化工进展 ›› 2022, Vol. 41 ›› Issue (2): 816-826.DOI: 10.16085/j.issn.1000-6613.2021-0589
宋梓豪1,2, 王宏鑫1, 杜博宇1, 段秋阳1, 卢晶虹1, 江颖辉1, 崔升1,2,3
收稿日期:
2021-03-23
修回日期:
2021-04-21
出版日期:
2022-02-05
发布日期:
2022-02-23
通讯作者:
崔升
作者简介:
宋梓豪(1996—),男,硕士研究生,研究方向为气凝胶材料。E-mail:zsong@njtech. edu. cn。
基金资助:
SONG Zihao1,2, WANG Hongxin1, DU Boyu1, DUAN Qiuyang1, LU Jinghong1, JIANG Yinghui1, CUI Sheng1,2,3
Received:
2021-03-23
Revised:
2021-04-21
Online:
2022-02-05
Published:
2022-02-23
Contact:
CUI Sheng
摘要:
聚酰亚胺气凝胶具有高比表面积、低密度、低热导率等优点,但是存在易吸湿、收缩率大且在制备过程中大量使用有机溶剂以及使用价格昂贵的化学交联剂等问题。本文主要介绍了目前聚酰亚胺气凝胶的制备方法、性能及其应用,重点综述了二酐与二胺缩合反应法、异氰酸酯法、开环易位聚合法。简述了几种方法的制备原理,同时也总结了聚酰亚胺气凝胶在隔热、抗辐射、油水分离、过滤等领域应用的研究进展。最后,对聚酰亚胺气凝胶的制备方法及实际应用进行了总结与评价,提出在今后的研究工作中要以解决易吸湿、收缩率大、探索其他类型交联剂作为重点。并且,立足于目前聚酰亚胺气凝胶及其复合材料的发展趋势,对今后聚酰亚胺气凝胶新的存在形态、新的应用领域进行了展望。
中图分类号:
宋梓豪, 王宏鑫, 杜博宇, 段秋阳, 卢晶虹, 江颖辉, 崔升. 聚酰亚胺气凝胶制备、性能及应用进展[J]. 化工进展, 2022, 41(2): 816-826.
SONG Zihao, WANG Hongxin, DU Boyu, DUAN Qiuyang, LU Jinghong, JIANG Yinghui, CUI Sheng. Progress in preparation and performance application of polyimide aerogel[J]. Chemical Industry and Engineering Progress, 2022, 41(2): 816-826.
1 | SROOG C E. Polyimides[J]. Progress in Polymer Science, 1991, 16(4): 561-694. |
2 | JIAN S J, LIU S W, CHEN L L, et al. Nano-boria reinforced polyimide composites with greatly enhanced thermal and mechanical properties via in-situ thermal conversion of boric acid[J]. Composites Communications, 2017, 3: 14-17. |
3 | WILLIAMS J C, NGUYEN B N, MCCORKLE L, et al. Highly porous, rigid-rod polyamide aerogels with superior mechanical properties and unusually high thermal conductivity[J]. ACS Appliwd Materials & Interfaces, 2017, 9(2): 1801-1809. |
4 | PIERRE A C, PAJONK GÉRARD M. Chemistry of aerogels and their applications[J]. Chemical Reviews, 2002, 102(11): 4243-4265. |
5 | SALIMIAN S, ZADHOUSH A, NAEIMIRAD M, et al. A review on aerogel: 3D nanoporous structured fillers in polymer-based nanocomposites[J]. Polymer Composites, 2018, 39(10): 3383-3408. |
6 | WICKLEIN B, KOCJAN A, SALAZAR-ALVAREZ G, et al. Thermally insulating and fire-retardant lightweight anisotropic foams based on nanocellulose and graphene oxide[J]. Nature Nanotechnology, 2015, 10(3): 277-283. |
7 | SI Y, YU J Y, TANG X M, et al. Ultralight nanofibre-assembled cellular aerogels with superelasticity and multifunctionality[J]. Nature Communications, 2014, 5(1): 5802. |
8 | ZUO L, ZHANG Y, ZHANG L, et al. Polymer/carbon-based hybrid aerogels: preparation, properties and applications[J]. Materials, 2015, 8(10): 6806-6848. |
9 | JIANG S H, UCH B, AGARWAL S, et al. Ultralight, thermally insulating, compressible polyimide fiber assembled sponges[J]. ACS Applied Materials & Interfaces, 2017, 9(37): 32308-32315. |
10 | RHINE Wendell, WANG Jing, BEGAG Redouane. Production of polyimide aerogel for carbon aerogel, involves contacting diamine and aromatic dianhydride monomers in solvent, contacting resulting poly(amic acid) with dehydrating agent, and drying resulting polyimide gel: US0132845[P]. 2004-07-08. |
11 | MA C B, DU B J, WANG E K. Self-crosslink method for a straightforward synthesis of poly(vinyl alcohol)-based aerogel assisted by carbon nanotube[J]. Advanced Functional Materials, 2017, 27(10): 1604423. |
12 | NGUYEN B N, CUDJOE E, DOUGLAS A, et al. Polyimide cellulose nanocrystal composite aerogels[J]. Macromolecules, 2016, 49(5): 1692-1703. |
13 | KUROSAWA T, HIGASHIHARA T, UEDA M. Polyimide memory: a pithy guideline for future applications[J]. Polymer Chemistry, 2013, 4(1): 16-30. |
14 | KAWAGISHI K, SAITO H, FURUKAWA H, et al. Superior nanoporous polyimides via supercritical CO2 drying of jungle-gym-type polyimide gels[J]. Macromolecular Rapid Communications, 2007, 28(1):96-100. |
15 | GUO H, MEADOR M A B, MCCORKLE L, et al. Correction to tailoring properties of cross-linked polyimide aerogels for better moisture resistance, flexibility, and strength[J]. ACS Applied Materials & Interfaces, 2012, 4(10): 5422-5429. |
16 | MEADOR M A, MALOW E J, SILVA R, et al. Mechanically strong, flexible polyimide aerogels cross-linked with aromatic triamine[J]. ACS Applied Materials & Interfaces, 2012, 4(2):536-544. |
17 | MEADOR M A B, ALEMÁN C R, HANSON K, et al. Polyimide aerogels with amide cross-links: a low cost alternative for mechanically strong polymer aerogels[J]. ACS Applied Materials & Interfaces, 2015, 7(2):1240-1249. |
18 | NGUYEN B N, MEADOR M A B, SCHEIMAN D, et al. Polyimide aerogels using tri-isocyanate as cross-linker[J]. ACS Applied Materials & Interfaces, 2017, 9(32): 27313-27321. |
19 | GUO H Q, MEADOR M A B, MCCORKLE L S, et al. Poly(maleic anhydride) cross-linked polyimide aerogels: synthesis and properties[J]. RSC Advances, 2016, 6(31):26055-26065. |
20 | ZHANG B, WU P, ZOU H W, et al. Morphology and properties of polyimide/multi-walled carbon nanotubes composite aerogels[J]. High Performance Polymers, 2018, 30(3): 292-302. |
21 | GUO H Q, MEADOR M A B, CASHMAN J L, et al. Flexible polyimide aerogels with dodecane links in the backbone structure[J]. ACS Applied Materials & Interfaces, 2020, 12(29): 33288-33296. |
22 | GHAFFARI MOSANENZADEH S, ALSHRAH M, SAADATNIA Z, et al. Double dianhydride backbone polyimide aerogels with enhanced thermal insulation for high-temperature applications[J]. Macromolecular Materials and Engineering, 2020, 305(4): 1900777. |
23 | PEI D X, LYU B, WANG J H, et al. Structure and properties of polyimide aerogels with different skeleton flexibilities[J]. Soft Materials, 2021, 19(1): 50-55. |
24 | 彭黎莹, 王怡星, 吉剑奇, 等. 冷冻干燥制备聚酰亚胺气凝胶微观形态的调控[J]. 高分子材料科学与工程, 2018, 34(9): 115-119. |
PENG Liying, WANG Yixing, JI Jianqi, et al. Control of microstructure of polyimide aerogel prepared by freeze-drying[J]. Polymer Materials Science & Engineering, 2018, 34(9): 115-119. | |
25 | DAI T W, YU Z, YUAN S W, et al. Gradient structure polyimide/graphene composite aerogels fabricated by layer-by-layer assembly and unidirectional freezing[J]. Journal of Applied Polymer Science, 2021, 138(14): 50153. |
26 | Carolina SIMÓN-HERRERO, CHEN X Y, ORTIZ M L, et al. Linear and crosslinked polyimide aerogels: synthesis and characterization[J]. Journal of Materials Research and Technology, 2019, 8(3):2638-2648. |
27 | CHIDAMBARESWARAPATTAR C, LARIMORE Z, SOTIRIOU-LEVENTIS C, et al. One-step room-temperature synthesis of fibrous polyimide aerogels from anhydrides and isocyanates and conversion to isomorphic carbons[J]. Journal of Materials Chemistry, 2010, 20(43): 9666. |
28 | CHIDAMBARESWARAPATTAR C, XU L, SOTIRIOU-LEVENTIS C, et al. Robust monolithic multiscale nanoporous polyimides and conversion to isomorphic carbons[J]. RSC Advances, 2013, 3(48): 26459. |
29 | BIELAWSKI C W, GRUBBS R H. Living ring-opening metathesis polymerization[J]. Progress in Polymer Science, 2007, 32(1): 1-29. |
30 | LEVENTIS N, SOTIRIOU-LEVENTIS C, MOHITE D P, et al. Polyimide aerogels by ring-opening metathesis polymerization (ROMP)[J]. Chemistry of Materials, 2011, 23(8): 2250-2261. |
31 | 刘韬, 李文静, 张恩爽, 等. 柔性交联型聚酰亚胺气凝胶的制备及性能[J]. 高等学校化学学报, 2019, 40(2): 403-409. |
LIU Tao, LI Wenjing, ZHANG Enshuang, et al. Preparation and properties of flexide cross-linked polyimide aerogels[J]. Chemical Journal of Chinese Universities, 2019, 40(2): 403-409. | |
32 | ZHANG X, ZHAO X Y, XUE T T, et al. Bidirectional anisotropic polyimide/bacterial cellulose aerogels by freeze-drying for super-thermal insulation[J]. Chemical Engineering Journal, 2020, 385:123963. |
33 | ZHU Z X, YAO H J, WANG F, et al. Fiber reinforced polyimide aerogel composites with high mechanical strength for high temperature insulation[J]. Macromolecular Materials and Engineering, 2019, 304(5): 1800676. |
34 | WEI F, ZHANG X, ZHANG Y, et al. Lightweight, strong, and super-thermal insulating polyimide composite aerogels under high temperature[J]. Composites Science and Technology, 2019, 173:47-52. |
35 | HOU X B, ZHANG R B, FANG D N. Flexible, fatigue resistant, and heat-insulated nanofiber-assembled polyimide aerogels with multifunctionality[J]. Polymer Testing, 2020, 81:106246. |
36 | ZHANG X H, NI X X, LI C X, et al. Co-gel strategy for preparing hierarchically porous silica/polyimide nanocomposite aerogel with thermal insulation and flame retardancy[J]. Journal of Materials Chemistry A, 2020, 8(19): 9701-9712. |
37 | 圣冬冬, 王海涛, 应振华. 热塑性聚酰亚胺复合材料在航空航天中的应用[J]. 塑料, 2013, 42(4): 46-48. |
SHENG Dongdong, WANG Haitao, YING Zhenhua. Application of thermoplastic polyimide composite materials in aerospace field[J]. Plastics, 2013, 42(4): 46-48. | |
38 | 陈辉, 丁春风. 一种新型航空航天用电线-聚酰亚胺复合薄膜/聚四氟乙烯组合绝缘电线[J]. 电子技术, 2012, 39(2): 68-71. |
CHEN Hui, DING Chunfeng. A new aerospace wire-polyimide composite film/PTFE composite insulated wire [J]. Electronic Technology, 2012, 39(2): 68-71. | |
39 | PLIS E A, ENGELHART D P, COOPER R, et al. Review of radiation-induced effects in polyimide[J]. Applied Sciences, 2019, 9(10):1999. |
40 | LIANG F R, LIU W J, ZHANG S H, et al. Preparation and properties of anti-infrared transparent thermal-insulating film based on polymethyl methacrylate[J]. Energy, 2020, 194:116848. |
41 | WU Y, JU D D, LIU Y, et al. Evaluation of radiation damage behavior in polyimide aerogel by infrared camera and photoacoustic spectroscopy[J]. Polymer Testing, 2020, 85: 106405. |
42 | COOPER R, FERGUSON D, ENGELHART D P, et al. Effects of radiation damage on polyimide resistivity[J]. Journal of Spacecraft and Rockets, 2016, 54(2): 343-348. |
43 | YU Z, DAI T W, YUAN S W, et al. Electromagnetic interference shielding performance of anisotropic polyimide/graphene composite aerogels[J]. ACS Applied Materials & Interfaces, 2020, 12(27): 30990-31001. |
44 | WU P, ZHANG B, YU Z, et al. Anisotropic polyimide aerogels fabricated by directional freezing[J]. Journal of Applied Polymer Science, 2019, 136(11): 47179. |
45 | 吴斌, 张秋华, 陈文军, 等. 具有抗红外辐射特性的聚酰亚胺气凝胶的制备及其性能的研究[J]. 化工管理, 2017(2): 66, 68. |
WU Bin, ZHANG Qiuhua, CHEN Wenjun, et al. Study on the preparation and performance of polyimide aerogel with anti-infrared radiation [J]. Chemical Enterprise Management, 2017(2): 66, 68. | |
46 | CHERKASHINA N I, PAVLENKO V I, NOSKOV A V. Radiation shielding properties of polyimide composite materials[J]. Radiation Physics and Chemistry, 2019, 159:111-117. |
47 | CHERKASHINA N I, PAVLENKO A V. Synthesis of polymer composite based on polyimide and Bi12SiO20 sillenite[J]. Polymer-Plastics Technology and Engineering, 2018, 57(18): 1923-1931. |
48 | LI X, WANG J, ZHAO Y B, et al. Superhydrophobic polyimide aerogels via conformal coating strategy with excellent underwater performances[J]. Journal of Applied Polymer Science, 2020, 137(26): 48849. |
49 | QIAO S Y, KANG S, HU Z M, et al. Moisture-resistance, mechanical and thermal properties of polyimide aerogels[J]. Journal of Porous Materials, 2020, 27(1): 237-247. |
50 | GUO H, MEADOR M A, MCCORKLE L, et al. Polyimide aerogels cross-linked through amine functionalized polyoligomeric silsesquioxane[J]. ACS Applied Materials & Interfaces, 2011, 3(2): 546-552. |
51 | 厉旭, 裴学良. 基于聚硅氧烷疏水改性聚酰亚胺气凝胶[J]. 功能材料, 2019, 50(10): 10018-10022, 10026. |
LI Xu, PEI Xueliang. Improving the hydrophobicity of polyimide aerogel via polysiloxane[J]. Journal of Functional Materials, 2019, 50(10): 10018-10022, 10026. | |
52 | ZHANG Y, KANG E T, NEOH K G, et al. Surface modification of polyimide films via plasma polymerization and deposition of allylpentafluorobenzene[J]. Polymer, 2002, 43(26): 7279-7288. |
53 | WU Z L, HAN B C, ZHANG C H, et al. Preparation and characterization of highly hydrophobic fluorinated polyimide aerogels cross-linked with 2,2′,7,7′-tetraamino-9,9′-spirobifluorene[J]. Polymer, 2019, 179: 121605. |
54 | LI X, WANG J, ZHAO Y B, et al. Template-free self-assembly of fluorine-free hydrophobic polyimide aerogels with lotus or petal effect[J]. ACS Applied Materials & Interfaces, 2018, 10(19): 16901-16910. |
55 | YANG F, ZHAO X, XUE T, et al. Superhydrophobic polyvinylidene fluoride/polyimide nanofiber composite aerogels for thermal insulation under extremely humid and hot environment[J]. Science China Materials, 2021, 64(5): 1267-1277. |
56 | LIAW D J, WANG K L, HUANG Y C, et al. Advanced polyimide materials: syntheses, physical properties and applications[J]. Progress in Polymer Science, 2012, 37(7): 907-974. |
57 | WANG Y X, HE T J, LIU M Y, et al. Fast and efficient oil-water separation under harsh conditions of the flexible polyimide aerogel containing benzimidazole structure[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 581: 123809. |
58 | WANG N N, WANG H, WANG Y Y, et al. Robust, lightweight, hydrophobic, and fire-retarded polyimide/MXene aerogels for effective oil/water separation[J]. ACS Applied Materials & Interfaces, 2019, 11(43): 40512-40523. |
59 | REN R P, WANG Z, REN J, et al. Highly compressible polyimide/graphene aerogel for efficient oil/water separation[J]. Journal of Materials Science, 2019, 54(7): 5918-5926. |
60 | ZHAI C, JANA S C. Tuning porous networks in polyimide aerogels for airborne nanoparticle filtration[J]. ACS Applied Materials & Interfaces, 2017, 9(35): 30074-30082. |
61 | QIAO S Y, ZHANG H, KANG S, et al. Hydrophobic, pore-tunable polyimide/polyvinylidene fluoride composite aerogels for effective airborne particle filtration[J]. Macromolecular Materials and Engineering, 2020, 305(8): 2000129. |
62 | MOSANENZADEH S G, KARAMIKAMKAR S, SAADATNIA Z, et al. PPDA-PMDA polyimide aerogels with tailored nanostructure assembly for air filtering applications[J]. Separation and Purification Technology, 2020, 250: 117279. |
63 | QIAN Z C, WANG Z, CHEN Y, et al. Superelastic and ultralight polyimide aerogels as thermal insulators and particulate air filters[J]. Journal of Materials Chemistry A, 2018, 6(3): 828-832. |
64 | MOSANENZADEH S G, SAADATNIA Z, KARAMIKAMKAR S, et al. Polyimide aerogels with novel bimodal micro and nano porous structure assembly for airborne nano filtering applications[J]. RSC Advances, 2020, 10(39): 22909-22920. |
[1] | 王家庆, 宋广伟, 李强, 郭帅成, DAI Qingli. 橡胶混凝土界面改性方法及性能提升路径[J]. 化工进展, 2023, 42(S1): 328-343. |
[2] | 王胜岩, 邓帅, 赵睿恺. 变电吸附二氧化碳捕集技术研究进展[J]. 化工进展, 2023, 42(S1): 233-245. |
[3] | 赵曦, 马浩然, 李平, 黄爱玲. 错位碰撞型微混合器混合性能的模拟分析与优化设计[J]. 化工进展, 2023, 42(9): 4559-4572. |
[4] | 史柯柯, 刘木子, 赵强, 李晋平, 刘光. 镁基储氢材料的性能及研究进展[J]. 化工进展, 2023, 42(9): 4731-4745. |
[5] | 刘木子, 史柯柯, 赵强, 李晋平, 刘光. 固体储氢材料的研究进展[J]. 化工进展, 2023, 42(9): 4746-4769. |
[6] | 向硕, 卢鹏, 石伟年, 杨鑫, 何燕, 朱立业, 孔祥微. 二维WS2纳米片的规模化可控制备及其摩擦学性能[J]. 化工进展, 2023, 42(9): 4783-4790. |
[7] | 王晨, 白浩良, 康雪. 大功率UV-LED散热与纳米TiO2光催化酸性红26耦合系统性能[J]. 化工进展, 2023, 42(9): 4905-4916. |
[8] | 李伯耿, 罗英武, 刘平伟. 聚合物产品工程研究内容与方法的思考[J]. 化工进展, 2023, 42(8): 3905-3909. |
[9] | 毛善俊, 王哲, 王勇. 基团辨识加氢:从概念到应用[J]. 化工进展, 2023, 42(8): 3917-3922. |
[10] | 吕杰, 黄冲, 冯自平, 胡亚飞, 宋文吉. 基于余热回收的燃气热泵性能及控制系统[J]. 化工进展, 2023, 42(8): 4182-4192. |
[11] | 孙旭东, 赵玉莹, 李诗睿, 王琦, 李晓健, 张博. 我国地方性氢能发展政策的文本量化分析[J]. 化工进展, 2023, 42(7): 3478-3488. |
[12] | 蒋博龙, 崔艳艳, 史顺杰, 常嘉城, 姜楠, 谭伟强. 过渡金属Co3O4/ZnO-ZIF氧还原催化剂Co/Zn-ZIF模板法制备及其产电性能[J]. 化工进展, 2023, 42(6): 3066-3076. |
[13] | 任建鹏, 吴彩文, 刘慧君, 吴文娟. 木质素-聚苯胺复合材料的制备及对刚果红的吸附[J]. 化工进展, 2023, 42(6): 3087-3096. |
[14] | 徐国彬, 刘洪豪, 李洁, 郭家奇, 王琪. ZnO量子点水性喷墨荧光墨水制备及性能[J]. 化工进展, 2023, 42(6): 3114-3122. |
[15] | 金涌, 程易, 白丁荣, 张晨曦, 魏飞. 中国流态化技术研发史略[J]. 化工进展, 2023, 42(6): 2761-2780. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |