2021-0626
王勇1,2(), 姜明昊1, 王怡霖1, 徐婧婷3, 支硕4
收稿日期:
2021-03-29
修回日期:
2021-07-01
出版日期:
2022-02-05
发布日期:
2022-02-23
通讯作者:
王勇
作者简介:
王勇(1983—),男,博士,副教授,研究方向为环境修复材料。E-mail:基金资助:
WANG Yong1,2(), JIANG Minghao1, WANG Yilin1, XU Jingting3, ZHI Shuo4
Received:
2021-03-29
Revised:
2021-07-01
Online:
2022-02-05
Published:
2022-02-23
Contact:
WANG Yong
摘要:
层状双金属氢氧化物(LDHs)作为具有结构独特、性能优良等优势的功能材料,具有层间阴离子易与周围环境进行交换、层板间高度可控且活性位点丰富等特点,因而在环境净化领域具有极大的应用潜力。本文系统梳理了LDHs的结构特点,介绍了LDHs及其复合材料的合成方法,从阴离子的种类、金属摩尔比、反应温度和时间方面,总结了不同合成工艺条件对LDHs性能的影响;综述了LDHs及其复合材料应用于去除水体中抗生素的研究进展,系统分析了LDHs性能和去除抗生素作用机制的相互关系,并重点介绍了吸附法、催化法以及膜分离法去除抗生素的作用机制;最后指出了目前已有研究中存在的问题,并对开发新型LDHs应用于去除水体中抗生素的研究前景进行了展望,提出了探明LDHs构筑过程的真实结构及构筑规律,以及构筑具备去除多种抗生素类污染物的新型LDHs,这是该领域未来研究的主要发展方向。
中图分类号:
王勇, 姜明昊, 王怡霖, 徐婧婷, 支硕. 层状双金属氢氧化物的构筑及其处理水体中抗生素的研究进展[J]. 化工进展, 2022, 41(2): 803-815.
WANG Yong, JIANG Minghao, WANG Yilin, XU Jingting, ZHI Shuo. Advance in construction of layered double hydroxides and their treatment with antibiotics in water[J]. Chemical Industry and Engineering Progress, 2022, 41(2): 803-815.
1 | AHMED M B, ZHOU J L, NGO H H, et al. Adsorptive removal of antibiotics from water and wastewater: progress and challenges[J]. Science of the Total Environment, 2015, 532: 112-126. |
2 | LI N, YANG H. Construction of natural polymeric imprinted materials and their applications in water treatment: a review[J]. Journal of Hazardous Materials, 2021, 403: 123643. |
3 | LI B, ZHANG Y X, ZHOU X B, et al. Different dye removal mechanisms between monodispersed and uniform hexagonal thin plate-like MgAl-CO32--LDH and its calcined product in efficient removal of Congo red from water[J]. Journal of Alloys and Compounds, 2016, 673: 265-271. |
4 | 姜哲, 于飞, 马杰. 石墨烯基吸附剂的设计及其对水中抗生素的去除[J]. 物理化学学报, 2019, 35(7): 709-724. |
JIANG Zhe, YU Fei, MA Jie. Design of graphene-based adsorbents and its removal of antibiotics in aqueous solution[J]. Acta Physico-Chimica Sinica, 2019, 35(7): 709-724. | |
5 | 陈建发. 高吸水树脂对以抗生素废水为主的混合工业废水的吸附研究[J]. 现代化工, 2016, 36(5): 122-125. |
CHEN Jianfa. Adsorption of antibiotics based industrial wastewater by high water absorbent resin[J]. Modern Chemical Industry, 2016, 36(5): 122-125. | |
6 | LI K, LI J J, ZHAO N, et al. Removal of tetracycline in sewage and dairy products with high-stable MOF[J]. Molecules, 2020, 25(6): 1312. |
7 | YADAV S, ASTHANA A, SINGH A K, et al. Methionine-functionalized graphene oxide/sodium alginate bio-polymer nanocomposite hydrogel beads: synthesis, isotherm and kinetic studies for an adsorptive removal of fluoroquinolone antibiotics[J]. Nanomaterials, 2021, 11(3): 568. |
8 | 张甜, 姜博, 邢奕, 等. 吸附法去除水中抗生素研究进展[J]. 环境工程, 2021, 39(3): 29-39. |
ZHANG Tian, JIANG Bo, XING Yi, et al. Review on development of adsorption methods to remove antibiotics form water[J]. Environmental Engineering, 2021, 39(3): 29-39. | |
9 | 罗玉, 黄斌, 金玉, 等. 污水中抗生素的处理方法研究进展[J]. 化工进展, 2014, 33(9): 2471-2477. |
LUO Yu, HUANG Bin, JIN Yu, et al. Research progress in the degradation of antibiotics wastewater treatment[J]. Chemical Industry and Engineering Progress, 2014, 33(9): 2471-2477. | |
10 | MISHRA G, DASH B, PANDEY S. Layered double hydroxides: a brief review from fundamentals to application as evolving biomaterials[J]. Applied Clay Science, 2018, 153: 172-186. |
11 | GOH K H, LIM T T, DONG Z L. Application of layered double hydroxides for removal of oxyanions: a review[J]. Water Research, 2008, 42(6/7): 1343-1368. |
12 | BOUKHALFA N, BOUTAHALA M, DJEBRI N. Synthesis and characterization of ZnAl-layered double hydroxide and organo-K10 montmorillonite for the removal of diclofenac from aqueous solution[J]. Adsorption Science & Technology, 2017, 35(1/2): 20-36. |
13 | BUKHTIYAROVA M V. A review on effect of synthesis conditions on the formation of layered double hydroxides[J]. Journal of Solid State Chemistry, 2019, 269: 494-506. |
14 | SANTOS LINS P V, HENRIQUE D C, IDE A H, et al. Evaluation of caffeine adsorption by MgAl-LDH/biochar composite[J]. Environmental Science and Pollution Research International, 2019, 26(31): 31804-31811. |
15 | CUNHA V R R, FERREIRA A M C, CONSTANTINO V R L, et al. Layered double hydroxides: inorganic nanoparticles for storage and release of species of biological and therapeutic interest[J]. Química Nova, 2010, 33(1): 159-171. |
16 | THEISS F L, AYOKO G A, FROST R L. Synthesis of layered double hydroxides containing Mg2+, Zn2+, Ca2+ and Al3+ layer cations by co-precipitation methods—A review[J]. Applied Surface Science, 2016, 383: 200-213. |
17 | EVANS D G, SLADE R C T. Structural aspects of layered double hydroxides[M]//Structure and Bonding. Berlin: Springer-Verlag, 2005: 1-87. |
18 | OBALOVA L, KARASKOVA K, JIRATOVA K, et al.Effect of potassium in calcined Co-Mn-Al layered double hydroxide on the catalytic decomposition of N2O[J]. Applied Catalysis B: Environmental, 2009, 90(1/2): 132-140. |
19 | RIAZ U, ASHRAF S M, VERMA A. Recent advances in the development of conducting polymer intercalated clay nanocomposites: a short review[J]. Current Organic Chemistry, 2015, 19(13): 1275-1291. |
20 | WILLIAMS G R, KHAN A I, O'HARE D. Mechanistic and kinetic studies of guest ion intercalation into layered double hydroxides using time-resolved, in-situ X-ray powder diffraction[M]//Structure and Bonding. Berlin: Springer-Verlag, 2006: 161-192. |
21 | WANG B, ZHANG H, EVANS D G, et al. Surface modification of layered double hydroxides and incorporation of hydrophobic organic compounds[J]. Materials Chemistry and Physics, 2005, 92(1): 190-196. |
22 | EL-REESH G Y ABO, FARGHALI A A, TAHA M, et al. Novel synthesis of Ni/Fe layered double hydroxides using urea and glycerol and their enhanced adsorption behavior for Cr(Ⅵ) removal[J]. Scientific Reports, 2020, 10(1): 587. |
23 | LIU X X, SHAO Q, ZHANG Y F, et al. Microwave hydrothermal synthesized ZnIn-layered double hydroxides derived ZnIn-layered double oxides for enhanced methylene blue photodegradation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 592: 124588. |
24 | CHEN M Q, WU P X, HUANG Z Y, et al. Environmental application of MgMn-layered double oxide for simultaneous efficient removal of tetracycline and Cd pollution: performance and mechanism[J]. Journal of Environmental Management, 2019, 246: 164-173. |
25 | 于洪波, 徐冰, 边令喜, 等. 机械力化学法合成Mg-Al类水滑石研究[J]. 人工晶体学报, 2010, 39(5): 1292-1296, 1307. |
YU Hongbo, XU Bing, BIAN Lingxi, et al. Mechanochemical synthesis of hydrotalcite-like compounds[J]. Journal of Synthetic Crystals, 2010, 39(5): 1292-1296, 1307. | |
26 | WANG Y Z, LUO S H, WANG Z G, et al. Structural and textural evolution of nanocrystalline Mg-Al layered double hydroxides during mechanical treatment[J]. Applied Clay Science, 2013, 80/81: 334-339. |
27 | CAO J, SUN S W, LI X, et al. Efficient charge transfer in aluminum-cobalt layered double hydroxide derived from Co-ZIF for enhanced catalytic degradation of tetracycline through peroxymonosulfate activation[J]. Chemical Engineering Journal, 2020, 382: 122802. |
28 | ZHANG X L, GUO L, HUANG H L, et al. Removal of phosphorus by the core-shell bio-ceramic/Zn-layered double hydroxides (LDHs) composites for municipal wastewater treatment in constructed rapid infiltration system[J]. Water Research, 2016, 96: 280-291. |
29 | ZONG Y Q, MA S S, XUE J J, et al. Bifunctional NiAlFe LDH-coated membrane for oil-in-water emulsion separation and photocatalytic degradation of antibiotic[J]. Science of the Total Environment, 2021, 751: 141660. |
30 | TAN X F, LIU S B, LIU Y G, et al. One-pot synthesis of carbon supported calcined-Mg/Al layered double hydroxides for antibiotic removal by slow pyrolysis of biomass waste[J]. Scientific Reports, 2016, 6: 39691. |
31 | WU H J, GAO H Y, YANG Q X, et al. Removal of typical organic contaminants with a recyclable calcined chitosan-supported layered double hydroxide adsorbent: kinetics and equilibrium isotherms[J]. Journal of Chemical & Engineering Data, 2018, 63(1): 159-168. |
32 | MEI Q Q, LYU W, DU M, et al. Morphological control of poly(vinylidene fluoride)@layered double hydroxide composite fibers using metal salt anions and their enhanced performance for dye removal[J]. RSC Advances, 2017, 7(74): 46576-46588. |
33 | MOURID E H, LAKRAIMI M, LEGROURI A. Removal and release of the 2,4,5-trichlorophenoxyacetic acid herbicide from wastewater by layered double hydroxides[J]. Journal of Inorganic and Organometallic Polymers and Materials, 2021, 31(5): 2116-2128. |
34 | LI R H, WANG J J, ZHOU B Y, et al. Enhancing phosphate adsorption by Mg/Al layered double hydroxide functionalized biochar with different Mg/Al ratios[J]. Science of the Total Environment, 2016, 559: 121-129. |
35 | LEE S Y, CHOI J W, SONG K G, et al. Adsorption and mechanistic study for phosphate removal by rice husk-derived biochar functionalized with Mg/Al-calcined layered double hydroxides viaco-pyrolysis[J]. Composites Part B: Engineering, 2019, 176: 107209. |
36 | ISHIKAWA T, MATSUMOTO K, KANDORI K, et al. Synthesis of layered zinc hydroxide chlorides in the presence of Al(Ⅲ)[J]. Journal of Solid State Chemistry, 2006, 179(4): 1110-1118. |
37 | ABDERRAZEK K, SRASRA N F, SRASRA E. Photocatalytic decolourization of methylene blue using [Zn-Al] layered double hydroxides synthesized at different molar cationic ratios[J]. Clay Minerals, 2017, 52(2): 203-215. |
38 | HARAKETI M, HOSNI K, SRASRA E. Intercalation of salicylic acid into ZnAl and MgAl layered double hydroxides for a controlled release formulation[J]. Colloid Journal, 2016, 78(4): 533-541. |
39 | 张慧, 齐荣, 刘丽娜, 等. 镁铁双羟基复合金属氧化物的可控合成及晶面生长特征研究[J]. 化学物理学报, 2003, 16(1): 45-50. |
ZHANG H, QI R, LIU L N, et al. Studies on particle size controlled synthesis and selectivity of crystal growth direction of MgFe layered double hydroxides[J]. Chinese Journal of Chemical Physics, 2003, 16(1): 45-50. | |
40 | DE SOUZA DOS SANTOS G E, IDE A H, DUARTE J L S, et al. Adsorption of anti-inflammatory drug diclofenac by MgAl/layered double hydroxide supported on Syagrus coronata biochar[J]. Powder Technology, 2020, 364: 229-240. |
41 | ZHANG P, HE T, CHEN H, et al. The tetracyclines removal by MgAl layered double oxide in the presence of phosphate or nitrate: behaviors and mechanism exploration[J]. Journal of Colloid and Interface Science, 2020, 578: 124-134. |
42 | ENIOLA J O, KUMAR R, AL-RASHDI A A, et al. Hydrothermal synthesis of structurally variable binary CuAl, MnAl and ternary CuMnAl hydroxides for oxytetracycline antibiotic adsorption[J]. Journal of Environmental Chemical Engineering, 2020, 8(2): 103535. |
43 | PULICHARLA R, HEGDE K, BRAR S K, et al. Tetracyclines metal complexation: significance and fate of mutual existence in the environment[J]. Environmental Pollution, 2017, 221: 1-14. |
44 | LI G W, HUANG Z J, CHEN C Y, et al. Simultaneous adsorption of trace sulfamethoxazole and hexavalent chromium by biochar/MgAl layered double hydroxide composites[J]. Environmental Chemistry, 2019, 16(1): 68. |
45 | 黄芷嫣, 胡志霖, 廖子聪, 等. MgFe类水滑石法强化混凝深度处理猪场尾水及混凝污泥特性研究[J]. 农业环境科学学报, 2017, 36(11): 2332-2342. |
HUANG Zhiyan, HU Zhilin, LIAO Zicong, et al. Advanced treatment of piggery wastewater via enhanced coagulation with Mg/Fe layered double hydroxides and analysis of the coagulation sludge properties[J]. Journal of Agro-Environment Science, 2017, 36(11): 2332-2342. | |
46 | LI J, ZHANG N, NG D H L. Synthesis of a 3D hierarchical structure of γ-AlO(OH)/Mg-Al-LDH/C and its performance in organic dyes and antibiotics adsorption[J]. Journal of Materials Chemistry A, 2015, 3(42): 21106-21115. |
47 | YANG Q, ZHONG Y, ZHONG H, et al. A novel pretreatment process of mature landfill leachate with ultrasonic activated persulfate: optimization using integrated Taguchi method and response surface methodology[J]. Process Safety and Environmental Protection, 2015, 98: 268-275. |
48 | 王佳豪, 李家成, 许锴, 等. 光催化材料去除水中病毒的研究进展[J]. 化工进展, 2020, 39(10): 4248-4255. |
WANG Jiahao, LI Jiacheng, XU Kai, et al. Research progress of photocatalytic materials for removing viruses in water[J]. Chemical Industry and Engineering Progress, 2020, 39(10): 4248-4255. | |
49 | 张启彦. TiO2-GO/LDHs复合材料光催化降解VOCs的研究[D]. 济南: 山东大学, 2020. |
ZHANG Qiyan. Photocatalytic degradation of VOCs by TiO2- GO/ LDHs composite[D]. Jinan: Shandong University, 2020. | |
50 | JO W K, TONDA S. Novel CoAl-LDH/g-C3N4/RGO ternary heterojunction with notable 2D/2D/2D configuration for highly efficient visible-light-induced photocatalytic elimination of dye and antibiotic pollutants[J]. Journal of Hazardous Materials, 2019, 368: 778-787. |
51 | GHOLAMI P, KHATAEE A, SOLTANI R D C, et al. Photocatalytic degradation of gemifloxacin antibiotic using Zn-Co-LDH@biochar nanocomposite[J]. Journal of Hazardous Materials, 2020, 382: 121070. |
52 | GHOLAMI P, DINPAZHOH L, KHATAEE A, et al. Facile hydrothermal synthesis of novel Fe-Cu layered double hydroxide/biochar nanocomposite with enhanced sonocatalytic activity for degradation of cefazolin sodium[J]. Journal of Hazardous Materials, 2020, 381: 120742. |
53 | ABAZARI R, MAHJOUB A R, SANATI S, et al. Ni-Ti layered double hydroxide@graphitic carbon nitride nanosheet: a novel nanocomposite with high and ultrafast sonophotocatalytic performance for degradation of antibiotics[J]. Inorganic Chemistry, 2019, 58(3): 1834-1849. |
54 | KHATAEE A, SADEGHI RAD T, NIKZAT S, et al. Fabrication of NiFe layered double hydroxide/reduced graphene oxide (NiFe-LDH/rGO) nanocomposite with enhanced sonophotocatalytic activity for the degradation of moxifloxacin[J]. Chemical Engineering Journal, 2019, 375: 122102. |
55 | LIU Y, ZHAO Y, WANG J L. Fenton/Fenton-like processes with in-situ production of hydrogen peroxide/hydroxyl radical for degradation of emerging contaminants: advances and prospects[J]. Journal of Hazardous Materials, 2021, 404: 124191. |
56 | 郭小熙, 田鹏飞, 孙杨, 等. 工业有机废水深度处理:非均相Fenton催化剂研究进展[J]. 化工进展, 2021, 40(2): 605-620. |
GUO Xiaoxi, TIAN Pengfei, SUN Yang, et al. Tertiary treatment of industrial organic wastewater: development of heterogeneous Fenton catalysts[J]. Chemical Industry and Engineering Progress, 2021, 40(2): 605-620. | |
57 | ZHOU H Y, ZHANG H, HE Y L, et al. Critical review of reductant-enhanced peroxide activation processes: trade-off between accelerated Fe3+/Fe2+ cycle and quenching reactions[J]. Applied Catalysis B: Environmental, 2021, 286: 119900. |
58 | GOU Y J, CHEN P, YANG L, et al. Degradation of fluoroquinolones in homogeneous and heterogeneous photo-Fenton processes: a review[J]. Chemosphere, 2021, 270: 129481. |
59 | GANIYU S O, HUONG LE T X, BECHELANY M, et al. Electrochemical mineralization of sulfamethoxazole over wide pH range using FeIIFeIII LDH modified carbon felt cathode: degradation pathway, toxicity and reusability of the modified cathode[J]. Chemical Engineering Journal, 2018, 350: 844-855. |
60 | GHASEMI M, KHATAEE A, GHOLAMI P, et al. Template-free microspheres decorated with Cu-Fe-NLDH for catalytic removal of gentamicin in heterogeneous electro-Fenton process[J]. Journal of Environmental Management, 2019, 248: 109236. |
61 | ZHU S J, XU Y P, ZHU Z G, et al. Activation of peroxymonosulfate by magnetic Co-Fe/SiO2 layered catalyst derived from iron sludge for ciprofloxacin degradation[J]. Chemical Engineering Journal, 2020, 384: 123298. |
62 | CHEN M Q, HUANG Z Y, LIANG S L, et al. Immobilized Co2+ and Cu2+ induced structural change of layered double hydroxide for efficient heterogeneous degradation of antibiotic[J]. Journal of Hazardous Materials, 2021, 403: 123554. |
63 | CHEN M, WU P, ZHU N, et al. Re-utilization of spent Cu2+-immobilized MgMn-layered double hydroxide for efficient sulfamethoxazole degradation: performance and metals synergy[J]. Chemical Engineering Journal, 2020, 392: 123709. |
64 | XIE A, CUI J Y, YANG J, et al. Photo-Fenton self-cleaning PVDF/NH2-MIL-88B(Fe) membranes towards highly-efficient oil/water emulsion separation[J]. Journal of Membrane Science, 2020, 595: 117499. |
65 | DAI J, WANG L, WANG Y, et al. Robust nacrelike graphene oxide-calcium carbonate hybrid mesh with underwater superoleophobic property for highly efficient oil/water separation[J]. ACS Applied Materials & Interfaces, 2020, 12(4): 4482-4493. |
66 | YANG J, WANG L, XIE A, et al. Facile surface coating of metal-tannin complex onto PVDF membrane with underwater super oleophobicity for oil-water emulsion separation[J]. Surface and Coatings Technology, 2020, 389: 125630. |
67 | ZHENG X D, ZHANG Y, BIAN T T, et al. Selective extraction of gadolinium using free-standing imprinted mesoporous carboxymethyl chitosan films with high capacity[J]. Cellulose, 2019, 26(2): 1209-1219. |
68 | ZHENG X D, ZHANG Y, ZHANG F S, et al. Dual-template docking oriented ionic imprinted bilayer mesoporous films with efficient recovery of neodymium and dysprosium[J]. Journal of Hazardous Materials, 2018, 353: 496-504. |
69 | XIE A, CUI J Y, YANG J, et al. Graphene oxide/Fe(Ⅲ)-based metal-organic framework membrane for enhanced water purification based on synergistic separation and photo-Fenton processes[J]. Applied Catalysis B: Environmental, 2020, 264: 118548. |
70 | YUE X J, LI J X, ZHANG T, et al. In situ one-step fabrication of durable superhydrophobic-superoleophilic cellulose/LDH membrane with hierarchical structure for efficiency oil/water separation[J]. Chemical Engineering Journal, 2017, 328: 117-123. |
71 | YANG C, WANG L R, YU Y Q, et al. Highly efficient removal of amoxicillin from water by Mg-Al layered double hydroxide/cellulose nanocomposite beads synthesized through in-situ coprecipitation method[J]. International Journal of Biological Macromolecules, 2020, 149: 93-100. |
72 | RAICOPOL M D, ANDRONESCU C, VOICU S I, et al. Cellulose acetate/layered double hydroxide adsorptive membranes for efficient removal of pharmaceutical environmental contaminants[J]. Carbohydrate Polymers, 2019, 214: 204-212. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[3] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[4] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[5] | 胡喜, 王明珊, 李恩智, 黄思鸣, 陈俊臣, 郭秉淑, 于博, 马志远, 李星. 二硫化钨复合材料制备与储钠性能研究进展[J]. 化工进展, 2023, 42(S1): 344-355. |
[6] | 赵巍, 赵德银, 李世瀚, 刘洪达, 孙进, 郭艳秋. 三嗪型天然气管道缓蚀型减阻剂合成与应用[J]. 化工进展, 2023, 42(S1): 391-399. |
[7] | 王正坤, 黎四芳. 双子表面活性剂癸炔二醇的绿色合成[J]. 化工进展, 2023, 42(S1): 400-410. |
[8] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[9] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[10] | 王胜岩, 邓帅, 赵睿恺. 变电吸附二氧化碳捕集技术研究进展[J]. 化工进展, 2023, 42(S1): 233-245. |
[11] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[12] | 王鹏, 史会兵, 赵德明, 冯保林, 陈倩, 杨妲. 过渡金属催化氯代物的羰基化反应研究进展[J]. 化工进展, 2023, 42(9): 4649-4666. |
[13] | 张启, 赵红, 荣峻峰. 质子交换膜燃料电池中氧还原反应抗毒性电催化剂研究进展[J]. 化工进展, 2023, 42(9): 4677-4691. |
[14] | 王伟涛, 鲍婷玉, 姜旭禄, 何珍红, 王宽, 杨阳, 刘昭铁. 醛酮树脂基非金属催化剂催化氧气氧化苯制备苯酚[J]. 化工进展, 2023, 42(9): 4706-4715. |
[15] | 葛亚粉, 孙宇, 肖鹏, 刘琦, 刘波, 孙成蓥, 巩雁军. 分子筛去除VOCs的研究进展[J]. 化工进展, 2023, 42(9): 4716-4730. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |