化工进展 ›› 2022, Vol. 41 ›› Issue (2): 519-536.DOI: 10.16085/j.issn.1000-6613.2021-0575
周池楼1,2(), 何默涵1, 郭晋3,4, 李运泉1,5, 吴昊1(), 肖舒1, 陈国华1,2, 欧阳瑞祥6, 何实6
收稿日期:
2021-03-22
修回日期:
2021-05-28
出版日期:
2022-02-05
发布日期:
2022-02-23
通讯作者:
吴昊
作者简介:
周池楼(1987—),男,博士,副研究员,硕士生导师,研究方向为高压储氢技术及氢脆机理。E-mail:基金资助:
ZHOU Chilou1,2(), HE Mohan1, GUO Jin3,4, LI Yunquan1,5, WU Hao1(), XIAO Shu1, CHEN Guohua1,2, OUYANG Ruixiang6, HE Shi6
Received:
2021-03-22
Revised:
2021-05-28
Online:
2022-02-05
Published:
2022-02-23
Contact:
WU Hao
摘要:
奥氏体不锈钢焊件是高压氢系统中重要的承载结构,其长期服役在高压高纯氢气环境中会出现塑性损减、疲劳裂纹扩展速率加快等氢脆现象,导致高压氢系统存在安全隐患。因此,为保障高压氢系统的安全运行,研究高压氢环境奥氏体不锈钢焊件的氢脆具有重要意义。本文首先介绍奥氏体不锈钢焊件中氢的两种来源,随后讨论评价材料氢脆敏感性的静态实验方法和动态实验方法,其次概述当前主流的氢脆机理,然后着重分析内部因素及外部因素对奥氏体不锈钢焊件氢脆敏感性的影响,最后归纳并总结五种典型的奥氏体不锈钢焊接工艺对焊件微观组织的影响,并进一步探讨相应焊件的氢脆敏感性。基于上述分析,针对奥氏体不锈钢焊件氢脆性能研究现状及发展趋势提出了若干建议。
中图分类号:
周池楼, 何默涵, 郭晋, 李运泉, 吴昊, 肖舒, 陈国华, 欧阳瑞祥, 何实. 高压氢环境奥氏体不锈钢焊件氢脆研究进展[J]. 化工进展, 2022, 41(2): 519-536.
ZHOU Chilou, HE Mohan, GUO Jin, LI Yunquan, WU Hao, XIAO Shu, CHEN Guohua, OUYANG Ruixiang, HE Shi. Review on hydrogen embrittlement of austenitic stainless steel weldments in high pressure hydrogen atmosphere[J]. Chemical Industry and Engineering Progress, 2022, 41(2): 519-536.
1 | 周池楼, 陈国华. O型橡胶密封圈高压氢气环境中特性表征[J]. 化工学报, 2018, 69(8): 3557-3564. |
ZHOU C L, CHEN G H. Characterization of rubber O-ring seal in high-pressure gaseous hydrogen[J]. CIESC Journal, 2018, 69(8): 3557-3564. | |
91 | WANG B. Analysis of welding technology of austenitic stainless steel[J]. Ind. & Sci. Tri., 2010, 9(11): 106-107. |
92 | CHUAIPHAN W, SRIJAROENPRAMONG L. Effect of welding speed on microstructures, mechanical properties and corrosion behavior of GTA-welded AISI 201 stainless steel sheets[J]. Journal of Materials Processing Technology, 2014, 214(2): 402-408. |
93 | LI X G, GONG B M, DENG C Y, et al. Effect of pre-strain on microstructure and hydrogen embrittlement of K-TIG welded austenitic stainless steel[J]. Corrosion Science, 2019, 149: 1-17. |
94 | LI X G, GONG B M, LIU X G, et al. Effects of hydrogen and microstructure on tensile properties and failure mechanism of 304L K-TIG welded joint[J]. Materials Science and Engineering: A, 2018, 735: 208-217. |
2 | 赵永志, 蒙波, 陈霖新, 等. 氢能源的利用现状分析[J]. 化工进展, 2015, 34(9): 3248-3255. |
ZHAO Y Z, MENG B, CHEN L X, et al. Utilization status of hydrogen energy[J]. Chemical Industry and Engineering Progress, 2015, 34(9): 3248-3255. | |
3 | 周池楼, 何默涵, 肖舒, 等. 不锈钢表面阻氢涂层研究进展[J]. 化工进展, 2020, 39(9): 3458-3468. |
95 | JACKSON H F, MARCHI C SAN, BALCH D K, et al. Effect of low temperature on hydrogen-assisted crack propagation in 304L/308L austenitic stainless steel fusion welds[J]. Corrosion Science, 2013, 77: 210-221. |
96 | 贺聪聪. 氢对高功率激光焊奥氏体不锈钢力学性能影响的研究[D]. 上海: 上海工程技术大学, 2016. |
3 | ZHOU C L, HE M H, XIAO S, et al. Review on hydrogen permeation barrier coatings on stainless steels[J]. Chemical Industry and Engineering Progress, 2020, 39(9): 3458-3468. |
4 | ZHENG Y R, TAN Y, ZHOU C L, et al. A review on effect of hydrogen on rubber seals used in the high-pressure hydrogen infrastructure [J]. International Journal of Hydrogen Energy, 2020, 45(43): 23721-23738. |
96 | HE C C. The effect of hydrogen on mechanical properties of austenitic stainless steel welded joint prepared by the high power laser[D]. Shanghai: Shanghai University of Engineering Science, 2016. |
97 | YAN Y J, YAN Y, HE Y, et al. Hydrogen-induced cracking mechanism of precipitation strengthened austenitic stainless steel weldment[J]. International Journal of Hydrogen Energy, 2015, 40(5): 2404-2414. |
5 | 邹才能, 张福东, 郑德温, 等. 人工制氢及氢工业在我国“能源自主”中的战略地位[J]. 天然气工业, 2019, 39(1): 1-10. |
ZOU C N, ZHANG F D, ZHENG D W, et al. Strategic role of the synthetic hydrogen production and industry in energy independence of China[J]. Natural Gas Industry, 2019, 39(1): 1-10. | |
6 | ZHANG F, ZHAO P, NIU M, et al. The survey of key technologies in hydrogen energy storage[J]. International Journal of Hydrogen Energy, 2016, 41(33):14535-14552. |
7 | THAKARE J G, PANDEY C, MAHAPATRA M M, et al. An assessment for mechanical and microstructure behavior of dissimilar material welded joint between nuclear grade martensitic P91 and austenitic SS304 L steel[J]. Journal of Manufacturing Processes, 2019, 48: 249-259. |
8 | KIM K S, KANG J H K, KIM S J. Nitrogen effect on hydrogen diffusivity and hydrogen embrittlement behavior in austenitic stainless steels[J]. Scripta Materialia, 2020, 184: 70-73. |
9 | QUEIROGA L R, MARCOLINO G F, SANTOS M, et al. Influence of machining parameters on surface roughness and susceptibility to hydrogen embrittlement of austenitic stainless steels[J]. International Journal of Hydrogen Energy, 2019, 44(54): 29027-29033. |
10 | WU Z T, ZHANG K Y, HONG Y J, et al. The dependence of fatigue crack growth on hydrogen in warm-rolled 316 austenitic stainless steel[J]. International Journal of Hydrogen Energy, 2021, 46(23): 12348-12360. |
11 | 余王伟. 超低温储氢容器用奥氏体不锈钢焊接接头韧性研究[D]. 杭州: 浙江工业大学, 2017. |
YU W W. Research on toughness of austenitic stainless steel welded joints for ultra-low temperature hydrogen storage vessel[D]. Hangzhou: Zhejiang University of Technology, 2017. | |
12 | 刘贤信. 大容积全多层高压储氢容器及氢在金属中的富集特性研究[D]. 杭州: 浙江大学, 2012. |
LIU X X. Researches on large volume layered high-pressure hydrogen vessels and hydrogen accumulation characteristics in metal[D]. Hangzhou: Zhejiang University, 2012. | |
13 | CAO R H, XU L N, JIANG B L, et al. Coupling effect of microstructure and hydrogen absorbed during service on pitting corrosion of 321 austenitic stainless steel weld joints[J]. Corrosion Science, 2020, 164: 108339. |
14 | 孔祥峰, 邹妍, 张婧, 等. 焊缝金属中扩散氢的形成及控制研究进展[J]. 钢铁, 2015, 50(10): 77-84. |
KONG X F, ZOU Y, ZHANG J, et al. Review of formation and controlling for diffusible hydrogen in steel weldments[J]. Iron & Steel, 2015, 50(10): 77-84. | |
15 | DWIVEDI S K, VISHWAKARMA M. Hydrogen embrittlement in different materials: a review[J]. International Journal of Hydrogen Energy, 2018, 43(46): 21603-21616. |
16 | NGUYEN T T, PARK J, NAHM S H, et al. Ductility and fatigue properties of low nickel content type 316L austenitic stainless steel after gaseous thermal pre-charging with hydrogen[J]. International Journal of Hydrogen Energy, 2019, 44(51): 28031-28043. |
17 | YAMABE J, TAKAKUWA O, MATSUNAGA H, et al. Hydrogen diffusivity and tensile-ductility loss of solution-treated austenitic stainless steels with external and internal hydrogen[J]. International Journal of Hydrogen Energy, 2017, 42(18): 13289-13299. |
18 | OGAWA Y, TAKAKUWA O, OKAZAKI S, et al. Pronounced transition of crack initiation and propagation modes in the hydrogen-related failure of a Ni-based superalloy 718 under internal and external hydrogen conditions[J]. Corrosion Science, 2019, 161: 108186. |
98 | TSAY L W, YU S C, CHYOU S D, et al. A comparison of hydrogen embrittlement susceptibility of two austenitic stainless steel welds[J]. Corrosion Science, 2007, 49(10): 4028-4039. |
99 | 王亚婷. 奥氏体不锈钢焊缝韧性与组织规律性研究[D]. 南京: 南京理工大学, 2012. |
WANG Y T. Study on regularity of austenitic stainless steel weld toughness and microstructure[D]. Nanjing: Nanjing University of Science & Technology, 2012. | |
100 | BALCH D K, MARCHI C SAN. Effect of hydrogen on tensile strength and ductility of multi-pass 304L / 308L austenitic stainless steel welds[C]//Proceedings of ASME 2015 Pressure Vessels and Piping Conference, July 19-23, 2015, Boston, Massachusetts, USA. 2015. |
101 | OKAZAKI S, MATSUNAGA H, NAKAMURA M, et al. Influence of hydrogen on tensile and fatigue life properties of 304/308 austenitic stainless steel butt welded joints[C]//Proceedings of ASME 2018 Pressure Vessels and Piping Conference, July 15-20, 2018, Prague, Czech Republic. 2018. |
19 | MARCHI C SAN, MICHLER T, NIBUR K A, et al. On the physical differences between tensile testing of type 304 and 316 austenitic stainless steels with internal hydrogen and in external hydrogen[J]. International Journal of Hydrogen Energy, 2010, 35(18): 9736-9745. |
20 | 郑津洋, 胡军, 韩武林, 等. 中国氢能承压设备风险分析和对策的几点思考[J]. 压力容器, 2020, 37(6): 39-47. |
ZHENG J Y, HU J, HAN W L, et al. Risk analysis and some countermeasures of pressure equipment for hydrogen energy in China[J]. Pressure Vessel Technology, 2020, 37(6): 39-47. | |
21 | ZHAO T L, LIU Z Y, XU X X, et al. Interaction between hydrogen and cyclic stress and its role in fatigue damage mechanism[J]. Corrosion Science, 2019, 157: 146-156. |
22 | ZHOU C S, SONG Y Y, SHI Q Y, et al. Effect of pre-strain on hydrogen embrittlement of metastable austenitic stainless steel under different hydrogen conditions[J]. International Journal of Hydrogen Energy, 2019, 44(47): 26036-26048. |
23 | MARCHI C W SAN, SOMERDAY B P. Technical reference on hydrogen compatibility of materials[R]. Sandia National Laboratories, SANDIA REPORT SAND2008-1163, 2008: 1211-1. |
24 | 周池楼. 140 MPa高压氢气环境材料力学性能测试装置研究[D]. 杭州: 浙江大学, 2015. |
ZHOU C L. Research on material mechanics properties testing equipment in 140MPa high-pressure hydrogen environment[D]. Hangzhou: Zhejiang University, 2015. | |
25 | NIBUR K A, SOMERDAY B P. Fracture and fatigue test methods in hydrogen gas[M]//Gaseous hydrogen embrittlement of materials in energy technologies. Amsterdam: Elsevier, Woodhead Publishing, 2012: 195-236. |
26 | 国家市场监督管理总局, 中国国家标准化管理委员会. 中华人民共和国推荐性国家标准: 氢气储存输送系统 第2部分:金属材料与氢环境相容性试验方法[S]. 北京: 中国标准出版社, 2018. |
State Administration for Market Regulation, Standardization Administration of the People’s Republic of China. National Standard (Recommended) of the People’s Republic of China: Storage and transportation systems for gaseous hydrogen—Part 2: Test methods for evaluating metallic material compatibility in hydrogen atmosphere. [S]. Beijing: Standards Press of China, 2018. | |
27 | NASA. Safety standard for hydrogen and hydrogen systems[R]. Washington D C: Office of Safety and Mission Assurance, 1997. |
28 | . Standard test method for determination of susceptibility of metals to embrittlement in hydrogen containing environments at high pressure, high temperature, or both[S]. ASTM International, 2011. |
29 | . Test methods for evaluating material compatibility in compressed hydrogen applications-metals[S]. CSA Group, 2014. |
30 | SAE J2579. Technical information report for fuel systems in fuel cell and other hydrogen vehicles[S]. SAE International, 2013. |
31 | SIMS J R, COOCH S M. Alternative rules for construction of high-pressure vessels[M]//Boiler & pressure vessel cooes, ASME Press, 2020. |
32 | ZAPFFE C A, SIMS C E. Hydrogen, flakes and shatter cracks[J]. Metals and Alloys, 1941, 12: 145-151. |
33 | ROSSIN A D, BLEWITT T H, TROIANO A R. Hydrogen embrittlement in irradiated steels[J]. Nuclear Engineering and Design, 1966, 4(5): 446-458. |
34 | BEACHEM C D. A new model for hydrogen-assisted cracking (hydrogen “embrittlement”)[J]. Metallurgical and Materials Transactions B, 1972, 3(2): 441-455. |
35 | LYNCH S. Hydrogen embrittlement (HE) phenomena and mechanisms[J]. Corrosion Reviews, 2012, 30(3/4): 105-123. |
36 | PETCH N J, STABLES P. Delayed fracture of metals under static load[J]. Nature, 1952, 169(4307): 842-843. |
37 | LECKIE H P, LOGINOW A W. Stress corrosion behavior of high strength steels[J]. Corrosion, 1968, 24(9): 291-297. |
38 | NARITA N, ALTSTETTER C J, BIRNBAUM H K. Hydrogen-related phase transformations in austenitic stainless steels[J]. Metallurgical Transactions A, 1982, 13(8): 1355-1365. |
39 | 闫英杰. 沉淀强化奥氏体不锈钢焊件氢脆研究[D]. 北京: 北京科技大学, 2015. |
YAN Y J. Study of hydrogen embrittlement of precipitation strengthened austenitic stainless steel weldment[D]. Beijing: University of Science and Technology Beijing, 2015. | |
40 | ORIANI R A, JOSEPHIC P H. Equilibrium aspects of hydrogen-induced cracking of steels[J]. Acta Metallurgica, 1974, 22(9): 1065-1074. |
41 | ORIANI R A, JOSEPHIC P H. Equilibrium and kinetic studies of the hydrogen-assisted cracking of steel[J]. Acta Metallurgica, 1977, 25(9): 979-988. |
42 | DG U W. Generalized model for hydrogen embrittlement[J]. ASM Trans Quart, 1969, 62(4): 1000-1006. |
43 | CHEN S H, ZHAO M J, RONG L J. Effect of grain size on the hydrogen embrittlement sensitivity of a precipitation strengthened Fe-Ni based alloy[J]. Materials Science and Engineering: A, 2014, 594: 98-102. |
44 | BRASS A M, CHENE J. Hydrogen uptake in 316L stainless steel: consequences on the tensile properties[J]. Corrosion Science, 2006, 48(10): 3222-3242. |
45 | MINE Y, HORITA N, HORITA Z, et al. Effect of ultrafine grain refinement on hydrogen embrittlement of metastable austenitic stainless steel[J]. International Journal of Hydrogen Energy, 2017, 42(22): 15415-15425. |
46 | ROZENAK P, ELIEZER D. Effects of metallurgical variables on hydrogen embrittlement in AISI type 316, 321 and 347 stainless steels[J]. Materials Science and Engineering, 1983, 61(1): 31-41. |
47 | HU H L, ZHAO M J, CHEN S H, et al. Effect of grain boundary character distribution on hydrogen embrittlement in Fe-Ni based alloy[J]. Materials Science and Engineering: A, 2020, 780: 139201. |
48 | El-TAHAWY M, UM T, NAM H S, et al. The effect of hydrogen charging on the evolution of lattice defects and phase composition during tension in 316L stainless steel[J]. Materials Science and Engineering: A, 2019, 739: 31-36. |
49 | PU S D, TURK A, LENKA S, et al. Study of hydrogen release resulting from the transformation of austenite into martensite[J]. Materials Science and Engineering: A, 2019, 754: 628-635. |
50 | CHEN T C, CHEN S T, KAI W, et al. The effect of phase transformation in the plastic zone on the hydrogen-assisted fatigue crack growth of 301 stainless steel[J]. Materials Characterization, 2016, 112: 134-141. |
51 | 李晓刚. AISI304不锈钢焊接接头氢脆敏感性研究[D]. 天津: 天津大学, 2018. |
LI X G. Study of hydrogen embrittlement susceptibility of AISI304 stainless steel welded joint[D]. Tianjin: Tianjin University, 2018. | |
52 | TSAY L W, CHEN J J, HUANG J C. Hydrogen-assisted fatigue crack growth of AISI 316L stainless steel weld[J]. Corrosion Science, 2008, 50(11): 2973-2980. |
53 | ZHANG L, LI Z Y, ZHENG J Y, et al. Effect of strain-induced martensite on hydrogen embrittlement of austenitic stainless steels investigated by combined tension and hydrogen release methods[J]. International Journal of Hydrogen Energy, 2013, 38(19): 8208-8214. |
54 | LUPPO M I, HAZARABEDIAN A, OVEJERO-GARCÍA J. Effects of delta ferrite on hydrogen embrittlement of austenitic stainless steel welds[J]. Corrosion Science, 1999, 41(1): 87-103. |
55 | YOUNES C M, STEELE A M, NICHOLSON J A, et al. Influence of hydrogen content on the tensile properties and fracture of austenitic stainless steel welds[J]. International Journal of Hydrogen Energy, 2013, 38(11): 4864-4876. |
56 | PAN C, SU Y J, CHU W Y, et al. Hydrogen embrittlement of weld metal of austenitic stainless steels[J]. Corrosion Science, 2002, 44(9): 1983-1993. |
57 | NOMURA Shigeo, HAWEGAWA Masayoshi. Influence of metallurgical factors on hydrogen damage of austenitic stainless steels[J]. Tetsu-to-Hagane, 1978, 64(2): 288-296. |
58 | BROOKS J A, WEST Anton J. Hydrogen induced ductility losses in austenitic stainless steel welds[J]. Metallurgical Transactions A, 1981, 12(2): 213-223. |
59 | 陈冰泉. 焊接速度对18-8不锈钢接头组织形态的影响[J]. 钢铁研究, 2003, 31(4): 43-45. |
CHEN B Q. The influence of welding speed on morphology of welded joints of 18-8 stainless steel[J]. Research on Iron and Steel, 2003, 31(4): 43-45. | |
60 | 类维生,张志明,苏嬿. 氢对18-8型奥氏体不锈钢焊缝金属力学性能与组织的影响[J]. 材料科学与工艺, 1994, 2(3): 89-92. |
LEI W S, ZHANG Z M, SU Y. Effect of hydrogen on mechaincal properties and microstructures of 18Cr-8Ni austenitic weld metal[J]. Material Science & Technology, 1994, 2(3): 89-92 | |
61 | LOUTHAN M R, CASKEY G R, DONOVAN J A, et al. Hydrogen embrittlement of metals[J]. Materials Science and Engineering, 1972, 10: 357-368. |
62 | THOMPSON A W, BERNSTEIN I M. The role of metallurgical variables in hydrogen-assisted environmental fracture[J]. Advances in Corrosion Science and Technology, 1980, 7: 53-175. |
63 | BURKE J J A, MAULIK P, et al. The effect of hydrogen on the structure and properties of Fe-Ni-Cr austenite[C]//TOMPSON A W, BERNSTEIN I M. Effect of hydrogen on behavior of materials. New York: TMS, 1976: 102. |
64 | IZAWA C, WAGNER S, DEUTGES M, et al. Relationship between hydrogen embrittlement and Md30 temperature: prediction of low-nickel austenitic stainless steel’s resistance[J]. International Journal of Hydrogen Energy, 2019, 44(45): 25064-25075. |
65 | ZHANG L, WEN M, IMADE M, et al. Effect of nickel equivalent on hydrogen gas embrittlement of austenitic stainless steels based on type 316 at low temperatures[J]. Acta Materialia, 2008, 56(14): 3414-3421. |
66 | MICHLER T, NAUMANN J. Hydrogen environment embrittlement of austenitic stainless steels at low temperatures[J]. International Journal of Hydrogen Energy, 2008, 33(8): 2111-2122. |
67 | KOTECKI D J, SIEWERT T A. WRC-1992 constitution diagram for stainless steel weld metals: a modification of the WRC-1988 diagram[J]. Welding Journal, 1992, 71. |
68 | 巩建鸣, 蒋文春, 唐建群, 等. 湿H2S环境下低合金钢焊接接头氢扩散数值模拟[J]. 焊接学报, 2007, 28(4): 5-8, 113. |
GONG J M, JIANG W C, TANG J Q, et al. Numerical simulation of hydrogen diffusion in low alloy steel welded joint under wet H2S environment [J]. Transactions of the China Welding Institution, 2007, 28(4): 5-8, 113 | |
69 | 蒋文春, 巩建鸣, 唐建群, 等. 焊接残余应力下氢扩散的数值模拟[J]. 焊接学报, 2006, 27(11): 57-60, 64, 115. |
JIANG W C, GONG J M, TANG J Q, et al. Numerical simulation of hydrogen diffusion under welding residual stress[J]. Transactions of the China Welding Institution, 2006, 27(11): 57-60, 64, 115. | |
70 | 蒋文春, 巩建鸣, 唐建群, 等. 焊接残余应力对氢扩散影响的有限元模拟[J]. 金属学报, 2006, 42(11): 1221-1226. |
JIANG W C, GONG J M, TANG J Q, et al. Finite element simulation of the effect of welding residual stress on hydrogen diffusion[J]. Acta Metallurgica Sinica, 2006, 42(11): 1221-1226. | |
71 | FU Z H, LI T, SHAN M L, et al. Hydrogen atoms on the SCC behavior of SUS301L-MT stainless steel laser-arc hybrid welded joints[J]. Corrosion Science, 2019, 148: 272-280. |
72 | TSAY L W, LIU Y C, YOUNG M C, et al. Fatigue crack growth of AISI 304 stainless steel welds in air and hydrogen[J]. Materials Science and Engineering: A, 2004, 374(1/2): 204-210. |
73 | HAN G, HE J, FUKUYAMA S, et al. Effect of strain-induced martensite on hydrogen environment embrittlement of sensitized austenitic stainless steels at low temperatures[J]. Acta Materialia, 1998, 46(13): 4559-4570. |
74 | ZHANG L, WEN M, FUKUYAMA S, et al. Effect of temperature on hydrogen environment embrittlement of carbon steels at low temperatures[J]. Journal of the Japan Institute of Metals, 2003, 67(9): 456-459. |
75 | CHEN X Y, MA L L, ZHOU C S, et al. Improved resistance to hydrogen environment embrittlement of warm-deformed 304 austenitic stainless steel in high-pressure hydrogen atmosphere[J]. Corrosion Science, 2019, 148: 159-170. |
76 | WALTER R J, CHANDLER W T. Influence of hydrogen pressure and notch severity on hydrogen-environment embrittlement at ambient temperatures[J]. Materials Science and Engineering, 1971, 8(2): 90-97. |
77 | 今出政明, 福山誠司, 張林. SCM440鋼の室温高圧水素雰囲気下における水素脆化[J]. 日本金屬學會誌, 2005, 69(2): 190-193. |
MASAAKI I, SEIJI F, ZHANG L. Hydrogen environment embrittlement of SCM440 steel in high-pressure hydrogen at room temperature[J]. Journal of the Japan Institute of Metals, 2005, 69(2): 190-193. | |
78 | YOSHIKAWA M, MATSUO T, TSUTSUMI N, et al. Effects of hydrogen gas pressure and test frequency on fatigue crack growth properties of low carbon steel in 0.1—90MPa hydrogen gas[J]. Transactions of the Japan Society of Mechanical Engineers, 2014, 80(817): SMM0254. |
79 | BAL B, KOYAMA M, GERSTEIN G, et al. Effect of strain rate on hydrogen embrittlement susceptibility of twinning-induced plasticity steel pre-charged with high-pressure hydrogen gas[J]. International Journal of Hydrogen Energy, 2016, 41(34): 15362-15372. |
80 | OMURA T, NAKAMURA J. Hydrogen embrittlement properties of stainless and low alloy steels in high pressure gaseous hydrogen environment[J]. ISIJ International, 2012, 52(2): 234-239. |
81 | KOYAMA M, AKIYAMA E, TSUZAKI K. Effect of hydrogen content on the embrittlement in a Fe-Mn-C twinning-induced plasticity steel[J]. Corrosion Science, 2012, 59: 277-281. |
82 | DADFARNIA M, MARTIN M L, DE NAGAO A, et al. Modeling hydrogen transport by dislocations[J]. Journal of the Mechanics and Physics of Solids, 2015, 78: 511-525. |
83 | QIAO Y X, CHEN J, ZHOU H L, et al. Effect of solution treatment on cavitation erosion behavior of high-nitrogen austenitic stainless steel[J]. Wear, 2019, 424/425: 70-77. |
84 | 王国强. 中厚板304不锈钢等离子弧焊接接头组织和性能的研究[D]. 苏州: 苏州大学, 2019. |
WANG G Q. Microstructure of 304 arc stainless steel plasma arc welded joint and performance studies[D]. Suzhou: Soochow University, 2019. | |
85 | 王步美, 浦江, 陈挺, 等. 预拉伸应变强化对S30403奥氏体不锈钢形变马氏体相转变的影响[J]. 压力容器, 2013, 30(8): 1-6. |
WANG B M, PU J, CHEN T, et al. Effection of strain-stretching on strain induced martensite transformation of s30403 austenitic stainless steel[J]. Press. Vess. Tech., 2013, 30(8): 1-6. | |
86 | GAVRILJUK V G, BUGAEV V N, PETROV Y N, et al. Hydrogen-induced equilibrium vacancies in FCC iron-base alloys[J]. Scripta Materialia, 1996, 34(6): 903-907. |
87 | VASHISHTHA H, TAIWADE R V, SHARMA S, et al. Effect of welding processes on microstructural and mechanical properties of dissimilar weldments between conventional austenitic and high nitrogen austenitic stainless steels[J]. Journal of Manufacturing Processes, 2017, 25: 49-59. |
88 | 类维生, 苏燕. 1Cr18Ni9Ti钢焊缝金属的氢脆[J]. 山东工业大学学报, 1993, 23(1): 76-79. |
LEI W S, SU Y. Hydrogen embrittlement of weld metal of 1Cr18Ni9Ti steel[J]. Journal of Shandong University of Technology, 1993, 23(1): 76-79. | |
89 | HE Q, HUA Z L, ZHENG J Y. Study on hydrogen compatibility of S31603 weld joints in 98MPa gaseous hydrogen[C]//Proceedings of ASME 2018 Pressure Vessels and Piping Conference, July 15-20, 2018, Prague, Czech Republic, 2018. |
90 | HUGHES L A, SOMERDAY B P, BALCH D K, et al. Hydrogen compatibility of austenitic stainless steel tubing and orbital tube welds[J]. International Journal of Hydrogen Energy, 2014, 39(35): 20585-20590. |
91 | 王冰. 奥氏体不锈钢的焊接技术分析[J]. 产业与科技论坛, 2010, 9(11): 106-107. |
[1] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[2] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[3] | 顾永正, 张永生. HBr改性飞灰对Hg0的动态吸附及动力学模型[J]. 化工进展, 2023, 42(S1): 498-509. |
[4] | 杨建平. 降低HPPO装置反应系统原料消耗的PSE[J]. 化工进展, 2023, 42(S1): 21-32. |
[5] | 杨玉地, 李文韬, 钱永康, 惠军红. 工业燃烧室天然气湍流扩散火焰长度影响因素分析[J]. 化工进展, 2023, 42(S1): 267-275. |
[6] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[7] | 葛全倩, 徐迈, 梁铣, 王凤武. MOFs材料在光电催化领域应用的研究进展[J]. 化工进展, 2023, 42(9): 4692-4705. |
[8] | 史柯柯, 刘木子, 赵强, 李晋平, 刘光. 镁基储氢材料的性能及研究进展[J]. 化工进展, 2023, 42(9): 4731-4745. |
[9] | 刘木子, 史柯柯, 赵强, 李晋平, 刘光. 固体储氢材料的研究进展[J]. 化工进展, 2023, 42(9): 4746-4769. |
[10] | 张振, 李丹, 陈辰, 吴菁岚, 应汉杰, 乔浩. 吸附树脂对唾液酸的分离纯化[J]. 化工进展, 2023, 42(8): 4153-4158. |
[11] | 毛善俊, 王哲, 王勇. 基团辨识加氢:从概念到应用[J]. 化工进展, 2023, 42(8): 3917-3922. |
[12] | 王兰江, 梁瑜, 汤琼, 唐明兴, 李学宽, 刘雷, 董晋湘. 快速热解铂前体合成高分散的Pt/HY催化剂及其萘深度加氢性能[J]. 化工进展, 2023, 42(8): 4159-4166. |
[13] | 郭晋, 张耕, 陈国华, 朱鸣, 谭粤, 李蔚, 夏莉, 胡昆. 车载液氢气瓶设计技术的研究进展[J]. 化工进展, 2023, 42(8): 4221-4229. |
[14] | 张亚娟, 徐惠, 胡贝, 史星伟. 化学镀法制备NiCoP/rGO/NF高效电解水析氢催化剂[J]. 化工进展, 2023, 42(8): 4275-4282. |
[15] | 王晓晗, 周亚松, 于志庆, 魏强, 孙劲晓, 姜鹏. 不同晶粒尺寸Y分子筛的合成及其加氢裂化反应性能[J]. 化工进展, 2023, 42(8): 4283-4295. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |