化工进展 ›› 2022, Vol. 41 ›› Issue (2): 554-568.DOI: 10.16085/j.issn.1000-6613.2021-0706
收稿日期:
2021-04-06
修回日期:
2021-05-10
出版日期:
2022-02-05
发布日期:
2022-02-23
通讯作者:
崔晓钰,谢荣建
作者简介:
万晓琪(1997—),女,硕士研究生,研究方向为平板热管。E-mail:WAN Xiaoqi1(), CUI Xiaoyu1(), XIE Rongjian2()
Received:
2021-04-06
Revised:
2021-05-10
Online:
2022-02-05
Published:
2022-02-23
Contact:
CUI Xiaoyu,XIE Rongjian
摘要:
均温板作为一种新型的两相流散热技术,具有导热性高、均温性好、热流方向可逆等优点,克服了传统热管接触面积小、热阻大、热流密度不均匀等问题,已经成为解决未来电子工业中高热流密度电子器件散热有效途径之一。本文总结了3种吸液芯种类:微槽道型、烧结粉末型、烧结丝网型,阐述每种毛细芯的制备方法,并比较它们的优缺点;简述了当前国内外对均温板传热传质理论的最新研究进展,学者们利用输运模型沸腾理论捕捉气液界面,确定临界热通量,分析工质在均温板内的流动和传热的规律。本文剖析了影响均温板性能的各个因素,包括流体选择、充液率、热源输入功率大小和分布位置、工作角度等。最后从背景环境角度对均温板的应用方向进行了分析和展望。
中图分类号:
万晓琪, 崔晓钰, 谢荣建. 均温板散热技术研究进展[J]. 化工进展, 2022, 41(2): 554-568.
WAN Xiaoqi, CUI Xiaoyu, XIE Rongjian. Research progress of vapor chamber heat dissipation technology[J]. Chemical Industry and Engineering Progress, 2022, 41(2): 554-568.
1 | HAMIDNIA M, LUO Y, LI Z X, et al. Capillary and thermal performance enhancement of rectangular grooved micro heat pipe with micro Pillars[J]. International Journal of Heat and Mass Transfer, 2020, 153: 119581. |
2 | 熊康宁, 吴伟, 汪双凤. 平板形蒸发器环路热管的研究进展[J]. 化工进展, 2021, 40(10): 5388-5402. |
XIONG Kangning, WU Wei, WANG Shuangfeng. Research and development of loop heat pipe with flat evaporator[J]. Chemical Industry and Engineering Progress, 2021, 40(10): 5388-5402. | |
3 | 梁佳男, 赵耀华, 全贞花, 等. 基于微热管阵列锂电池的低温加热性能[J]. 化工进展, 2017, 36(11): 4030-4036. |
LIANG Jianan, ZHAO Yaohua, QUAN Zhenhua, et al. Low-temperature heating performance of lithium-ion battery based on functional heat conducting material[J]. Chemical Industry and Engineering Progress, 2017, 36(11): 4030-4036. | |
4 | SHEPPARD D. Heat pipes and their thermal control in electronic equipment[C]//ANAHEIM. Proceedings of National Electronic Packaging and Production Conference. California, 1969: 11-13. |
5 | YANG H W. Flat plate heat pipe and method for manufacturing the same: US9021698[P]. 2015-05-05. |
6 | 曹杰. 平板热管制造及其传热性能研究[D]. 广州: 广州大学, 2019. |
CAO Jie. Study on fabrication and heat transfer performance of flat heat pipe[D]. Guangzhou: Guangzhou University, 2019. | |
7 | ZHU M H, HUANG J, SONG M J, et al. Thermal performance of a thin flat heat pipe with grooved porous structure[J]. Applied Thermal Engineering, 2020, 173: 115215. |
8 | WANG M Y, CUI W Z, HOU Y P. Thermal spreading resistance of grooved vapor chamber heat spreader[J]. Applied Thermal Engineering, 2019, 153: 361-368. |
9 | 李浩, 刘金伟, 施骏业, 等. 应用于电池热管理的均温板的温度特性研究[J]. 制冷学报, 2020, 41(4): 59-67. |
LI Hao, LIU Jinwei, SHI Junye, et al. Temperature characteristics of vapor chamber applied in battery thermal management[J]. Journal of Refrigeration, 2020, 41(4): 59-67. | |
10 | 何艳丽, 李京龙, 孙福, 等. 扩散焊吸液芯结构对热管传热性能的影响[J]. 化工学报, 2014, 65(4): 1229-1235. |
HE Yanli, LI Jinglong, SUN Fu, et al. Effect of diffusion bonded wick structure on thermal performance of heat pipe[J]. CIESC Journal, 2014, 65(4): 1229-1235. | |
11 | 陈亮, 刘晓东, 刘静, 等. 飞秒激光在石英玻璃表面刻蚀微槽的研究[J]. 光学学报, 2020, 40(23): 145-151. |
CHEN Liang, LIU Xiaodong, LIU Jing, et al. Microgroove etching with femtosecond laser on quartz glass surfaces[J]. Acta Optica Sinica, 2020, 40(23): 145-151. | |
12 | HUNG Y M, SENG Q. Effects of geometric design on thermal performance of star-groove micro-heat pipes[J]. International Journal of Heat and Mass Transfer, 2011, 54(5/6): 1198-1209. |
13 | BAHMANABADI A, FAEGH M, SHAFII M B. Experimental examination of utilizing novel radially grooved surfaces in the evaporator of a thermosyphon heat pipe[J]. Applied Thermal Engineering, 2020, 169: 114975. |
14 | LI B T, YIN X X, TANG W H, et al. Optimization design of grooved evaporator wick structures in vapor chamber heat spreaders[J]. Applied Thermal Engineering, 2020, 166: 114657. |
15 | LIU W Y, PENG Y, LUO T, et al. The performance of the vapor chamber based on the plant leaf[J]. International Journal of Heat and Mass Transfer, 2016, 98: 746-757. |
16 | 董文, 郑家佳. 基于振动床的细长型金属管粉体材料装填中的稳定给料模型[J]. 中国粉体技术, 2016, 22(2): 11-13. |
DONG Wen, ZHENG Jiajia. Stable feeding model for slim metal tube powders filling based on vibration bed[J]. China Powder Science and Technology, 2016, 22(2): 11-13. | |
17 | 章毅. 铜粉烧结式热管自动填粉机设计及性能研究[D]. 广州: 华南理工大学, 2019. |
ZHANG Yi. Design and performance study of copper powder sintered heat-pipe automatic filling machine[D]. Guangzhou: South China University of Technology, 2019. | |
18 | SUN L L, SUN W, SONG K J, et al. Effectiveness of a passive-active vibration isolation system with actuator constraints[J]. Chinese Journal of Mechanical Engineering, 2014, 27(3): 567-574. |
19 | 王小鹰. 环路热管用多孔毛细芯的制备及性能分析[D]. 长沙: 中南大学, 2014. |
WANG Xiaoying. Preparation and properties of porous wick for loop heat pipe[D]. Changsha: Central South University, 2014. | |
20 | 黄豆. 吸液芯毛细性能及均热板传热特性实验研究[D]. 北京: 北京交通大学, 2020. |
HUANG Dou. Experimental investigation on capillary performance of wick and heat transfer characteristics of vapor chamber[D]. Beijing: Beijing Jiaotong University, 2020. | |
21 | 李红传, 纪献兵, 郑晓欢, 等. 锥形毛细芯平板热管传热特性研究[J]. 机械工程学报, 2015, 51(24): 132-138. |
LI Hongchuan, JI Xianbing, ZHENG Xiaohuan, et al. Study on heat transfer properties of flat heat pipe with conical capillary wicks[J]. Journal of Mechanical Engineering, 2015, 51(24): 132-138. | |
22 | LUO Y Q, LIU W Y, GOU J R. Multiscale simulation of a novel leaf-vein-inspired gradient porous wick structure[J]. Journal of Bionic Engineering, 2019, 16(5): 828-841. |
23 | 吴少如. 双层梯度孔吸液芯的制备与流动传热分析[D]. 广州: 华南理工大学, 2017. |
WU Shaoru. Fabrication and analysis of heat transfer and flow characteristic on the Bi-layer composite porous wick[D]. Guangzhou: South China University of Technology, 2017. | |
24 | WANG D D, WANG J X, DING S L, et al. Study on evaporation heat transfer performance of composite porous wicks with spherical-dendritic powders based on orthogonal experiment[J]. International Journal of Heat and Mass Transfer, 2020, 156: 119794. |
25 | 莫冬传, 罗佳利, 汪亚桥, 等. 梯度结构多孔表面强化沸腾及其在相变器件中的应用[J]. 科学通报, 2020, 65(17): 1638-1652. |
MO Dongchuan, LUO Jiali, WANG Yaqiao, et al. Porous surfaces with structural gradient: enhancing boiling heat transfer and its application in phase-change devices[J]. Chinese Science Bulletin, 2020, 65(17): 1638-1652. | |
26 | CHEN G, FAN D Q, ZHANG S W, et al. Wicking capability evaluation of multilayer composite micromesh wicks for ultrathin two-phase heat transfer devices[J]. Renewable Energy, 2021, 163: 921-929. |
27 | NIU J Y, XIE N, GAO X N, et al. Capillary performance analysis of copper powder-fiber composite wick for ultra-thin heat pipe[J]. Heat and Mass Transfer, 2021, 57(6): 949-960. |
28 | WIRIYASART S, NAPHON P. Thermal performance enhancement of vapor chamber by coating mini-channel heat sink with porous sintering media[J]. International Journal of Heat and Mass Transfer, 2018, 126: 116-122. |
29 | 张广孟. 封闭有限空间内沸腾-凝结共存相变换热的研究[D]. 北京: 北京工业大学, 2014. |
ZHANG Guangmeng. A study on boiling and condensation co-existing phase change heat transfer in closed small spaces[D]. Beijing: Beijing University of Technology, 2014. | |
30 | HARIMI B, GHAZANFARI M H, MASIHI M. Analysis of evaporating liquid bridge in horizontal fractures[J]. Journal of Petroleum Science and Engineering, 2021, 202: 108577. |
31 | NGUYEN H N G, ZHAO C F, MILLET O, et al. Effects of surface roughness on liquid bridge capillarity and droplet wetting[J]. Powder Technology, 2021, 378: 487-496. |
32 | CHEN S W, CHIU W J, LIN M S, et al. 1D and Q2D thermal resistance analysis of micro channel structure and flat plate heat pipe[J]. Microelectronics Reliability, 2017, 72: 103-114. |
33 | AVRAMENKO A A, SHEVCHUK I V, HARMAND S, et al. Thermocapillary instability in an evaporating two-dimensional thin layer film[J]. International Journal of Heat and Mass Transfer, 2015, 91: 77-88. |
34 | 李聪. 基于不同热负荷的超薄均热板传热传质特性研究[D]. 广州: 华南理工大学, 2018. |
LI Cong. Analysis on heat and mass transfer characteristic of ultra-thin vapor chamber based on different heat loads[D]. Guangzhou: South China University of Technology, 2018. | |
35 | PATANKAR G, WEIBEL J A, GARIMELLA S V. Patterning the condenser-side wick in ultra-thin vapor chamber heat spreaders to improve skin temperature uniformity of mobile devices[J]. International Journal of Heat and Mass Transfer, 2016,101: 927-936. |
36 | VADAKKAN U, GARIMELLA S V, MURTHY J Y. Transport in flat heat pipes at high heat fluxes from multiple discrete sources[J]. Journal of Heat Transfer, 2004, 126(3): 347-354. |
37 | HUANG C N, KHARANGATE C R. A new mechanistic model for predicting flow boiling critical heat flux based on hydrodynamic instabilities[J]. International Journal of Heat and Mass Transfer, 2019, 138: 1295-1309. |
38 | WANG Q H, ZHAO H, XU Z J, et al. Numerical analysis on the thermal hydraulic performance of a composite porous vapor chamber with uniform radial grooves[J]. International Journal of Heat and Mass Transfer, 2019,142: 118458. |
39 | FANG W Z, TANG Y Q, YANG C, et al. Numerical simulations of the liquid-vapor phase change dynamic processes in a flat micro heat pipe[J]. International Journal of Heat and Mass Transfer, 2020, 147: 119022. |
40 | 丹聃, 郭少龙, 张扬军, 等. 平板热管多孔毛细芯等效导热系数预测[J]. 中国科学: 技术科学, 2021, 51(1): 55-64. |
DAN Dan, GUO Shaolong, ZHANG Yangjun, et al. Prediction of effective thermal conductivity of a porous capillary wick in a vapor chamber[J]. Scientia Sinica (Technologica), 2021, 51(1): 55-64. | |
41 | HU H, WEIBEL J A, GARIMELLA S V. Role of nanoscale roughness in the heat transfer characteristics of thin film evaporation[J]. International Journal of Heat and Mass Transfer, 2020, 150: 119306. |
42 | LURIE S A, RABINSKIY L N, SOLYAEV Y O. Topology optimization of the wick geometry in a flat plate heat pipe[J]. International Journal of Heat and Mass Transfer, 2019, 128: 239-247. |
43 | KIM J S, SHIN D H, YOU S M, et al. Thermal performance of aluminum vapor chamber for EV battery thermal management[J]. Applied Thermal Engineering, 2021, 185: 116337. |
44 | PATANKAR G, WEIBEL J A, GARIMELLA S V. Working-fluid selection for minimized thermal resistance in ultra-thin vapor chambers[J]. International Journal of Heat and Mass Transfer, 2017, 106: 648-654. |
45 | SAVINO R, CECERE A, DI PAOLA R. Surface tension-driven flow in wickless heat pipes with self-rewetting fluids[J]. International Journal of Heat and Fluid Flow, 2009, 30(2): 380-388. |
46 | KIM S B, PARK M S, JANG S P. Radius effect on the thermal resistance of disk-shaped thin vapor chambers (TVCs) using Al2O3 nanofluids[J]. International Journal of Heat and Mass Transfer, 2020, 154: 119769. |
47 | PANDIYARAJ P, GNANAVELBABU A, SARAVANAN P. Experimental analysis on thermal performance of fabricated flat plate heat pipe using titanium dioxide nanofluid[J]. Materials Today: Proceedings, 2018, 5(2): 8414-8423. |
48 | 马旭, 宋印东, 徐静雅, 等. 石墨烯纳米流体沸腾传热研究进展[J]. 热能动力工程, 2020, 35(10): 1-9. |
MA Xu, SONG Yindong, XU Jingya, et al. Research progress of boiling heat transfer of graphene nanofluids[J]. Journal of Engineering for Thermal Energy and Power, 2020, 35(10): 1-9. | |
49 | LI Y, ZHOU W J, LI Z X, et al. Experimental analysis of thin vapor chamber with composite wick structure under different cooling conditions[J]. Applied Thermal Engineering, 2019, 156: 471-484. |
50 | WANG H W, BAI P F, ZHOU H L, et al. An integrated heat pipe coupling the vapor chamber and two cylindrical heat pipes with high anti-gravity thermal performance[J]. Applied Thermal Engineering, 2019, 159: 113816. |
51 | WIRIYASART S, NAPHON P. Fill ratio effects on vapor chamber thermal resistance with different configuration structures[J]. International Journal of Heat and Mass Transfer, 2018, 127: 164-171. |
52 | 张孟臣. 蒸汽腔平板热管内气液相变传热特性的实验研究[D]. 南京: 东南大学, 2016. |
ZHANG Mengchen. Experimental investigation on vapor-liquid phase change heat transfer in vapor Chambers[D]. Nanjing: Southeast University, 2016. | |
53 | 简弃非, 祖帅飞, 廖小南. 超薄平板热管的热阻与沸腾气泡可视化实验研究[J]. 江西师范大学学报(自然科学版), 2019, 43(6): 551-558. |
JIAN Qifei, ZU Shuaifei, LIAO Xiaonan. The experimental study on thermal resistance and boiling bubble visualization of ultra-thin flat heat pipe[J]. Journal of Jiangxi Normal University (Natural Science Edition), 2019, 43(6): 551-558. | |
54 | VELARDO J, DATE A, SINGH R, et al. On the effective thermal conductivity of the vapour region in vapour chamber heat spreaders[J]. International Journal of Heat and Mass Transfer, 2019, 145: 118797. |
55 | WONG S C, HSIEH K C, WU J D, et al. A novel vapor chamber and its performance[J]. International Journal of Heat and Mass Transfer, 2010, 53(11/12): 2377-2384. |
56 | RANJAN R. Two-phase heat and mass transfer in capillary porous media[EB/OL]. Purdue University. |
57 | 王梦妍. 多热源蒸汽腔组件的传热性能研究[D]. 重庆: 重庆大学, 2019. |
WANG Mengyan. Study on heat transfer performance of vapor chamber module with multiple chips[D]. Chongqing: Chongqing University, 2019. | |
58 | HUANG G W, LIU W Y, LUO Y Q, et al. A novel ultra-thin vapor chamber for heat dissipation in ultra-thin portable electronic devices[J]. Applied Thermal Engineering, 2020, 167: 114726. |
59 | ZENG J, ZHANG S W, CHEN G, et al. Experimental investigation on thermal performance of aluminum vapor chamber using micro-grooved wick with reentrant cavity array[J]. Applied Thermal Engineering, 2018, 130: 185-194. |
60 | LIU T Y, DUNHAM M T, JUNG K W, et al. Characterization and thermal modeling of a miniature silicon vapor chamber for die-level heat redistribution[J]. International Journal of Heat and Mass Transfer, 2020, 152: 119569. |
61 | 陈文军. 基于预成型的超薄铝平板热管多齿犁削机理及性能分析[D]. 广州: 华南理工大学, 2018. |
CHEN Wenjun. Multi-tooth ploughing mechanism and performance analysis of ultra-thin aluminum flat heat pipe based on preformed process[D]. Guangzhou: South China University of Technology, 2018. | |
62 | LUO L Z, HUANG B, BAI X Y, et al. Temperature uniformity improvement of a proton exchange membrane fuel cell stack with ultra-thin vapor Chambers[J]. Applied Energy, 2020, 270: 115192. |
63 | WEN R F, XU S S, LEE Y C, et al. Capillary-driven liquid film boiling heat transfer on hybrid mesh wicking structures[J]. Nano Energy, 2018, 51: 373-382. |
64 | ZHOU W J, XIE P D, LI Y, et al. Thermal performance of ultra-thin flattened heat pipes[J]. Applied Thermal Engineering, 2017, 117: 773-781. |
65 | 何嘉斌. 复合吸液芯超薄微热管制造工艺及传热性能分析[D]. 广州: 华南理工大学, 2015. |
HE Jiabin. Fabrication process and thermal performance analysis of ultra-thin flattened micro heat pipe sintered with composited wick structure[D]. Guangzhou: South China University of Technology, 2015. | |
66 | TANG H, TANG Y, LI J, et al. Experimental investigation of the thermal performance of heat pipe with multi-heat source and double-end cooling[J]. Applied Thermal Engineering, 2018, 131: 159-166. |
67 | TANG H, TANG Y, WAN Z P, et al. Review of applications and developments of ultra-thin micro heat pipes for electronic cooling[J]. Applied Energy, 2018, 223: 383-400. |
68 | 唐恒. 丝网吸液芯超薄热管制造及其传热性能研究[D]. 广州: 华南理工大学, 2018. |
TANG Heng. Study on fabrication and heat transfer performance of ultra-thin heat pipe with copper mesh wick[D]. Guangzhou: South China University of Technology, 2018. | |
69 | HUANG G W, LIU W Y, LUO Y Q, et al. Fabrication and thermal performance of mesh-type ultra-thin vapor Chambers[J]. Applied Thermal Engineering, 2019, 162: 114263. |
70 | YAO F, MIAO S S, ZHANG M C, et al. An experimental study of an anti-gravity vapor chamber with a tree-shaped evaporator[J]. Applied Thermal Engineering, 2018, 141: 1000-1008. |
71 | 刘昌泉, 尚炜, 赵举贵, 等. 纳米修饰吸液芯超薄平板热管的传热特性[J]. 化工学报, 2017, 68(12): 4508-4516. |
LIU Changquan, SHANG Wei, ZHAO Jugui, et al. Heat transfer characteristics of ultra-thin flat heat pipe with nano-modified porous wick[J]. CIESC Journal, 2017, 68(12): 4508-4516. | |
72 | LYU L, LI J. Managing high heat flux up to 500 W/cm2 through an ultra-thin flat heat pipe with superhydrophilic wick[J]. Applied Thermal Engineering, 2017, 122: 593-600. |
73 | HUANG G W, LIU W Y, LUO Y Q, et al. Research and optimization design of limited internal cavity of ultra-thin vapor chamber[J]. International Journal of Heat and Mass Transfer, 2020, 148: 119101. |
74 | ZHOU W J, LI Y, CHEN Z S, et al. Effect of the passage area ratio of liquid to vapor on an ultra-thin flattened heat pipe[J]. Applied Thermal Engineering, 2019, 162: 114215. |
75 | 吴国强, 苟湘. 异型平板热管传热性能的实验研究[J]. 电源技术, 2020, 44(9): 1305-1308, 1337. |
WU Guoqiang, GOU Xiang. Effects of bending angle of shaped flat heat pipe on heat transfer performance[J]. Chinese Journal of Power Sources, 2020, 44(9): 1305-1308, 1337. | |
76 | 汤勇, 唐恒, 万珍平, 等. 超薄微热管的研究现状及发展趋势[J]. 机械工程学报, 2017, 53(20): 131-144. |
TANG Yong, TANG Heng, WAN Zhenping, et al. Development status and perspective trend of ultra-thin micro heat pipe[J]. Journal of Mechanical Engineering, 2017, 53(20): 131-144. | |
77 | RYOSON H, YAJIMA T, GOTO K, et al. Thermal performance of novel thin heat pipe[C]//2010 12th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems. June 2-5, 2010, Las Vegas, NV, USA. IEEE, 2010: 1-7. |
78 | 陈杰凌. 基于多孔吸液芯的超薄铝平板热管的制造及其传热性能研究[D]. 广州: 华南理工大学, 2018. |
CHEN Jieling. Fabrication and heat transfer performance of ultra-thin aluminum flat heat pipes based on porous wick[D]. Guangzhou: South China University of Technology, 2018. | |
79 | 张寒. 超薄平板热管的制备及其传热性能研究[D]. 南京: 南京航空航天大学, 2019. |
ZHANG Han. Preparation and thermal performance study of ultra-thin flat heat pipe[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019. | |
80 | LI Y, CHEN S L, HE B L, et al. Effects of vacuuming process parameters on the thermal performance of composite heat pipes[J]. Applied Thermal Engineering, 2016, 99: 32-41. |
81 | LI Y, HE J B, HE H F, et al. Investigation of ultra-thin flattened heat pipes with sintered wick structure[J]. Applied Thermal Engineering, 2015, 86: 106-118. |
82 | ZHONG G S, TANG Y, DING X R, et al. Experimental study of a large-area ultra-thin flat heat pipe for solar collectors under different cooling conditions[J]. Renewable Energy, 2020, 149: 1032-1039. |
83 | LI Y, HE T, ZENG Z X. Analysis of collapse in flattening a micro-grooved heat pipe by lateral compression[J]. Chinese Journal of Mechanical Engineering, 2012, 25(6): 1210-1217. |
84 | 王评. 现代焊接技术的发展现状及前景[J]. 内燃机与配件, 2020(18): 183-184. |
WANG Ping. The development status and prospect of modern welding technology[J]. Internal Combustion Engine & Parts, 2020(18): 183-184. | |
85 | MOON S H, PARK Y W, YANG H M. A single unit cooling fins aluminum flat heat pipe for 100W socket type COB LED lamp[J]. Applied Thermal Engineering, 2017, 126: 1164-1169. |
86 | DIAO Y H, LIANG L, KANG Y M, et al. Experimental study on the heat recovery characteristic of a heat exchanger based on a flat micro-heat pipe array for the ventilation of residential buildings[J]. Energy and Buildings, 2017, 152: 448-457. |
87 | CHEN G, TANG Y, DUAN L H, et al. Thermal performance enhancement of micro-grooved aluminum flat plate heat pipes applied in solar collectors[J]. Renewable Energy, 2020, 146: 2234-2242. |
88 | ZHAO J, JIAN Q F, HUANG Z P. Experimental study on heat transfer performance of vapor Chambers with potential applications in thermal management of proton exchange membrane fuel cells[J]. Applied Thermal Engineering, 2020, 180: 115847. |
89 | ISAACS S A, ARIAS D A, HENGEVELD D, et al. Experimental development and computational optimization of flat heat pipes for CubeSat applications[J]. Journal of Electronic Packaging, 2017, 139(2): 020910. |
90 | LEE D, BYON C. Fabrication and characterization of pure-metal-based submillimeter-thick flexible flat heat pipe with innovative wick structures[J]. International Journal of Heat and Mass Transfer, 2018, 122: 306-314. |
[1] | 肖辉, 张显均, 兰治科, 王苏豪, 王盛. 液态金属绕流管束流动传热进展[J]. 化工进展, 2023, 42(S1): 10-20. |
[2] | 盛维武, 程永攀, 陈强, 李小婷, 魏嘉, 李琳鸽, 陈险峰. 微气泡和微液滴双强化脱硫反应器操作分析[J]. 化工进展, 2023, 42(S1): 142-147. |
[3] | 赵晨, 苗天泽, 张朝阳, 洪芳军, 汪大海. 负压状态窄缝通道乙二醇水溶液传热特性[J]. 化工进展, 2023, 42(S1): 148-157. |
[4] | 黄益平, 李婷, 郑龙云, 戚傲, 陈政霖, 史天昊, 张新宇, 郭凯, 胡猛, 倪泽雨, 刘辉, 夏苗, 主凯, 刘春江. 三级环流反应器中气液流动与传质规律[J]. 化工进展, 2023, 42(S1): 175-188. |
[5] | 杨寒月, 孔令真, 陈家庆, 孙欢, 宋家恺, 王思诚, 孔标. 微气泡型下向流管式气液接触器脱碳性能[J]. 化工进展, 2023, 42(S1): 197-204. |
[6] | 陈匡胤, 李蕊兰, 童杨, 沈建华. 质子交换膜燃料电池气体扩散层结构与设计研究进展[J]. 化工进展, 2023, 42(S1): 246-259. |
[7] | 徐若思, 谭蔚. C形管池沸腾两相流流场模拟与流固耦合分析[J]. 化工进展, 2023, 42(S1): 47-55. |
[8] | 邵博识, 谭宏博. 锯齿波纹板对挥发性有机物低温脱除过程强化模拟分析[J]. 化工进展, 2023, 42(S1): 84-93. |
[9] | 陈林, 徐培渊, 张晓慧, 陈杰, 徐振军, 陈嘉祥, 密晓光, 冯永昌, 梅德清. 液化天然气绕管式换热器壳侧混合工质流动及传热特性[J]. 化工进展, 2023, 42(9): 4496-4503. |
[10] | 罗成, 范晓勇, 朱永红, 田丰, 崔楼伟, 杜崇鹏, 王飞利, 李冬, 郑化安. 中低温煤焦油加氢反应器不同分配器中液体分布的CFD模拟[J]. 化工进展, 2023, 42(9): 4538-4549. |
[11] | 卜治丞, 焦波, 林海花, 孙洪源. 脉动热管计算流体力学模型与研究进展[J]. 化工进展, 2023, 42(8): 4167-4181. |
[12] | 汪健生, 张辉鹏, 刘雪玲, 傅煜郭, 朱剑啸. 多孔介质结构对储层内流动和换热特性的影响[J]. 化工进展, 2023, 42(8): 4212-4220. |
[13] | 王云刚, 焦健, 邓世丰, 赵钦新, 邵怀爽. 冷凝换热与协同脱硫性能实验分析[J]. 化工进展, 2023, 42(8): 4230-4237. |
[14] | 李洞, 王倩倩, 张亮, 李俊, 付乾, 朱恂, 廖强. 非水系纳米流体热再生液流电池串联堆性能特性[J]. 化工进展, 2023, 42(8): 4238-4246. |
[15] | 王硕, 张亚新, 朱博韬. 基于灰色预测模型的水煤浆输送管道冲蚀磨损寿命预测[J]. 化工进展, 2023, 42(7): 3431-3442. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |