化工进展 ›› 2022, Vol. 41 ›› Issue (2): 537-553.DOI: 10.16085/j.issn.1000-6613.2021-0644
收稿日期:
2021-03-30
修回日期:
2021-06-30
出版日期:
2022-02-05
发布日期:
2022-02-23
通讯作者:
吴斌鑫
作者简介:
陈龙(1988—),男,博士后,研究方向为计算流体力学。E-mail:基金资助:
CHEN Long(), LI Xiaxia, LI Weixiang, QI Ri, DENG Xin, WU Binxin()
Received:
2021-03-30
Revised:
2021-06-30
Online:
2022-02-05
Published:
2022-02-23
Contact:
WU Binxin
摘要:
聚丙烯非织造布采用熔喷工艺制成,在过滤、阻菌、吸附、防水等方面性能优异,有着非常广阔的市场前景。熔喷工艺中的聚合物拉伸过程复杂且迅速,难以用实验观察。因此,为降低熔喷布生产成本,提高成品质量,计算流体力学(computational fluid dynamics, CFD)方法被广泛应用于该工艺过程分析之中,包括模头中的流道分析、喷射流场分析等。其中,喷射流场分析是主要应用方向,可为喷丝板结构优化、喷射流场优化等问题提供解决方案。本文简要介绍了聚丙烯非织造布熔喷工艺原理及其特点,主要对该领域中应用CFD模拟的相关研究进展进行了综述。文中指出,目前熔喷过程的CFD模拟一般基于喷射流场中的气流,没有考虑黏性聚合物纤维对其影响。然而,黏性聚合物纤维在高速高温气流条件下会发生振动,对射流流场的影响不容忽视。熔喷非织造布的关键问题是减小聚合物纤维的直径,提高熔喷非织造布的质量。因此,研究的重点应逐渐由气流场转变为纤维流场。虽然CFD已被广泛应用于熔喷过程模拟,但熔融状态下聚合物纤维流场模拟研究仍需要在未来的工作中进行展开。
中图分类号:
陈龙, 李霞霞, 李伟祥, 戚锐, 邓鑫, 吴斌鑫. 聚丙烯非织造布熔喷过程的计算流体力学模拟研究进展[J]. 化工进展, 2022, 41(2): 537-553.
CHEN Long, LI Xiaxia, LI Weixiang, QI Ri, DENG Xin, WU Binxin. Research progress in computational fluid dynamics simulation of melt-blown fabric production[J]. Chemical Industry and Engineering Progress, 2022, 41(2): 537-553.
1 | 贾春红. 大容量复合纺丝组件的关键技术研究[D]. 上海: 东华大学, 2009. |
JIA Chunhong. Study on the key techniques of large-capacity complex spinning component[D]. Shanghai: Donghua University, 2009. | |
2 | 孟凯. 熔喷非织造模头设计中几个问题的研究[D]. 上海: 东华大学, 2009. |
MENG Kai. An investigation into some aspects relating to the design of melt blowing nonwoven die[D]. Shanghai: Donghua University, 2009. | |
3 | 桂有军, 武化北, 罗锐, 等. 熔喷板模头喷丝孔的加工方法: CN111702323A[P]. 2020-09-25. |
GUI Youjun, WU Huabei, LUO Rui, et al. Melt-blown plate die head spinneret orifice machining method: CN111702323A[P]. 2020-09-25. | |
4 | 程鹏达, 钟宝昌, 王道增. 无纺织布喷熔射流拖网表面流场特性研究[J]. 水动力学研究与进展(A辑), 2009, 24(6): 686-695. |
CHENG Pengda, ZHONG Baochang, WANG Daozeng. Study on the collecting web flow characteristics of melt-blown jet[J]. Journal of Hydrodynamics (SerA), 2009, 24(6): 686-695. | |
5 | 刘博文, 曾泳春, 王云侠, 等. 利用数值模拟和多目标遗传算法优化熔喷狭槽流场[J]. 东华大学学报(自然科学版), 2011, 37(6): 683-688, 707. |
LIU Bowen, ZENG Yongchun, WANG Yunxia, et al. Optimization air flow field of the melt blowing slot die via numerical simulation and multi-objective genetic algorithm[J]. Journal of Donghua University(Natural Science), 2011, 37(6): 683-688, 707. | |
6 | 辛三法. 熔喷非织造工艺中纤维成形机理的研究[D]. 上海: 东华大学, 2013. |
XIN Sanfa. Mechanism of fiber formation in melt blowing[D]. Shanghai: Donghua University, 2013. | |
7 | 孙光武. 熔喷纤网形态及均匀性的预测研究[D]. 上海: 东华大学, 2017. |
SUN Guangwu. Prediction of the morphology and uniformity of melt-blown fibrous web[D]. Shanghai: Donghua University, 2017. | |
8 | 陈廷. 熔喷非织造气流拉伸工艺研究[D]. 上海: 东华大学, 2003. |
CHEN Ting. Study on the air drawing in melt blowing nonwoven process[D]. Shanghai: Donghua University, 2003. | |
9 | SHAMBAUGH R L. A macroscopic view of the melt-blowing process for producing microfibers[J]. Industrial & Engineering Chemistry Research, 1988, 27(12): 2363-2372. |
10 | SCHWARZ E C A. Apparatus and process for melt-blowing a fiberforming thermoplastic polymer and product produced thereby: US4380570[P]. 1983-04-19. |
11 | WU T T, SHAMBAUGH R L. Characterization of the melt blowing process with laser doppler velocimetry[J]. Industrial & Engineering Chemistry Research, 1992, 31(1): 379-389. |
12 | TYAGI M K, SHAMBAUGH R L. Use of oscillating gas jets in fiber processing[J]. Industrial & Engineering Chemistry Research, 1995, 34(2): 656-660. |
13 | BANSAL V, SHAMBAUGH R L. On-line determination of diameter and temperature during melt blowing of polypropylene[J]. Industrial & Engineering Chemistry Research, 1998, 37(5): 1799-1806. |
14 | UYTTENDAELE M A J, SHAMBAUGH R L. The flow field of annular jets at moderate Reynolds numbers[J]. Industrial & Engineering Chemistry Research, 1989, 28(11): 1735-1740. |
15 | MAJUMDAR B, SHAMBAUGH R L. Velocity and temperature fields of annular jets[J]. Industrial & Engineering Chemistry Research, 1991, 30(6): 1300-1306. |
16 | HARPHAM A S, SHAMBAUGH R L. Flow field of practical dual rectangular jets[J]. Industrial & Engineering Chemistry Research, 1996, 35(10): 3776-3781. |
17 | CHHABRA R, SHAMBAUGH R L. Experimental measurements of fiber threadline vibrations in the melt-blowing process[J]. Industrial & Engineering Chemistry Research, 1996, 35(11): 4366-4374. |
18 | HARPHAM A S, SHAMBAUGH R L. Velocity and temperature fields of dual rectangular jets[J]. Industrial & Engineering Chemistry Research, 1997, 36(9): 3937-3943. |
19 | TATE B D, SHAMBAUGH R L. Modified dual rectangular jets for fiber production[J]. Industrial & Engineering Chemistry Research, 1998, 37(9): 3772-3779. |
20 | MARLA V T, SHAMBAUGH R L, PAPAVASSILIOU D V. Modeling the melt blowing of hollow fibers[J]. Industrial & Engineering Chemistry Research, 2006, 45(1): 407-415. |
21 | KRUTKA H M, SHAMBAUGH R L, PAPAVASSILIOU D V. Effects of the polymer fiber on the flow field from a slot melt blowing die[J]. Industrial & Engineering Chemistry Research, 2008, 47(3): 935-945. |
22 | SHAMBAUGH B R, PAPAVASSILIOU D V, SHAMBAUGH R L. Next-generation modeling of melt blowing[J]. Industrial & Engineering Chemistry Research, 2011, 50(21): 12233-12245. |
23 | SHAMBAUGH B R, PAPAVASSILIOU D V, SHAMBAUGH R L. Modifying air fields to improve melt blowing[J]. Industrial & Engineering Chemistry Research, 2012, 51(8): 3472-3482. |
24 | SHAMBAUGH R L, KRUTTY J D, SINGLETON S M. Melt blowing dies with louvers[J]. Industrial & Engineering Chemistry Research, 2015, 54(51): 12999-13004. |
25 | FOLEY K A, SHAMBAUGH R L. Fiber spinning with airfields enhanced by airfoil louvers[J]. Textile Research Journal, 2019, 89(15): 3150-3158. |
26 | MOHAMMED A, SHAMBAUGH R L. Three-dimensional temperature field of a rectangular array of practical air jets[J]. Industrial & Engineering Chemistry Research, 1994, 33(3): 730-735. |
27 | KAYSER J C, SHAMBAUGH R L. The manufacture of continuous polymeric filaments by the melt-blowing process[J]. Polymer Engineering and Science, 1990, 30(19): 1237-1251. |
28 | UYTTENDAELE M A J, SHAMBAUGH R L. Melt blowing: general equation development and experimental verification[J]. AIChE Journal, 1990, 36(2): 175-186. |
29 | RAO R S, SHAMBAUGH R L. Vibration and stability in the melt blowing process[J]. Industrial & Engineering Chemistry Research, 1993, 32(12): 3100-3111. |
30 | MARLA V T, SHAMBAUGH R L. Three-dimensional model of the melt-blowing process[J]. Industrial & Engineering Chemistry Research, 2003, 42(26): 6993-7005. |
31 | 郭燕坤. 熔喷非织造用衣架型模头的研究[D]. 上海: 东华大学, 2005. |
GUO Yankun. Study on the coathanger die of melt-blown nonwoven system[D]. Shanghai: Donghua University, 2005. | |
32 | 韩万里. 熔喷非织造模头宽幅化和纤维纳米化的研究[D]. 上海: 东华大学, 2014. |
HAN Wanli. Design of the wide coat-hanger die and the fabrication of nanofiber in melt blowing process[D]. Shanghai: Donghua University, 2014. | |
33 | 郭燕坤, 崔毅华, 王新厚. 熔喷非织造衣架型模头中聚合物流动数值模拟[J]. 纺织学报, 2006, 27(10): 18-21. |
GUO Yankun, CUI Yihua, WANG Xinhou. Numerical simulation of polymer flow in the coat-hanger die of melt blown process[J]. Journal of Textile Research, 2006, 27(10): 18-21. | |
34 | MENG K, WANG X H, HUANG X B. Optimal design of the coat-hanger die used for producing melt-blown fabrics by finite element method and evolution strategies[J]. Polymer Engineering & Science, 2009, 49(2): 354-358. |
35 | MENG K, WANG X H, HUANG X B. Numerical analysis of the stagnation phenomenon in the coat-hanger die of melt blowing process[J]. Journal of Applied Polymer Science, 2008, 108(4): 2523-2527. |
36 | HAN W L, WANG X H, Bhat G S. Structure and air permeability of melt blown nanofiber webs[J]. Journal of Nanomaterials & Molecular Nanotechnology, 2015, 2(3). DOI: 10.4172/2324-8777.1000115. |
37 | HAN W L, WANG X H. Optimal geometry design of the coat‐hanger die with uniform outlet velocity and minimal residence time[J]. Journal of Applied Polymer Science, 2012, 123(4): 2511-2516. |
38 | HAN W, WANG X. Multi-objective optimization of the coat-hanger die for melt-blowing process[J]. Fibers and Polymers, 2012, 13(5): 626-631. |
39 | NURWAHA D, HAN W L, WANG X H. Investigation of a new needleless electrospinning method for the production of nanofibers[J]. Journal of Engineered Fibers and Fabrics, 2013, 8(4): 42-44. |
40 | HAN W L, NURWAHA D, LI C L, et al. Free surface electrospun fibers: the combined effect of processing parameters[J]. Polymer Engineering & Science, 2014, 54(1): 189-197. |
41 | NURWAHA D, HAN W L, WANG X H. Effects of processing parameters on electrospun fiber morphology[J]. The Journal of the Textile Institute, 2013, 104(4): 419-425. |
42 | 曾泳春, 郁崇文. 气流/纤维两相流动的数值计算和实验的研究[J]. 东华大学学报(自然科学版), 2002, 28(3): 109-113. |
ZENG Yongchun, YU Chongwen. Study of numerical computation and experimental research of air/fiber two phase flow[J]. Journal of Donghua University(Natural Science Edition), 2002, 28(3): 109-113. | |
43 | 曾泳春, 郁崇文. 喷气纺喷嘴中气流流动的数值计算[J]. 东华大学学报(自然科学版), 2002, 28(5): 13-18. |
ZENG Yongchun, YU Chongwen. Numerical computation of air flow in the nozzle of air-jet spinning[J]. Journal of Donghua University(Natural Science Edition), 2002, 28(5): 13-18. | |
44 | 曾泳春. 纤维在喷嘴高速气流场中运动的研究和应用[D]. 上海: 东华大学, 2004. |
ZENG Yongchun. Study on fiber motion in high speed airflow within the nozzle and its application[D]. Shanghai: Donghua University, 2004. | |
45 | KRUTKA H M, SHAMBAUGH R L, PAPAVASSILIOU D V. Analysis of a melt-blowing die: comparison of CFD and experiments[J]. Industrial & Engineering Chemistry Research, 2002, 41(20): 5125-5138. |
46 | KRUTKA H M, SHAMBAUGH R L, PAPAVASSILIOU D V. Effects of die geometry on the flow field of the melt-blowing process[J]. Industrial & Engineering Chemistry Research, 2003, 42(22): 5541-5553. |
47 | 赵楼杰. 熔喷模头喷嘴孔流场速度和温度分布的模拟[D]. 上海: 东华大学, 2010. |
ZHAO Loujie. Simulation on the flow field of a dual slot die in the melt-blown process[D]. Shanghai: Donghua University, 2010. | |
48 | 刘博文. 利用数值模拟和遗传算法优化熔喷流场[D]. 上海: 东华大学, 2011. |
LIU Bowen. Optimize air flow field of the melt blowing slot die via numerical simulation and multi-objective genetic algorithm[D]. Shanghai: Donghua University, 2011. | |
49 | 常峪萄. 纳米颗粒复合熔喷流场的数值模拟与分析[D]. 天津: 天津工业大学, 2011. |
CHANG Yutao. Numerical simulation and analysis of nanoparticles composite melt blown flow field[D]. Tianjin: Tianjin Polytechnic University, 2011. | |
50 | 许川. 熔喷非织造喷射流场的数值模拟与实验测试[D]. 苏州: 苏州大学, 2012. |
XU Chuan. Numerical simulation and experimental study on the air jet flow field of the melt blowing process[D]. Suzhou: Soochow University, 2012. | |
51 | 成园玲. 加装辅助喷嘴的熔喷气体流场研究[D]. 苏州: 苏州大学, 2013. |
CHENG Yuanling. Study on the air flow field in the melt blowing process with an auxiliary nozzle[D]. Suzhou: Soochow University, 2013. | |
52 | 董家斌. 加装辅助喷嘴的熔喷非织造聚合物拉伸模型[D]. 苏州: 苏州大学, 2013. |
DONG Jiabin. Polymer drawing model of the melt blowing process equipped with the auxiliary nozzle[D]. Suzhou: Soochow University, 2013. | |
53 | 黄冬徽. 周向排列倾斜气流喷嘴组气体流场研究[D]. 苏州: 苏州大学, 2015. |
HUANG Donghui. Study on the air flow field of circumferential arranged oblique nozzle grouping[D]. Suzhou: Soochow University, 2015. | |
54 | 杨康. 组合气体流场中的熔喷聚合物拉伸模型[D]. 苏州: 苏州大学, 2016. |
YANG Kang. Polymer drawing model in the combined air flow field of the melt blowing process[D]. Suzhou: Soochow University, 2016. | |
55 | 承婷婷. 加装辅助喷嘴的熔喷非织造气体流场及聚合物拉伸研究[D]. 苏州: 苏州大学, 2014. |
CHENG Tingting. Study on the air flow field and polymer drawing of the melt blowing process with an auxiliary nozzle[D]. Suzhou: Soochow University, 2014. | |
56 | HASSAN M A, ANANTHARAMAIAH N, KHAN S A, et al. Computational fluid dynamics simulations and experiments of meltblown fibrous media: new die designs to enhance fiber attenuation and filtration quality[J]. Industrial & Engineering Chemistry Research, 2016, 55(7): 2049-2058. |
57 | 王玉栋. 熔喷气流场的分析与优化[D]. 上海: 东华大学, 2014. |
WANG Yudong. Analysis and optimization of air flow field in melt-blowing processing[D]. Shanghai: Donghua University, 2014. | |
58 | 姬长春, 张开源, 王玉栋, 等. 熔喷三维气流场的数值计算与分析[J]. 纺织学报, 2019, 40(8): 175-180. |
JI Changchun, ZHANG Kaiyuan, WANG Yudong, et al. Numerical calculation and analysis of three-dimensional flow field in melt-blown process[J]. Journal of Textile Research, 2019, 40(8): 175-180. | |
59 | 陈廷, 黄秀宝. 对熔喷气流拉伸一维数学模型的改进研究[J]. 中国纺织大学学报, 2000, 26(1): 1-5. |
CHEN Ting, HUANG Xiubao. Study on the improvement in the one Dimensional Mathematical model of the air dragin melt blowing process[J]. Journal of China Textile University, 2000, 26(1): 1-5. | |
60 | 王晓梅. 熔喷工艺气流对纤维运动及热熔纤网质量影响的研究[D]. 上海: 东华大学, 2005. |
WANG Xiaomei. Study of the effects of airflow on fiber motion and the adhesive web quality in melt blowing process[D]. Shanghai: Donghua University, 2005. | |
61 | WANG X M, KE Q F. Experimental investigation of adhesive meltblown web production using accessory air[J]. Polymer Engineering & Science, 2006, 46(1): 1-7. |
62 | WANG X M, KE Q F. Empirical formulas for distributions of air velocity/temperature along the spinline of a dual slot die[J]. Polymer Engineering & Science, 2005, 45(8): 1092-1097. |
63 | WANG X M, KE Q F. Computational simulation of the fiber movement in the melt-blowing process[J]. Industrial & Engineering Chemistry Research, 2005, 44(11): 3912-3917. |
64 | 张冲. 基于喷射流场数值模拟的熔喷聚合物拉伸三维模型[D]. 上海: 东华大学, 2009. |
ZHANG Chong. Three dimensional poymer drawing model of melt blowing process based on numerical simulations of the air jet flow field[D]. Shanghai: Donghua University, 2009. | |
65 | 杜利娟, 曾泳春. 基于Fluent的螺旋形喷嘴熔喷流场的数值模拟和试验[J]. 东华大学学报(自然科学版), 2012, 38(6): 676-682. |
DU Lijuan, ZENG Yongchun. Numerical simulation and experiment of melt blowing flow field of swirl nozzle based on Fluent[J]. Journal of Donghua University(Natural Science Edition), 2012, 38(6): 676-682. | |
66 | HAO X B, HUANG H, ZENG Y C. Simulation of jet velocity in the melt-blowing process using the coupled air-polymer model[J]. Textile Research Journal, 2019, 89(16): 3221-3233. |
[1] | 孙继鹏, 韩靖, 唐杨超, 闫汉博, 张杰瑶, 肖苹, 吴峰. 硫黄湿法成型过程数值模拟与操作参数优化[J]. 化工进展, 2023, 42(S1): 189-196. |
[2] | 王云飞, 秦蕊, 郑利军, 李焱, 李清平. 旋转填充床CFD模拟研究进展[J]. 化工进展, 2023, 42(S1): 1-9. |
[3] | 罗成, 范晓勇, 朱永红, 田丰, 崔楼伟, 杜崇鹏, 王飞利, 李冬, 郑化安. 中低温煤焦油加氢反应器不同分配器中液体分布的CFD模拟[J]. 化工进展, 2023, 42(9): 4538-4549. |
[4] | 卜治丞, 焦波, 林海花, 孙洪源. 脉动热管计算流体力学模型与研究进展[J]. 化工进展, 2023, 42(8): 4167-4181. |
[5] | 邱沫凡, 蒋琳, 刘荣正, 刘兵, 唐亚平, 刘马林. 气固流化床化学反应数值模拟中颗粒尺度模型研究进展[J]. 化工进展, 2023, 42(10): 5047-5058. |
[6] | 彭德其, 冯源, 王依然, 谭卓伟, 俞天兰, 吴淑英. 立式缩放管内液固颗粒群浓度分布与汇聚特性[J]. 化工进展, 2022, 41(9): 4662-4672. |
[7] | 古新, 张前欣, 王超鹏, 方运阁, 李宁, 王永庆. U形导流板换热器传热和阻力性能分析[J]. 化工进展, 2022, 41(7): 3465-3474. |
[8] | 徐涵卓, 刘志浩, 孙宝昌, 张亮亮, 邹海魁, 罗勇, 初广文. 流体驱动旋转装备应用与数值模拟方法研究进展[J]. 化工进展, 2022, 41(6): 2806-2817. |
[9] | 朱明军, 胡大鹏. 操作参数对三相卧螺离心机油水砂分离性能影响模拟及实验分析[J]. 化工进展, 2022, 41(10): 5188-5199. |
[10] | 王戈, 孙志伟, 谭蔚, 邱威, 朱国瑞. 异形纤维阵列过滤特性的数值模拟[J]. 化工进展, 2022, 41(1): 30-39. |
[11] | 王彦谦, 王远洋. 微反应器中费托合成的研究进展[J]. 化工进展, 2021, 40(S2): 185-191. |
[12] | 亢嘉妮, 何立东, 范文强, 杨扬. 环氧乙烷装置T形三通管件故障原因分析与改进[J]. 化工进展, 2021, 40(S1): 32-42. |
[13] | 王宇, 潘振海. 水平及竖直基底上微小固着液滴的蒸发特性分析[J]. 化工进展, 2021, 40(7): 3632-3644. |
[14] | 王海清, 孙浩, 张之秀. 基于维度事故载荷的控制室抗爆强度设计[J]. 化工进展, 2021, 40(6): 3543-3552. |
[15] | 王志杰, 赵彦琳, 姚军. Rushton涡轮搅拌槽内流场特性及颗粒运动行为数值模拟[J]. 化工进展, 2021, 40(12): 6479-6489. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |