化工进展 ›› 2022, Vol. 41 ›› Issue (10): 5145-5154.DOI: 10.16085/j.issn.1000-6613.2021-2657
朱长辉1(), 朱文超1, 罗嘉2, 田保河1, 孙佳琳1, 邹志云1()
收稿日期:
2021-12-30
修回日期:
2022-04-23
出版日期:
2022-10-20
发布日期:
2022-10-21
通讯作者:
邹志云
作者简介:
朱长辉(1989—),男,博士后,研究方向为工业催化。E-mail:zhuchanghui567@163.com。
基金资助:
ZHU Changhui1(), ZHU Wenchao1, LUO Jia2, TIAN Baohe1, SUN Jialin1, ZOU Zhiyun1()
Received:
2021-12-30
Revised:
2022-04-23
Online:
2022-10-20
Published:
2022-10-21
Contact:
ZOU Zhiyun
摘要:
在碳达峰、碳中和的目标背景下,生物柴油被认为是替代化石燃料最有前途的新型能源之一。作为新型的加热方式,微波强化技术克服了传统加热方式下受热不均等缺点,在与不同催化体系偶联的过程中显著促进了酯交换反应的效率,较大幅度地提高了生物柴油的产率。本文归纳了微波技术强化酯交换反应制备生物柴油的优势,介绍了微波强化技术偶联均相催化、非均相催化、离子液体催化以及酶催化技术在生物柴油制备领域的研究进展,阐述了微波强化技术偶联各催化体系的利弊。从催化效率和环保等方面考虑,微波强化偶联非均相催化和酶催化具有更优的研究前景。最后,就该领域的研究方向提出几点展望与建议。
中图分类号:
朱长辉, 朱文超, 罗嘉, 田保河, 孙佳琳, 邹志云. 微波强化酯交换反应制备生物柴油研究进展[J]. 化工进展, 2022, 41(10): 5145-5154.
ZHU Changhui, ZHU Wenchao, LUO Jia, TIAN Baohe, SUN Jialin, ZOU Zhiyun. Recent advances in microwave-intensified transesterification for biodiesel preparation[J]. Chemical Industry and Engineering Progress, 2022, 41(10): 5145-5154.
序号 | 催化剂 | 底物 | 微波功率/W | 温度/℃ | 时间/min | 醇/底物剂量比 | 生物柴油产率/% | 参考文献 |
---|---|---|---|---|---|---|---|---|
1 | H2SO4 | 小球藻油脂 | 450 | — | 70 | — | 31.6 | [ |
2 | Cs2.5H0.5PW12 | 文冠果油 | — | 60 | 10 | 12∶1 | 96.2 | [ |
3 | Cs2.5H0.5PW12 | 蓖麻油 | 300 | 70 | 240 | 30∶1 | 90 | [ |
表1 微波强化均相酸催化制备生物柴油
序号 | 催化剂 | 底物 | 微波功率/W | 温度/℃ | 时间/min | 醇/底物剂量比 | 生物柴油产率/% | 参考文献 |
---|---|---|---|---|---|---|---|---|
1 | H2SO4 | 小球藻油脂 | 450 | — | 70 | — | 31.6 | [ |
2 | Cs2.5H0.5PW12 | 文冠果油 | — | 60 | 10 | 12∶1 | 96.2 | [ |
3 | Cs2.5H0.5PW12 | 蓖麻油 | 300 | 70 | 240 | 30∶1 | 90 | [ |
序号 | 催化剂 | 底物 | 微波功率/W | 温度/℃ | 时间/min | 醇/底物剂量比 | 生物柴油产率/% | 参考文献 |
---|---|---|---|---|---|---|---|---|
1 | NaOH | 木瓜籽油 | 700 | 62.2 | 3.3 | 9.5∶1 | 99 | [ |
2 | NaOH | WCO | 1100 | — | 0.17 | 9∶1 | 100 | [ |
3 | NaOH | 菜籽油 | 300 | 60 | 1 | — | 97 | [ |
4 | NaOH | WCO | 750 | 60 | 10 | 6∶1 | — | [ |
5 | KOH | 粗木棉油 | 850 | — | 6.47 | 3∶5 | 95.4 | [ |
6 | KOH | 大豆油 | 70 | 65 | 15 | 12∶1 | 95.4 | [ |
7 | NaOH、KOH | 水黄皮籽油 | 1200 | 60 | 5 | 6∶1 | 96 | [ |
8 | CH3ONa | 棕榈油 | 750 | 60~65 | 3 | 6∶1 | 99.5 | [ |
9 | CH3ONa、NaOH | WCO | 750 | — | 3 | 6∶1 | 97.9 | [ |
表2 微波强化均相碱催化制备生物柴油
序号 | 催化剂 | 底物 | 微波功率/W | 温度/℃ | 时间/min | 醇/底物剂量比 | 生物柴油产率/% | 参考文献 |
---|---|---|---|---|---|---|---|---|
1 | NaOH | 木瓜籽油 | 700 | 62.2 | 3.3 | 9.5∶1 | 99 | [ |
2 | NaOH | WCO | 1100 | — | 0.17 | 9∶1 | 100 | [ |
3 | NaOH | 菜籽油 | 300 | 60 | 1 | — | 97 | [ |
4 | NaOH | WCO | 750 | 60 | 10 | 6∶1 | — | [ |
5 | KOH | 粗木棉油 | 850 | — | 6.47 | 3∶5 | 95.4 | [ |
6 | KOH | 大豆油 | 70 | 65 | 15 | 12∶1 | 95.4 | [ |
7 | NaOH、KOH | 水黄皮籽油 | 1200 | 60 | 5 | 6∶1 | 96 | [ |
8 | CH3ONa | 棕榈油 | 750 | 60~65 | 3 | 6∶1 | 99.5 | [ |
9 | CH3ONa、NaOH | WCO | 750 | — | 3 | 6∶1 | 97.9 | [ |
序号 | 催化剂 | 底物 | 微波功率/W | 温度/℃ | 时间/min | 醇/底物比 | 生物柴油产率/% | 参考文献 |
---|---|---|---|---|---|---|---|---|
1 | nM-CP-SO3H | 鸡血藤油 | — | 65 | 45 | 11∶1 | 98.7 | [ |
2 | WO3/ZrO2 | 栅藻 | 651 | 120 | 20 | 45∶1 | 51.9 | [ |
3 | ZrO2/BLA | 大豆油 | — | — | 30 | 15∶1 | 92.8 | [ |
4 | SO42-/Fe2O3 | 蓖麻油 | 300 | 65 | 180 | 30∶1 | 65.3 | [ |
5 | 蒙脱石KSF | 菜籽油 | 1000 | 170 | 60 | 9∶1 | 51 | [ |
表3 微波强化非均相酸催化制备生物柴油
序号 | 催化剂 | 底物 | 微波功率/W | 温度/℃ | 时间/min | 醇/底物比 | 生物柴油产率/% | 参考文献 |
---|---|---|---|---|---|---|---|---|
1 | nM-CP-SO3H | 鸡血藤油 | — | 65 | 45 | 11∶1 | 98.7 | [ |
2 | WO3/ZrO2 | 栅藻 | 651 | 120 | 20 | 45∶1 | 51.9 | [ |
3 | ZrO2/BLA | 大豆油 | — | — | 30 | 15∶1 | 92.8 | [ |
4 | SO42-/Fe2O3 | 蓖麻油 | 300 | 65 | 180 | 30∶1 | 65.3 | [ |
5 | 蒙脱石KSF | 菜籽油 | 1000 | 170 | 60 | 9∶1 | 51 | [ |
序号 | 催化剂 | 底物 | 微波功率/W | 温度/℃ | 时间/min | 醇/底物剂量比 | 产率/% | 参考文献 |
---|---|---|---|---|---|---|---|---|
1 | CaO | 大豆油 | 300 | 65 | 60 | 7∶1 | 96.6 | [ |
2 | CaO/ZSM-5 | 废猪油 | 640 | 65 | 60 | 30∶1 | 90.9 | [ |
3 | MgO/ZSM-5 | 螺旋藻酯 | 150 | 70 | 40 | 8∶1 | 95.8 | [ |
4 | SrO@SiO2 | WCO | 770 | 60 | 0.17 | — | 99.4 | [ |
5 | SrO@SiO2 | 微拟球藻酯 | 900 | 60 | 2 | — | 99.9 | [ |
6 | KOH/Ca12Al14O33 | 菜籽油 | 450 | 260 | 60 | 12∶1 | 76.9 | [ |
7 | 低铝β分子筛 | 甘油三酯 | 800 | 100 | 480 | 15∶1 | 80 | [ |
表4 微波强化非均相碱催化制备生物柴油
序号 | 催化剂 | 底物 | 微波功率/W | 温度/℃ | 时间/min | 醇/底物剂量比 | 产率/% | 参考文献 |
---|---|---|---|---|---|---|---|---|
1 | CaO | 大豆油 | 300 | 65 | 60 | 7∶1 | 96.6 | [ |
2 | CaO/ZSM-5 | 废猪油 | 640 | 65 | 60 | 30∶1 | 90.9 | [ |
3 | MgO/ZSM-5 | 螺旋藻酯 | 150 | 70 | 40 | 8∶1 | 95.8 | [ |
4 | SrO@SiO2 | WCO | 770 | 60 | 0.17 | — | 99.4 | [ |
5 | SrO@SiO2 | 微拟球藻酯 | 900 | 60 | 2 | — | 99.9 | [ |
6 | KOH/Ca12Al14O33 | 菜籽油 | 450 | 260 | 60 | 12∶1 | 76.9 | [ |
7 | 低铝β分子筛 | 甘油三酯 | 800 | 100 | 480 | 15∶1 | 80 | [ |
序号 | 离子液体 | 底物 | 微波功率/W | 温度/℃ | 时间/min | 醇/底物剂量比 | 产率/% | 参考文献 |
---|---|---|---|---|---|---|---|---|
1 | [BMim]HSO4 | 毛竹油 | — | 60 | 6 | 9∶1 | 92.8 | [ |
2 | [HSO3-pPy]HSO4 | 大豆油 | 400 | 75 | 45 | 12∶1 | 95.1 | [ |
3 | [SO3H-BMim]HSO4 | 棕榈油 | 168 | 80 | 385.8 | 11∶1 | 98.9 | [ |
4 | [SO3H-BMim]HSO4 | 小球藻油脂 | 400 | 60 | 40 | 6∶1 | 93.3 | [ |
5 | [MorMeA]Br | WCO | — | 70 | 6 | 9∶1 | 89.1 | [ |
6 | DPATs | 玉米油 | — | 150 | 20 | 5∶2 | 100 | [ |
表5 微波强化离子液体催化制备生物柴油
序号 | 离子液体 | 底物 | 微波功率/W | 温度/℃ | 时间/min | 醇/底物剂量比 | 产率/% | 参考文献 |
---|---|---|---|---|---|---|---|---|
1 | [BMim]HSO4 | 毛竹油 | — | 60 | 6 | 9∶1 | 92.8 | [ |
2 | [HSO3-pPy]HSO4 | 大豆油 | 400 | 75 | 45 | 12∶1 | 95.1 | [ |
3 | [SO3H-BMim]HSO4 | 棕榈油 | 168 | 80 | 385.8 | 11∶1 | 98.9 | [ |
4 | [SO3H-BMim]HSO4 | 小球藻油脂 | 400 | 60 | 40 | 6∶1 | 93.3 | [ |
5 | [MorMeA]Br | WCO | — | 70 | 6 | 9∶1 | 89.1 | [ |
6 | DPATs | 玉米油 | — | 150 | 20 | 5∶2 | 100 | [ |
序号 | 酶 | 底物 | 微波功率/W | 温度/℃ | 时间/min | 醇/底物剂量比 | 产率/% | 参考文献 |
---|---|---|---|---|---|---|---|---|
1 | Novozym 435和脂肪酶Mucormiehei | Macauba油 | — | 30~40 | — | 9∶1 | — | [ |
2 | Novozym 435 | Mucorcircinelloides URM4182油脂 | 200 | 60 | 600 | 12∶1 | 98.5 | [ |
3 | Burkholderiacepacia脂肪酶 | 牛油 | 8~15 | 50 | 480 | 6∶1 | 75 | [ |
4 | Pseudomonasfluorescens脂肪酶 | 棕榈油 | 8~15 | 43 | 480 | 8∶1 | 97.6 | [ |
5 | Novozym 435 | 文冠果籽油 | 400 | 50 | 120 | 6∶1 | 90.3 | [ |
6① | Novozym 435 | WCO | 10~55 | 40 | 240 | 4.5∶1 | 94 | [ |
7② | Novozym 435 | 大豆油 | 480 | 60 | 360 | 6∶1 | 92 | [ |
表6 微波强化酶催化制备生物柴油
序号 | 酶 | 底物 | 微波功率/W | 温度/℃ | 时间/min | 醇/底物剂量比 | 产率/% | 参考文献 |
---|---|---|---|---|---|---|---|---|
1 | Novozym 435和脂肪酶Mucormiehei | Macauba油 | — | 30~40 | — | 9∶1 | — | [ |
2 | Novozym 435 | Mucorcircinelloides URM4182油脂 | 200 | 60 | 600 | 12∶1 | 98.5 | [ |
3 | Burkholderiacepacia脂肪酶 | 牛油 | 8~15 | 50 | 480 | 6∶1 | 75 | [ |
4 | Pseudomonasfluorescens脂肪酶 | 棕榈油 | 8~15 | 43 | 480 | 8∶1 | 97.6 | [ |
5 | Novozym 435 | 文冠果籽油 | 400 | 50 | 120 | 6∶1 | 90.3 | [ |
6① | Novozym 435 | WCO | 10~55 | 40 | 240 | 4.5∶1 | 94 | [ |
7② | Novozym 435 | 大豆油 | 480 | 60 | 360 | 6∶1 | 92 | [ |
1 | 王笃政, 孙永杰, 孙彬峰, 等. 微波强化化工过程技术进展[J]. 精细与专用化学品, 2012, 20(12): 38-41. |
WANG D Z, SUN Y J, SUN B F, et al. Review on the intensification of chemical engineering processes by microwave[J]. Fine and Specialty Chemicals, 2012, 20(12): 38-41. | |
2 | 张伟, 韩立峰. 国内外生物柴油研究现状及发展趋势[J]. 化工管理, 2021(12): 72-73. |
ZHANG W, HAN L F. Research status and development trend of biodiesel at home and abroad[J]. Chemical Enterprise Management, 2021(12): 72-73. | |
3 | 张梦妮, 程敢, 李玉龙. 生物柴油的制备及其在浮选中的应用进展[J]. 洁净煤技术, 2021, 27(1): 34-40. |
ZHANG M N, CHENG G, LI Y L. Research progress on the preparation of biodiesel and its application in flotation[J]. Clean Coal Technology, 2021, 27(1): 34-40. | |
4 | 李顶杰, 吕勃. 推动废弃油脂制生物燃料产业发展[N]. 中国石油报, 2021-09-28(6). |
5 | APPLETON T J, COLDER R I, KINGMAN S W, et al. Microwave technology for energy-efficient processing of waste[J]. Applied Energy, 2005, 81(1): 85-113. |
6 | ZHANG F H, ZHOU T Y, LIU Y J, et al. Microwave synthesis and actuation of shape memory polycaprolactone foams with high speed[J]. Scientific Reports, 2015, 5: 11152. |
7 | 潘凯, 吴炼, 钟浪声, 等. 酯交换制备生物柴油过程强化技术研究进展[J]. 大众科技, 2017, 19(5): 39-43. |
PAN K, WU L, ZHONG L S, et al. Progress in biodiesel production via process intensification[J]. Popular Science & Technology, 2017, 19(5): 39-43. | |
8 | MOTASEMI F, ANI F N. A review on microwave-assisted production of biodiesel[J]. Renewable and Sustainable Energy Reviews, 2012, 16(7): 4719-4733. |
9 | 蒋波, 张晓东, 孙立, 等. 微波促进生物柴油制备的研究进展[J]. 化工进展, 2010, 29(11): 2057-2065. |
JIANG B, ZHANG X D, SUN L, et al. Advances in microwave promoted biodiesel synthesis[J]. Chemical Industry and Engineering Progress, 2010, 29(11): 2057-2065. | |
10 | KALSUM U, MAHMUDDIN, MAHFUD M, et al. Biodiesel production from Chlorella vulgaris via homogenous acid catalyzed in situ transesterification with microwave irradiation[J]. IOP Conference Series: Earth and Environmental Science, 2018, 175: 012018. |
11 | ZHANG S, ZU Y G, FU Y J, et al. Rapid microwave-assisted transesterification of yellow horn oil to biodiesel using a heteropolyacid solid catalyst[J]. Bioresource Technology, 2010, 101(3): 931-936. |
12 | YUAN H, SHU Q. Synthesis of biodiesel from castor oil catalyzed by cesium phosphotungstate with the assistance of microwave[J]. Applied Mechanics and Materials, 2013, 291/292/293/294: 300-306. |
13 | NAYAK M G, VYAS A P. Optimization of microwave-assisted biodiesel production from Papaya oil using response surface methodology[J]. Renewable Energy, 2019, 138: 18-28. |
14 | LERTSATHAPORNSUK V, PAIRINTRA R, KRISNANGKURA K. Direct conversion of used vegetable oil to biodiesel and its use as an alternative fuel for compression ignition engine[C]// Proc First Int Conf Sustainable Energy and Green Architecture. 2003: SE091-SE096. |
15 | HERNANDO J, LETON P, MATIA M P, et al. Biodiesel and FAME synthesis assisted by microwaves: homogeneous batch and flow processes[J]. Fuel, 2007, 86(10/11): 1641-1644. |
16 | SAIFUDDIN N M, CHUA K H. Production of ethyl ester (biodiesel) from used frying oil: optimization of transesterification process using microwave irradiation[J]. Malaysian Journal of Chemistry, 2004, 6(1): 77-82. |
17 | SILITONGA A S, SHAMSUDDIN A H, MAHLIA T M I, et al. Biodiesel synthesis from Ceiba pentandra oil by microwave irradiation-assisted transesterification: ELM modeling and optimization[J]. Renewable Energy, 2020, 146: 1278-1291. |
18 | ENCINAR J M, GONZÁLEZ J F, MARTÍNEZ G, et al. Soybean oil transesterification by the use of a microwave flow system[J]. Fuel, 2012, 95: 386-393. |
19 | KUMAR R, KUMAR G R, CHANDRASHEKAR N. Microwave assisted alkali-catalyzed transesterification of Pongamia pinnata seed oil for biodiesel production[J]. Bioresource Technology, 2011, 102(11): 6617-6620. |
20 | LIN Y C, HSU K H, LIN J F. Rapid palm-biodiesel production assisted by a microwave system and sodium methoxide catalyst[J]. Fuel, 2014, 115: 306-311. |
21 | CHEN K S, LIN Y C, HSU K H, et al. Improving biodiesel yields from waste cooking oil by using sodium methoxide and a microwave heating system[J]. Energy, 2012, 38(1): 151-156. |
22 | CHELLAPPAN S, APARNA K, CHINGAKHAM C, et al. Microwave assisted biodiesel production using a novel Brønsted acid catalyst based on nanomagnetic biocomposite[J]. Fuel, 2019, 246: 268-276. |
23 | GULDHE A, SINGH B, RAWAT I, et al. Synthesis of biodiesel from Scenedesmus sp. by microwave and ultrasound assisted in situ transesterification using tungstated zirconia as a solid acid catalyst[J]. Chemical Engineering Research and Design, 2014, 92(8): 1503-1511. |
24 | FATIMAH I, RUBIYANTO D, TAUSHIYAH A, et al. Use of ZrO2 supported on bamboo leaf ash as a heterogeneous catalyst in microwave-assisted biodiesel conversion[J]. Sustainable Chemistry and Pharmacy, 2019, 12: 100129. |
25 | YUAN H, MA X Q, HE J, et al. Surface characterization of sulfated iron oxide and its synthesis of biodiesel under microwave radiation[J]. International Journal of Chemical Reactor Engineering, 2018, 16(2): 20160161. |
26 | MAZZOCCHIA C, MODICA G, KADDOURI A, et al. Fatty acid methyl esters synthesis from triglycerides over heterogeneous catalysts in the presence of microwaves[J]. Comptes Rendus Chimie, 2004, 7(6/7): 601-605. |
27 | HSIAO M C, LIN C C, CHANG Y H. Microwave irradiation-assisted transesterification of soybean oil to biodiesel catalyzed by nanopowder calcium oxide[J]. Fuel, 2011, 90(5): 1963-1967. |
28 | LAWAN I, GARBA Z N, ZHOU W M, et al. Synergies between the microwave reactor and CaO/zeolite catalyst in waste lard biodiesel production[J]. Renewable Energy, 2020, 145: 2550-2560. |
29 | QU S K, CHEN C, GUO M L, et al. Microwave-assisted in situ transesterification of Spirulina platensis to biodiesel using PEG/MgO/ZSM-5 magnetic catalyst[J]. Journal of Cleaner Production, 2021, 311: 127490. |
30 | TANGY A, PULIDINDI I N, GEDANKEN A. SiO2 beads decorated with SrO nanoparticles for biodiesel production from waste cooking oil using microwave irradiation[J]. Energy & Fuels, 2016, 30(4): 3151-3160. |
31 | NAOR E O, KOBERG M, GEDANKEN A. Nonaqueous synthesis of SrO nanopowder and SrO/SiO2 composite and their application for biodiesel production via microwave irradiation[J]. Renewable Energy, 2017, 101: 493-499. |
32 | YE B, QIU F X, SUN C J, et al. Transesterification of soybean oil to biodiesel in a microwave-assisted heterogeneous catalytic system[J]. Chemical Engineering & Technology, 2014, 37(2): 283-292. |
33 | WANG Y Y, LEE D J, CHEN B H. Low-Al zeolite beta as a heterogeneous catalyst in biodiesel production from microwave-assisted transesterification of triglycerides[J]. Energy Procedia, 2014, 61: 918-921. |
34 | NAYEBZADEH H, SAGHATOLESLAMI N, HAGHIGHI M, et al. Influence of fuel type on microwave-enhanced fabrication of KOH/Ca12Al14O33 nanocatalyst for biodiesel production via microwave heating[J]. Journal of the Taiwan Institute of Chemical Engineers, 2017, 75: 148-155. |
35 | IKENAGA K, HAMADA A, INOUE T, et al. Biodiesel production using metal oxide catalysts under microwave heating[J]. International Journal of Biomass and Renewables, 2017, 6(2): 23-26. |
36 | HANDAYANI P A, ABDULLAH A, HADIYANTO H. Biodiesel production from Nyamplung (Calophyllum inophyllum) oil using ionic liquid as a catalyst and microwave heating system[J]. Bulletin of Chemical Reaction Engineering & Catalysis, 2017, 12(2): 293. |
37 | 敖红伟, 王淑波. 微波协同功能化酸性离子液体催化制备生物柴油工艺研究[J]. 粮食与油脂, 2017, 30(10): 50-53. |
AO H W, WANG S B. Study on the preparation of biodiesel by microwave assisted functionalized acidic ionic liquid[J]. Cereals & Oils, 2017, 30(10): 50-53. | |
38 | DING H, YE W, WANG Y Q, et al. Process intensification of transesterification for biodiesel production from palm oil: microwave irradiation on transesterification reaction catalyzed by acidic imidazolium ionic liquids[J]. Energy, 2018, 144: 957-967. |
39 | 苗长林, 吕鹏梅, 王忠铭, 等. 微波辅助组合离子液体直接制备微藻生物柴油[J]. 太阳能学报, 2021, 42(2): 233-238. |
MIAO C L, LYU P M, WANG Z M, et al. Preparation of microalgae biodiesel by direct transesterification under microwave-assisted ionic liquid composite conditions[J]. Acta Energiae Solaris Sinica, 2021, 42(2): 233-238. | |
40 | LIN Y C, YANG P M, CHEN S C, et al. Improving biodiesel yields from waste cooking oil using ionic liquids as catalysts with a microwave heating system[J]. Fuel Processing Technology, 2013, 115: 57-62. |
41 | MAJEWSKI M W, POLLACK S A, CURTIS-PALMER V A. Diphenylammonium salt catalysts for microwave assisted triglyceride transesterification of corn and soybean oil for biodiesel production[J]. Tetrahedron Letters, 2009, 50(37): 5175-5177. |
42 | NOGUEIRA B M, CARRETONI C, CRUZ R, et al. Microwave activation of enzymatic catalysts for biodiesel production[J]. Journal of Molecular Catalysis B: Enzymatic, 2010, 67(1/2): 117-121. |
43 | CARVALHO A K F, BENTO H B S, IZÁRIO FILHO H J, et al. Approaches to convert Mucor circinelloides lipid into biodiesel by enzymatic synthesis assisted by microwave irradiations[J]. Renewable Energy, 2018, 125: 747-754. |
44 | RÓS P C M DA, DE CASTRO H F, CARVALHO A K F, et al. Microwave-assisted enzymatic synthesis of beef tallow biodiesel[J]. Journal of Industrial Microbiology and Biotechnology, 2012, 39(4): 529-536. |
45 | RÓS P C M DA, FREITAS L, PEREZ V H, et al. Enzymatic synthesis of biodiesel from palm oil assisted by microwave irradiation[J]. Bioprocess and Biosystems Engineering, 2013, 36(4): 443-451. |
46 | ZHANG Y H, XIA X X, DUAN M H, et al. Green deep eutectic solvent assisted enzymatic preparation of biodiesel from yellow horn seed oil with microwave irradiation[J]. Journal of Molecular Catalysis B: Enzymatic, 2016, 123: 35-40. |
47 | PANADARE D C, RATHOD V K. Microwave assisted enzymatic synthesis of biodiesel with waste cooking oil and dimethyl carbonate[J]. Journal of Molecular Catalysis B: Enzymatic, 2016, 133: S518-S524. |
48 | YU D H, WANG C M, YIN Y N, et al. A synergistic effect of microwave irradiation and ionic liquids on enzyme-catalyzed biodiesel production[J]. Green Chemistry, 2011, 13(7): 1869. |
49 | PATIL P D, REDDY H, MUPPANENI T, et al. In situ ethyl ester production from wet algal biomass under microwave-mediated supercritical ethanol conditions[J]. Bioresource Technology, 2013, 139: 308-315. |
50 | GOLE V L, GOGATE P R. Intensification of synthesis of biodiesel from non-edible oil using sequential combination of microwave and ultrasound[J]. Fuel Processing Technology, 2013, 106: 62-69. |
51 | KHEDRI B, MOSTAFAEI M, SAFIEDDIN ARDEBILI S M. A review on microwave-assisted biodiesel production[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2019, 41(19): 2377-2395. |
52 | 陈榆中. 微波反应器及其制备生物柴油的应用研究[D]. 无锡: 江南大学, 2014. |
CHEN Y Z. Study on microwave reactor and its application in the preparation of biodiesel[D]. Wuxi: Jiangnan University, 2014. | |
53 | MOHAMAD AZIZ N A, YUNUS R, KANIA D, et al. Prospects and challenges of microwave-combined technology for biodiesel and biolubricant production through a transesterification: a review[J]. Molecules, 2021, 26(4): 788. |
[1] | 金鑫, 李玉姗, 解青青, 王梦雨, 夏星帆, 杨朝合. 多孔材料催化丙酮缩甘油合成研究进展[J]. 化工进展, 2023, 42(2): 731-743. |
[2] | 秦振芳, 廖日红, 马伟芳. 吸收-微藻法固定燃气电厂低浓度CO2同步产油技术研究进展[J]. 化工进展, 2023, 42(1): 94-106. |
[3] | 赵建兵, 杨丹, 舒原草, 朱俊波, 普仕萍, 宋晓丹, 刘守庆, 柴希娟, 李雪梅. Na2CO3/CF固体碱对菜籽油酯交换反应的催化性能[J]. 化工进展, 2022, 41(7): 3608-3614. |
[4] | 邹鹏程, 金光远, 李臻峰, 宋春芳, 韩太柏, 祝玉莲. 一种具有模式搅拌的微波反应釜内多物理场特性分析[J]. 化工进展, 2022, 41(5): 2301-2310. |
[5] | 马鑫, 王霜, 李法社, 张逸水, 蒋上. 生物柴油雾化特性仿真模拟及实验研究[J]. 化工进展, 2022, 41(2): 655-665. |
[6] | 纪淑兰, 李迅, 王飞. 丝瓜络固定化米根霉催化光皮树油制备生物柴油[J]. 化工进展, 2022, 41(10): 5381-5389. |
[7] | 岳倩倩, 高李璟, 肖国民, 魏瑞平, 雷严. 生物柴油连续化生产设备及工艺进展[J]. 化工进展, 2021, 40(S2): 81-88. |
[8] | 邹帅, 李玉芹, 马怡然, 齐振华, 贾权威. 二乙醇胺强化胶球藻Coccomyxa subellipsoidea C-169固定CO2和积累油脂[J]. 化工进展, 2021, 40(9): 5222-5230. |
[9] | 包文君, 李子富, 王雪梅, 高瑞岭, 程世昆, 门玉. 产油酵母利用廉价原料合成油脂的研究进展[J]. 化工进展, 2021, 40(5): 2484-2495. |
[10] | 孟心宇, 徐杰, 万杰, 刘雁军, 王晓丽, 张君, 郑锋, 阚建飞, 吴功德. 碳酸甘油酯的合成研究及产业化进展[J]. 化工进展, 2020, 39(9): 3739-3749. |
[11] | 邢海亮,董训赞,韩本勇,耿树香,宁德鲁,马婷,余旭亚. 二氧化碳联合核桃壳提取液促进单针藻Monoraphidium sp. QLZ-3的生长和油脂积累[J]. 化工进展, 2020, 39(4): 1575-1582. |
[12] | 王霜,王友昊,李法社,王文超,隋猛. 基于紫外吸光度的生物柴油氧化降解程度分析[J]. 化工进展, 2020, 39(2): 506-512. |
[13] | 滕雯, 陈勇, 隋猛, 李法社. TEPA与[MI][C6H2(OH)3COO]复配对小桐子生物柴油抗氧化性的影响[J]. 化工进展, 2020, 39(11): 4427-4434. |
[14] | 黄泽健,罗祎青,袁希钢. 水处理集成微藻生物柴油生命周期系统环境影响评价[J]. 化工进展, 2020, 39(1): 34-41. |
[15] | 袁川, 鲁厚芳, 刘长军, 蒋炜, 刘颖颖, 梁斌. 水和游离脂肪酸对DBU催化制备生物柴油的影响[J]. 化工进展, 2018, 37(09): 3386-3392. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |