化工进展 ›› 2021, Vol. 40 ›› Issue (6): 3389-3400.DOI: 10.16085/j.issn.1000-6613.2020-1305
段丽媛1,2(), 李国强1,2(), 张舒婷1,2, 王宏宇1,2, 赵永乐1,2, 张永发1,2
收稿日期:
2020-07-10
修回日期:
2020-11-12
出版日期:
2021-06-06
发布日期:
2021-06-22
通讯作者:
李国强
作者简介:
段丽媛(1996—),女,硕士研究生,研究方向为光催化。E-mail:基金资助:
DUAN Liyuan1,2(), LI Guoqiang1,2(), ZHANG Shuting1,2, WANG Hongyu1,2, ZHAO Yongle1,2, ZHANG Yongfa1,2
Received:
2020-07-10
Revised:
2020-11-12
Online:
2021-06-06
Published:
2021-06-22
Contact:
LI Guoqiang
摘要:
采用二次等温热缩聚方式对通过NH4SCN制得的g-C3N4进行处理,通过XRD和SEM/TEM等手段对所制备样品的物相结构、表面形貌等结构特性及有机染料RhB的降解效果进行了研究。结果表明,二次等温热缩聚改性使催化剂聚合度增加,层间距缩短,通过调节等温热缩聚处理时间构建了蜂窝孔洞薄片层表面结构,比表面积和孔容积分别增加了2.3倍和4.7倍;大量—NH—、—NH2等氨基基团的产生,带来了更高的吸附氧含量;带隙宽度由2.77eV拓宽至2.81eV,且价带位置增至+1.625eV,使光生空穴拥有更强的氧化降解能力;边缘三嗪环结构单元中C—N
中图分类号:
段丽媛, 李国强, 张舒婷, 王宏宇, 赵永乐, 张永发. 二次等温热缩聚改性对g-C3N4光催化剂性能的影响[J]. 化工进展, 2021, 40(6): 3389-3400.
DUAN Liyuan, LI Guoqiang, ZHANG Shuting, WANG Hongyu, ZHAO Yongle, ZHANG Yongfa. Effect of secondary isothermal condensation modification on the performance of g-C3N4 photocatalyst[J]. Chemical Industry and Engineering Progress, 2021, 40(6): 3389-3400.
样品 | 比表面积 /m2·g-1 | 孔容积 /mL·g-1 | 平均孔径 /nm | 罗丹明B降解率 /% |
---|---|---|---|---|
CN-3h | 12.95 | 0.072 | 22.12 | 42 |
CN-4h | 13.40 | 0.071 | 21.28 | 58 |
CN-3h-1h | 15.42 | 0.094 | 24.42 | 71 |
CN-3h-4h | 29.83 | 0.334 | 44.82 | 98 |
表1 CN-3h、CN-4h、CN-3h-1h和CN-3h-4h样品的比表面积、孔容积、平均孔径和RhB降解率
样品 | 比表面积 /m2·g-1 | 孔容积 /mL·g-1 | 平均孔径 /nm | 罗丹明B降解率 /% |
---|---|---|---|---|
CN-3h | 12.95 | 0.072 | 22.12 | 42 |
CN-4h | 13.40 | 0.071 | 21.28 | 58 |
CN-3h-1h | 15.42 | 0.094 | 24.42 | 71 |
CN-3h-4h | 29.83 | 0.334 | 44.82 | 98 |
样品 | N元素摩尔分数 /%① | C元素摩尔分数 /%① | 三种N拟合峰含量与总N含量比/%② | 三种C拟合峰含量与总C含量比/%② | ||||
---|---|---|---|---|---|---|---|---|
C—N | N—(C)3 | C—NH | N—C | C—C | C—NHx | |||
CN-3h | 48.48 | 32.61 | 77 | 19 | 10 | 76 | 22 | 2 |
CN-4h | 48.68 | 32.31 | 75 | 16 | 9 | 77 | 21 | 2 |
CN-3h-1h | 47.85 | 32.85 | 76 | 16 | 8 | 71 | 26 | 3 |
CN-3h-4h | 47.86 | 32.90 | 78 | 15 | 7 | 76 | 22 | 2 |
表2 CN-3h、CN-4h、CN-3h-1h和CN-3h-4h催化剂表面C、N组成
样品 | N元素摩尔分数 /%① | C元素摩尔分数 /%① | 三种N拟合峰含量与总N含量比/%② | 三种C拟合峰含量与总C含量比/%② | ||||
---|---|---|---|---|---|---|---|---|
C—N | N—(C)3 | C—NH | N—C | C—C | C—NHx | |||
CN-3h | 48.48 | 32.61 | 77 | 19 | 10 | 76 | 22 | 2 |
CN-4h | 48.68 | 32.31 | 75 | 16 | 9 | 77 | 21 | 2 |
CN-3h-1h | 47.85 | 32.85 | 76 | 16 | 8 | 71 | 26 | 3 |
CN-3h-4h | 47.86 | 32.90 | 78 | 15 | 7 | 76 | 22 | 2 |
1 | TORRES-PINTO A, SAMPAIO M J, SILVA C G, et al. Metal-free carbon nitride photocatalysis with in situ hydrogen peroxide generation for the degradation of aromatic compounds[J]. Applied Catalysis B: Environmental, 2019, 252: 128-137. |
2 | 李成伟, 张安超, 宋军, 等. Ag/BiOI光催化剂湿法脱除烟气中气态单质汞性能及机理[J]. 化工进展, 2018, 37(4): 1442-1450. |
LI Chengwei, ZHANG Anchao, SONG Jun, et al. Mechanism and performance of wet process to remove gaseous elemental mercury from flue gas using Ag/BiOI photocatalyst[J]. Chemical Industry and Engineering Progress, 2018, 37(4): 1442-1450. | |
3 | 白照杲, 胡芸, 游素珍, 等. Bi2WO6-TiO2复合光催化剂对Cu-EDTA复合污染的高效光催化协同处理[J]. 化工进展, 2017, 36(6): 2164-2170. |
BAI Zhaogao, HU Yun, YOU Suzhen, et al. Synergetic treatment of Cu-EDTA on Bi2WO6-TiO2 composite photocatalysts[J]. Chemical Industry and Engineering Progress, 2017, 36(6): 2164-2170. | |
4 | HU K, WEI Z Y, YANG Z X, et al. One-step synthesis of few layers g-C3N4 with suitable band structure and enhanced photocatalytic activities[J]. Chemical Physics Letters, 2019, 732: 136613. |
5 | LIU J H, ZHANG T K, WANG Z C, et al. Simple pyrolysis of urea into graphitic carbon nitride with recyclable adsorption and photocatalytic activity[J]. Journal of Materials Chemistry, 2011, 21(38): 14398. |
6 | XIN G, MENG Y L. Pyrolysis synthesized g-C3N4 for photocatalytic degradation of methylene blue[J]. Journal of Chemistry, 2013, 2013: 1-5. |
7 | XU J, WANG Y, ZHU Y. Nanoporous graphitic carbon nitride with enhanced photocatalytic performance[J]. Langmuir, 2013, 29(33): 10566-10572. |
8 | FAN X Q, XING Z, SHU Z, et al. Improved photocatalytic activity of g-C3N4 derived from cyanamide-urea solution[J]. RSC Advances, 2015, 5(11): 8323-8328. |
9 | CUI Y J, WANG Y X, WANG H, et al. Polycondensation of ammonium thiocyanate into novel porous g-C3N4 nanosheets as photocatalysts for enhanced hydrogen evolution under visible light irradiation[J]. Chinese Journal of Catalysis, 2016, 37(11): 1899-1906. |
10 | HONG J D, XIA X Y, WANG Y S, et al. Mesoporous carbon nitride with in situ sulfur doping for enhanced photocatalytic hydrogen evolution from water under visible light[J]. Journal of Materials Chemistry, 2012, 22(30): 15006. |
11 | CUI Y J, WANG Y X, WANG H, et al. Polycondensation of ammonium thiocyanate into novel porous g-C3N4 nanosheets as photocatalysts for enhanced hydrogen evolution under visible light irradiation[J]. Chinese Journal of Catalysis, 2016, 37(11): 1899-1906. |
12 | ZHANG S T, LI G Q, WANG H Y, et al. Study on the pyrolysis of ammonium thiocyanate and its product formation characteristics in H2[J]. Journal of Analytical and Applied Pyrolysis, 2018, 134: 427-438. |
13 | LARSEN F K, HASEN MAMAKHEL A, OVERGAARD J, et al. Accessing the rich carbon nitride materials chemistry by heat treatments of ammonium thiocyanate, NH4SCN[J]. Acta Crystallographica Section B, 2019, 75(4): 621-633. |
14 | 李宇涵. 石墨型碳化氮的微/纳观结构优化及可见光催化净化气相NO的性能增强机制[D]. 重庆: 重庆工商大学, 2015. |
LI Yuhan. Optimization of the micro/nano structure of graphitic carbon nitride and enhancement mechanism of visible light photocatalytic removal of gaseous NO[D]. Chongqing: Chongqing Technology and Business University, 2015. | |
15 | 张晓君, 李佳乐, 刘一儒, 等. 固相研磨法制备AgI/Ag3PO4复合光催化剂及其光催化性能[J]. 化工进展, 2019, 38(2): 892-898. |
ZHANG Xiaojun, LI Jiale, LIU Yiru, et al. Synthesis of AgI/Ag3PO4composite photocatalysts using solid state grinding method and their photocatalytic activities[J]. Chemical Industry and Engineering Progress, 2019, 38(2): 892-898. | |
16 | 严平, 占昌朝, 曹小华, 等. 原位合成H4SiW12O40@C协同UV/H2O2降解罗丹明B模拟废水[J]. 化工进展, 2015, 34(3): 872-878. |
YAN Ping, ZHAN Changchao, CAO Xiaohua, et al. Synergetic degradation of Rhodamine B in simulated wastewater using ultraviolet and hydrogen peroxide catalyzed by H4SiW12O40@C synthesized in situ[J]. Chemical Industry and Engineering Progress, 2015, 34(3): 872-878. | |
17 | CUI Y J, ZHANG J S, ZHANG G G, et al. Synthesis of bulk and nanoporous carbon nitride polymers from ammonium thiocyanate for photocatalytic hydrogen evolution[J]. Journal of Materials Chemistry, 2011, 21(34): 13032. |
18 | ZHANG X Z, CHUN Y. Preparation of MgO/g-C3N4 composite and it enhanced photocatalytic activity[C]//Proceedings of the 2015 2nd International Workshop on Materials Engineering and Computer Sciences. October10-11, 2015. |
Jinan, China. Paris: Atlantis Press, 2015: 509-521. | |
19 | CHAI B, YAN J T, WANG C L, et al. Enhanced visible light photocatalytic degradation of Rhodamine B over phosphorus doped graphitic carbon nitride[J]. Applied Surface Science, 2017, 391: 376-383. |
20 | 郭志伟, 许亮. H.P.F法脱硫工艺[J]. 硅谷, 2011(6): 40. |
GUO Zhiwei, XU Liang. H.P.F desulfurization process[J]. Silicon Valley, 2011(6): 40. | |
21 | 张翠翠. 脱硫废液提盐回收技术[D]. 太原: 太原理工大学, 2013. |
ZHANG Cuicui. Study on reusing the technology of waste liquid generated desulfrization[D]. Taiyuan: Taiyuan University of Technology, 2013. | |
22 | LIU Q, WANG X L, YANG Q, et al. Mesoporous g-C3N4 nanosheets prepared by calcining a novel supramolecular precursor for high-efficiency photocatalytic hydrogen evolution[J]. Applied Surface Science, 2018, 450: 46-56. |
23 | KANG X D, KANG Y Y, HONG X X, et al. Improving the photocatalytic activity of graphitic carbon nitride by thermal treatment in a high-pressure hydrogen atmosphere[J]. Progress in Natural Science: Materials International, 2018, 28(2): 183-188. |
24 | DING W, LIU S Q, HE Z. One-step synthesis of graphitic carbon nitride nanosheets for efficient catalysis of phenol removal under visible light[J]. Chinese Journal of Catalysis, 2017, 38(10): 1711-1718. |
25 | CHEN Q Y, DU F, CHENG C, et al. Enhancing hydrogen evolution of g-C3N4 with nitrogen vacancies by ethanol thermal treatment[J]. Journal of Nanoparticle Research, 2018, 20(4): 1-9. |
26 | XU Q L, ZHU B C, CHENG B, et al. Photocatalytic H2 evolution on graphdiyne/g-C3N4 hybrid nanocomposites[J]. Applied Catalysis B: Environmental, 2019, 255: 117770. |
27 | HONG Y Z, LIU E L, SHI J Y, et al. A direct one-step synthesis of ultrathin g-C3N4 nanosheets from thiourea for boosting solar photocatalytic H2 evolution[J]. International Journal of Hydrogen Energy, 2019, 44(14): 7194-7204. |
28 | SUN S, FAN E, XU H, et al. Enhancement of photocatalytic activity of g-C3N4 by hydrochloric acid treatment of melamine[J]. Nanotechnology, 2019, 30(31): 315601. |
29 | HAN D Y, LIU J, CAI H, et al. High-yield and low-cost method to synthesize large-area porous g-C3N4 nanosheets with improved photocatalytic activity for gaseous nitric oxide and 2-propanol photodegradation[J]. Applied Surface Science, 2019, 464: 577-585. |
30 | SHAN X, GE G F, ZHAO Z K. Facile and scalable fabrication of porous g-C3N4 nanosheets with nitrogen defects and oxygen-doping for synergistically promoted visible light photocatalytic H2 evolution[J]. Energy Technology, 2019, 7(5): 1800886. |
31 | SHI J H, FENG S T, CHEN T, et al. Effect of porous modification on the synthesis and photocatalytic activity of graphitic carbon nitride/carbon quantum dot nanocomposite[J]. Journal of Materials Science: Materials in Electronics, 2018, 29(20): 17454-17462. |
32 | LIU J Y, YAN J, JI H Y, et al. Controlled synthesis of ordered mesoporous g-C3N4 with a confined space effect on its photocatalytic activity[J]. Materials Science in Semiconductor Processing, 2016, 46: 59-68. |
33 | HO W, ZHANG Z Z, XU M K, et al. Enhanced visible-light-driven photocatalytic removal of NO: effect on layer distortion on g-C3N4 by H2 heating[J]. Applied Catalysis B: Environmental, 2015, 179: 106-112. |
34 | YANG L R, LIU X Y, LIU Z G, et al. Enhanced photocatalytic activity of g-C3N4 2D nanosheets through thermal exfoliation using dicyandiamide as precursor[J]. Ceramics International, 2018, 44(17): 20613-20619. |
35 | BOORBOOR AZIMI E, BADIEI A, HOSSAINI SADR M, et al. A template-free method to synthesize porous G-C3N4 with efficient visible light photodegradation of organic pollutants in water[J]. Advanced Powder Technology, 2018, 29(11): 2785-2791. |
36 | LIAO J Z, CUI W, LI J Y, et al. Nitrogen defect structure and NO+ intermediate promoted photocatalytic NO removal on H2 treated g-C3N4[J]. Chemical Engineering Journal, 2020, 379: 122282. |
37 | YU W W, SHAN X, ZHAO Z K. Unique nitrogen-deficient carbon nitride homojunction prepared by a facile inserting-removing strategy as an efficient photocatalyst for visible light-driven hydrogen evolution[J]. Applied Catalysis B: Environmental, 2020, 269: 118778. |
38 | LIU M J, ZHANG D P, HAN J L, et al. Adsorption enhanced photocatalytic degradation sulfadiazine antibiotic using porous carbon nitride nanosheets with carbon vacancies[J]. Chemical Engineering Journal, 2020, 382: 123017. |
39 | ZHOU B, WAQAS M, YANG B, et al. Convenient one-step fabrication and morphology evolution of thin-shelled honeycomb-like structured g-C3N4 to significantly enhance photocatalytic hydrogen evolution[J]. Applied Surface Science, 2020, 506: 145004. |
40 | ANDRYUSHINA N, SHVALAGIN V, KORZHAK G, et al. Photocatalytic evolution of H2 from aqueous solutions of two-component electron-donor substrates in the presence of g-C3N4 activated by heat treatment in the KCl + LiCl melt[J]. Applied Surface Science, 2019, 475: 348-354. |
41 | HUANG Q, YU J G, CAO S W, et al. Efficient photocatalytic reduction of CO2 by amine-functionalized g-C3N4[J]. Applied Surface Science, 2015, 358: 350-355. |
42 | LAN Y L, LI Z S, LI D H, et al. Graphitic carbon nitride synthesized at different temperatures for enhanced visible-light photodegradation of 2-naphthol[J]. Applied Surface Science, 2019, 467/468: 411-422. |
43 | YI J J, LIAO J Z, XIA K X, et al. Integrating the merits of two-dimensional structure and heteroatom modification into semiconductor photocatalyst to boost NO removal[J]. Chemical Engineering Journal, 2019, 370: 944-951. |
44 | XU Y G, GE F Y, CHEN Z G, et al. One-step synthesis of Fe-doped surface-alkalinized g-C3N4 and their improved visible-light photocatalytic performance[J]. Applied Surface Science, 2019, 469: 739-746. |
45 | SADIQ M M J, SHENOY U S, BHAT D K. Synthesis of BaWO4/NRGO-g-C3N4 nanocomposites with excellent multifunctional catalytic performance via microwave approach[J]. Frontiers of Materials Science, 2018, 12(3): 247-263. |
46 | LI H L, JIN C, WANG Z Y, et al. Effect of the intra- and inter-triazine N-vacancies on the photocatalytic hydrogen evolution of graphitic carbon nitride[J]. Chemical Engineering Journal, 2019, 369: 263-271. |
47 | KANG S F, ZHANG L, HE M F, et al. “Alternated cooling and heating” strategy enables rapid fabrication of highly-crystalline g-C3N4 nanosheets for efficient photocatalytic water purification under visible light irradiation[J]. Carbon, 2018, 137: 19-30. |
48 | BAI J, SUN Y Z, LI M Y, et al. The effect of phosphate modification on the photocatalytic H2O2 production ability of g-C3N4 catalyst prepared via acid-hydrothermal post-treatment[J]. Diamond and Related Materials, 2018, 87: 1-9. |
49 | ZHU K X, LV Y, LIU J, et al. Explosive thermal exfoliation of intercalated graphitic carbon nitride for enhanced photocatalytic degradation properties[J]. Ceramics International, 2019, 45(3): 3643-3647. |
50 | ZHONG Y J, WANG Z Q, FENG J Y, et al. Improvement in photocatalytic H2 evolution over g-C3N4 prepared from protonated melamine[J]. Applied Surface Science, 2014, 295: 253-259. |
51 | LI X X, WAN T, QIU J Y, et al. In-situ photocalorimetry-fluorescence spectroscopy studies of RhB photocatalysis over Z-scheme g-C3N4@Ag@Ag3PO4 nanocomposites: a pseudo-zero-order rather than a first-order process[J]. Applied Catalysis B: Environmental, 2017, 217: 591-602. |
52 | BO L L, HU Y S, ZHANG Z X, et al. Efficient photocatalytic degradation of Rhodamine B catalyzed by SrFe2O4/g-C3N4 composite under visible light[J]. Polyhedron, 2019, 168: 94-100. |
53 | AKHUNDI A, HABIBI-YANGJEH A. Novel g-C3N4/Ag2SO4 nanocomposites: fast microwave-assisted preparation and enhanced photocatalytic performance towards degradation of organic pollutants under visible light[J]. Journal of Colloid and Interface Science, 2016, 482: 165-174. |
54 | ZHOU M, DONG G H, MA J L, et al. Photocatalytic removal of NO by intercalated carbon nitride: the effect of group IIA element ions[J]. Applied Catalysis B: Environmental, 2020, 273: 119007. |
55 | SUN Z C, ZHU M S, LYU X, et al. Insight into iron group transition metal phosphides (Fe2P, Co2P, Ni2P) for improving photocatalytic hydrogen generation[J]. Applied Catalysis B: Environmental, 2019, 246: 330-336. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[3] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[4] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[5] | 郑谦, 官修帅, 靳山彪, 张长明, 张小超. 铈锆固溶体Ce0.25Zr0.75O2光热协同催化CO2与甲醇合成DMC[J]. 化工进展, 2023, 42(S1): 319-327. |
[6] | 王正坤, 黎四芳. 双子表面活性剂癸炔二醇的绿色合成[J]. 化工进展, 2023, 42(S1): 400-410. |
[7] | 高雨飞, 鲁金凤. 非均相催化臭氧氧化作用机理研究进展[J]. 化工进展, 2023, 42(S1): 430-438. |
[8] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[9] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[10] | 许友好, 王维, 鲁波娜, 徐惠, 何鸣元. 中国炼油创新技术MIP的开发策略及启示[J]. 化工进展, 2023, 42(9): 4465-4470. |
[11] | 耿源泽, 周俊虎, 张天佑, 朱晓宇, 杨卫娟. 部分填充床燃烧器中庚烷均相/异相耦合燃烧[J]. 化工进展, 2023, 42(9): 4514-4521. |
[12] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[13] | 王晋刚, 张剑波, 唐雪娇, 刘金鹏, 鞠美庭. 机动车尾气脱硝催化剂Cu-SSZ-13的改性研究进展[J]. 化工进展, 2023, 42(9): 4636-4648. |
[14] | 王鹏, 史会兵, 赵德明, 冯保林, 陈倩, 杨妲. 过渡金属催化氯代物的羰基化反应研究进展[J]. 化工进展, 2023, 42(9): 4649-4666. |
[15] | 高彦静. 单原子催化技术国际研究态势分析[J]. 化工进展, 2023, 42(9): 4667-4676. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |