1 |
RAJAGOPALAN Ranjusha, TANG Yougen, JI Xiaobo, et al. Advancements and challenges in potassium ion batteries: a comprehensive review[J]. Advanced Functional Materials, 2020, 30(12): 1909486.
|
2 |
DELMAS C, FOUASSIER C, HAGENMULLER P. Les bronzes de cobalt KxCoO2 (x<1). L’oxyde KCoO2[J]. Journal of Solid State Chemistry, 1975, 13(3): 165-171.
|
3 |
LIU C L, LUO S H, HUANG H B, et al. Layered potassium-deficient P2-and P3-type cathode materials KxMnO2 for K-ion batteries[J]. Chemical Engineering Journal, 2019, 356: 53-59.
|
4 |
HAN J, LI G N, LIU F, et al. Investigation of K3V2(PO4)3/C nanocomposites as high-potential cathode materials for potassiumion batteries[J]. Chemical Communications, 2017, 53(11): 1805-1808.
|
5 |
YAKUBOVICH O V, MASSA W, DIMITROVA O V. A new type of anionic framework in microporous potassium iron(Ⅱ) phosphate KFe(PO4)[J]. Zeitschrift Fur Anorganische und Allgemeine Chemie, 2005, 631(12): 2445-2449.
|
6 |
ZHENYU Xing, ZELANG Jian, WEI Luo, et al. A perylene anhydride crystal as a reversible electrode for K-ion batteries[J]. Energy Storage Materials, 2016, 2: 63-68.
|
7 |
ZHAO Qing, WANG Jian Bin, LU Yong, et al. Oxocarbon salts for fast rechargeable batteries[J]. Angewandte Chemie-International Edition, 2016, 55(40): 12528-12532.
|
8 |
TARGHOLI Ehsan, Morteza MOUSAVI-KHOSHDEL, RAHMANIFARA Mohmmadsafi, et al. Cu- and Fe-hexacyanoferrate as cathode materials for Potassium ion battery: a First-principles study[J]. Chemical Physics Letters, 2017, 687: 244-249.
|
9 |
WANG B, HAN Y, WANG X, et al. Prussian blue analogs for rechargeable batteries[J]. iScience, 2018, 3: 110-133.
|
10 |
VAALMA Christoph, GIFFIN Guinevere A, BUCHHOLZ Daniel, et al. Non-aqueous K-ion battery based on layered K0.3MnO2 and hard carbon/carbon black[J]. Journal of the Electrochemical Society, 2016, 163(7): A1295-A1299.
|
11 |
KIM Haegyeom, KIM Jae Chul, BO Shou-Hang, et al. K-ion batteries based on a P2-type K0.6CoO2 cathode[J]. Advanced Energy Materials, 2017, 7(17): 1700098.
|
12 |
SHADIKE Zulipiya, SHI Dingren, WANG Tian, et al. Long life and high-rate Berlin green FeFe(CN)6 cathode material for a non-aqueous potassium-ion battery[J]. Journal of Materials Chemistry A, 2017, 5(14): 6393-6398.
|
13 |
ZHANG Wenchao, LIU Yajie, GUO Zaiping. Approaching high-performance potassium-ion batteries via advanced design strategies and engineering[J]. Science Advances, 2019, 5(5): eaav7412.
|
14 |
EFTEKHARI Ali. Potassium secondary cell based on Prussian blue cathode[J]. Journal of Power Sources, 2004, 126(1/2): 221-228.
|
15 |
JIAN Zelang, LUO Wei, JI Xiulei. Carbon electrodes for K‑ion batteries[J]. Journal of the American Chemical Society, 2015, 137(36):11566-11569.
|
16 |
ZHANG Cheng Lin, XU Yang, ZHOU Min, et al. Potassium Prussian blue nanoparticles: a low-cost cathode material for potassium-ion batteries[J]. Advanced Functional Materials, 2017, 27(4): 1604307.
|
17 |
CHONG Shaokun, CHEN Yuanzhen, ZHENG Yang, et al. Potassium ferrous ferricyanide nanoparticles as a high capacity and ultralong life cathode material for nonaqueous potassium-ion batteries[J]. Journal of Materials Chemistry A, 2017, 5(43): 22465-22471.
|
18 |
DONG J H, LEI Y, HAN D, et al. Utilizing an autogenously protective atmosphere to synthesize a prussian white cathode with ultrahigh capacity-retention for potassium-ion batteries[J]. Chemical Communications, 2019, 55(83): 12555-12558.
|
19 |
ZHU Y H, YIN Y B, YANG X, et al. Transformation of rusty stainless-steel meshes into stable, low-cost, and binder-free cathodes for high-performance potassium-ion batteries[J]. Angewandte Chemie International Edition, 2017, 56(27): 7881-7885.
|
20 |
ZHU Yunhai, YANG Xu, BAO Di, et al. High-energy-density flexible potassium-ion battery based on patterned electrodes[J]. Joule, 2018, 2(4): 736-746.
|
21 |
GE P, LI S, SHUAI H, et al. Ultrafast sodium full batteries derived from X-Fe (X = Co, Ni, Mn) Prussian blue analogs[J]. Advanced Materials, 2019, 31(3): e1806092.
|
22 |
BIE Xiaofei, KUBOTA Kei, HOSAKA Tomooki, et al. A novel K-ion battery: hexacyanoferrate(Ⅱ)/graphite cell[J]. Journal of Materials Chemistry A, 2017, 5(9): 4325-4330.
|
23 |
JIANG Xi, ZHANG Tianran, YANG Liuqing, et al. A Fe/Mn-based Prussian blue analogue as a K-rich cathode material for potassium-ion batteries[J]. ChemElectroChem, 2017, 4(9): 2237-2242.
|
24 |
XUE L G, LI Y T, GAO H C, et al. Low-cost high-energy potassium cathode[J]. Journal of the American Chemical Society, 2017, 139(6): 2164-2167.
|
25 |
SUN Yunpo, LIU Chunli, XIE Jian, et al. Potassium manganese hexacyanoferrate/graphene as a high-performance cathode for potassium-ion batteries[J]. New Journal of Chemistry, 2019, 43(29): 11618-11625.
|
26 |
WU Xianyong, JIAN Zelang, LI Zhifei, et al. Prussian white analogues as promising cathode for non-aqueous potassium-ion batteries[J]. Electrochemistry Communications, 2017, 77: 54-57.
|
27 |
HUANG Bin, SHAO Yijia, LIU Yanchen, et al. Improving potassium-ion batteries by optimizing the composition of prussian blue cathode[J]. ACS Applied Energy Materials, 2019, 2(9): 6528-6535.
|
28 |
CHONG Shaokun, WU Yifang, GUO Shengwu, et al. Potassium nickel hexacyanoferrate as cathode for high voltage and ultralong life potassium-ion batteries[J]. Energy Storage Materials, 2019, 22: 120-127.
|
29 |
HUANG Bin, LIU Yanchen, LU Zhiyuan, et al. Prussian blue [K2FeFe(CN)6] doped with nickel as a superior cathode: an efficient strategy to enhance potassium storage performance[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(19): 16659-16667.
|
30 |
CHONG S K, YANG J, SUN L, et al. Potassium nickel iron hexacyanoferrate as ultra-long-life cathode material for potassium-ion batteries with high energy density[J]. ACS Nano, 2020, 14(8): 9807-9818.
|
31 |
HEO J W, CHAE M S, HYOUNG J, et al. Rhombohedral potassium-zinc hexacyanoferrate as a cathode material for nonaqueous potassium-ion batteries[J]. Inorganic Chemistry, 2019, 58(5): 3065-3072.
|
32 |
LUO Yushan, SHEN Bolei, GUO Bingshu, et al. Potassium titanium hexacyanoferrate as a cathode material for potassium-ion batteries[J]. Journal of Physics and Chemistry of Solids, 2018, 122: 31-35.
|
33 |
HE Guang, NAZAR Linda F. Crystallite size control of prussian white analogues for nonaqueous potassium-ion batteries[J]. ACS Energy Letters, 2017, 2(5): 1122-1127.
|
34 |
HOSAKA T, FUKABORI T, KOJIMA H, et al. Effect of particle size and anion vacancy on electrochemical potassium ion insertion into potassium manganese hexacyanoferrates[J]. ChemSusChem, 2021, 14(4): 1166-1175.
|
35 |
QIN Mingsheng, REN Wenhao, MENG Jiashen, et al. Realizing superior Prussian blue positive electrode for potassium storage via ultrathin nanosheet assembly[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(13): 11564-11570.
|
36 |
XUE Q, LI L, HUANG Y X, et al. Polypyrrole-modified Prussian blue cathode material for potassium ion batteries via in situ polymerization coating[J]. ACS Applied Materials & Interfaces, 2019, 11(25): 22339-22345.
|
37 |
ZHOU M, BAI P, JI X, et al. Electrolytes and interphases in potassium ion batteries[J]. Advanced Materials, 2021, 33(7): e2003741.
|
38 |
PADIGI Prasanna, THIEBES Joseph, SWAN Mitchell, et al. Prussian green: a high rate capacity cathode for potassium ion batteries[J]. Electrochimica Acta, 2015, 166: 32-39.
|
39 |
XIA Maoying, ZHANG Xikun, LIU Tingting, et al. Commercially available Prussian blue get energetic in aqueous K-ion batteries[J]. Chemical Engineering Journal, 2020, 394: 124923.
|
40 |
JIANG Liwei, LU Yaxiang, ZHAO Chenglong, et al. Building aqueous K-ion batteries for energy storage[J]. Nature Energy, 2019, 4(6): 495-503.
|
41 |
ZHU Kunjie, LI Zhaopeng, JIN Ting, et al. Low defects potassium cobalt hexacyanoferrate as a superior cathode for aqueous potassium ion batteries[J]. Journal of Materials Chemistry A, 2020, 8(40): 21103-21109.
|
42 |
HUANG Meng, WANG Xuanpeng, MENG Jiashen, et al. Ultra-fast and high-stable near-pseudocapacitance intercalation cathode for aqueous potassium-ion storage[J]. Nano Energy, 2020, 77: 105069.
|
43 |
REN Wenhao, CHEN Xianjue, ZHAO Chuan. Ultrafast aqueous potassium-ion batteries cathode for stable intermittent grid-scale energy storage[J]. Advanced Energy Materials, 2018, 8(24): 1801413.
|
44 |
WESSELLS C D, PEDDADA S V, HUGGINS R A, et al. Nickel hexacyanoferrate nanoparticle electrodes for aqueous sodium and potassium ion batteries[J]. Nano Letters, 2011, 11(12): 5421-5425.
|
45 |
WESSELLS C D, HUGGINS R A, CUI Y. Copper hexacyanoferrate battery electrodes with long cycle life and high power[J]. Nature Communications, 2011, 2: 550.
|
46 |
SU D, MCDONAGH A, QIAO S Z, et al. High-capacity aqueous potassium-ion batteries for large-scale energy storage[J]. Advanced Materials, 2017, 29(1): 1604007.
|
47 |
LI Chang, WANG Xusheng, DENG Wenjun, et al. Size engineering and crystallinity control enable high‐capacity aqueous potassium‐ion storage of prussian white analogues[J]. ChemElectroChem, 2018, 5(24): 3887-3892.
|
48 |
NOSSOL E, SOUZA V H, ZARBIN A J. Carbon nanotube/prussian blue thin films as cathodes for flexible, transparent and ITO-free potassium secondary battery[J]. Journal of Colloid and Interface Science, 2016, 478: 107-116.
|
49 |
Marc MORANT-GINER, Roger SANCHIS-GUAL, ROMERO Jorge, et al. Prussian blue@MoS2 layer composites as highly efficient cathodes for sodium- and potassium-ion batteries[J]. Advanced Functional Materials, 2018, 28(27): 1706125.
|
50 |
LOPES Laís C, HUSMANN Samantha, ZARBIN Aldo J G. Chemically synthesized graphene as a precursor to Prussian blue-based nanocomposite: a multifunctional material for transparent aqueous K-ion battery or electrochromic device[J]. Electrochimica Acta, 2020, 345: 136199.
|
51 |
BAIOUN Abeer, KELLAWI Hassan, FALAH Ahamed. Nano Prussian yellow film modified electrode: a cathode material for aqueous potassium ion secondary battery with zinc anode[J]. Current Nanoscience, 2018, 14(3): 227-233.
|