化工进展 ›› 2021, Vol. 40 ›› Issue (6): 3380-3388.DOI: 10.16085/j.issn.1000-6613.2020-1295
党海春1(), 刘占洲1, 雷春兴1, 许召赞2(), 李振中1
收稿日期:
2020-07-09
修回日期:
2020-09-15
出版日期:
2021-06-06
发布日期:
2021-06-22
通讯作者:
许召赞
作者简介:
党海春(1987—),女,博士,副教授,研究方向为高分子合成。E-mail:基金资助:
DANG Haichun1(), LIU Zhanzhou1, LEI Chunxing1, XU Zhaozan2(), LI Zhenzhong1
Received:
2020-07-09
Revised:
2020-09-15
Online:
2021-06-06
Published:
2021-06-22
Contact:
XU Zhaozan
摘要:
为提高聚氨酯弹性体力学性能和耐热性,本文以聚己二酸二乙二醇酯二醇、二苯基甲烷二异氰酸酯和 1,4-丁二醇为原料,以聚氧化丙烯三醇(PPG-3)或丙三醇为支化单体,并通过调控其添加量(1%、3%和5%,相对于PDGA-2000的摩尔分数),采用本体预聚物法合成支化或交联型聚氨酯弹性体。与线型聚氨酯相比,支化聚氨酯具有较高机械强度和耐热性。添加3% PPG-3所制备支化聚氨酯的拉伸强度提高170%(33.9MPa),撕裂强度提高36%(90.7MPa),维卡软化点温度为95.1℃;然而,5%的丙三醇引发交联结构的形成,交联型聚氨酯的拉伸强度提高154%(31.8MPa),撕裂强度提高26%(84.4MPa),维卡软化点温度为150.6℃。此外,PPG-3和丙三醇发挥聚氨酯软段和硬段相容剂的作用,抑制微相分离,使聚氨酯弹性体的橡胶平台增大。动态流变行为测试结果表明,支化和交联型聚氨酯弹性体具有更高的弹性模量和复数黏度。
中图分类号:
党海春, 刘占洲, 雷春兴, 许召赞, 李振中. 支化与交联型聚氨酯弹性体的合成与性能分析[J]. 化工进展, 2021, 40(6): 3380-3388.
DANG Haichun, LIU Zhanzhou, LEI Chunxing, XU Zhaozan, LI Zhenzhong. Preparation and properties of branched polyurethane elastomer via bulk prepolymerization[J]. Chemical Industry and Engineering Progress, 2021, 40(6): 3380-3388.
样品 | PPG-3或丙三醇 | PPG-3(丙三醇)/PDGA/MDI/BDO | Mn/×104 | Mw/×104 | Mw/Mn | [η] | HS/% |
---|---|---|---|---|---|---|---|
PU | 0 | 0/1/3/2 | 3.55 | 5.77 | 1.63 | 0.52 | 31.8 |
BPU1 | 1% PPG-3 | 0.01/0.985/3/2 | 3.72 | 6.06 | 1.62 | 0.55 | 32.3 |
BPU2 | 3% PPG-3 | 0.03/0.955/3/2 | 4.76 | 8.14 | 1.71 | 0.69 | 32.7 |
BPU3 | 5% PPG-3 | 0.05/0.925/3/2 | 4.52 | 10.20 | 2.26 | 0.85 | 33.3 |
BPU4 | 1% 丙三醇 | 0.01/0.985/3/2 | 4.54 | 8.82 | 1.94 | 0.67 | 32.1 |
BPU5 | 3% 丙三醇 | 0.03/0.955/3/2 | 6.11 | 13.16 | 2.15 | 0.69 | 32.7 |
表1 PDGA基聚氨酯弹性体GPC数据
样品 | PPG-3或丙三醇 | PPG-3(丙三醇)/PDGA/MDI/BDO | Mn/×104 | Mw/×104 | Mw/Mn | [η] | HS/% |
---|---|---|---|---|---|---|---|
PU | 0 | 0/1/3/2 | 3.55 | 5.77 | 1.63 | 0.52 | 31.8 |
BPU1 | 1% PPG-3 | 0.01/0.985/3/2 | 3.72 | 6.06 | 1.62 | 0.55 | 32.3 |
BPU2 | 3% PPG-3 | 0.03/0.955/3/2 | 4.76 | 8.14 | 1.71 | 0.69 | 32.7 |
BPU3 | 5% PPG-3 | 0.05/0.925/3/2 | 4.52 | 10.20 | 2.26 | 0.85 | 33.3 |
BPU4 | 1% 丙三醇 | 0.01/0.985/3/2 | 4.54 | 8.82 | 1.94 | 0.67 | 32.1 |
BPU5 | 3% 丙三醇 | 0.03/0.955/3/2 | 6.11 | 13.16 | 2.15 | 0.69 | 32.7 |
样品 | Tg,s/℃ | Tg,h/℃ | Tm/℃ | ΔHm1/J·g-1 | Tm/℃ | ΔHm2/J·g-1 |
---|---|---|---|---|---|---|
PU | -29.8 | 58.1 | 124.4 | 2.03 | 156.5 | 2.34 |
BPU1 | -30.2 | 58.0 | 123.3 | 1.44 | 154.6 | 3.85 |
BPU2 | -27.8 | 49.6 | 129.8 | 1.06 | 165.1 | 3.51 |
BPU3 | -27.9 | 57.3 | 128.4 | 0.80 | 161.5 | 3.09 |
BPU4 | -27.9 | 58.0 | 128.9 | 1.19 | 154.4 | 0.82 |
BPU5 | -28.1 | 58.5 | 128.7 | 1.64 | 160.9 | 1.30 |
CPU | -24.6 | 57.3 | 145.9 | 0.88 | 175.3 | 3.60 |
表 2 PDGA基聚氨酯弹性体的DSC数据
样品 | Tg,s/℃ | Tg,h/℃ | Tm/℃ | ΔHm1/J·g-1 | Tm/℃ | ΔHm2/J·g-1 |
---|---|---|---|---|---|---|
PU | -29.8 | 58.1 | 124.4 | 2.03 | 156.5 | 2.34 |
BPU1 | -30.2 | 58.0 | 123.3 | 1.44 | 154.6 | 3.85 |
BPU2 | -27.8 | 49.6 | 129.8 | 1.06 | 165.1 | 3.51 |
BPU3 | -27.9 | 57.3 | 128.4 | 0.80 | 161.5 | 3.09 |
BPU4 | -27.9 | 58.0 | 128.9 | 1.19 | 154.4 | 0.82 |
BPU5 | -28.1 | 58.5 | 128.7 | 1.64 | 160.9 | 1.30 |
CPU | -24.6 | 57.3 | 145.9 | 0.88 | 175.3 | 3.60 |
样品 | 拉伸强度/MPa | 断裂伸长率/% | 撕裂强度/MPa | 邵氏A硬度 |
---|---|---|---|---|
PU | 12.5±0.4 | 819.4±41.1 | 66.5±2.4 | 76 |
BPU1 | 18.8±0.4 | 627.6±60.3 | 84.2±2.8 | 77 |
BPU2 | 33.9±1.2 | 585.2±12.2 | 90.7±1.6 | 76 |
BPU3 | 19.4±2.1 | 517.2±27.2 | 81.1±5.6 | 79 |
BPU4 | 13.6±1.4 | 551.6±43.4 | 79.3±3.5 | 75 |
BPU5 | 20.7±1.8 | 540.7±21.7 | 84.1±2.2 | 75 |
CPU | 31.8±2.1 | 409.2±21.8 | 84.4±2.8 | 82 |
表3 PDGA基聚氨酯弹性体的力学性能
样品 | 拉伸强度/MPa | 断裂伸长率/% | 撕裂强度/MPa | 邵氏A硬度 |
---|---|---|---|---|
PU | 12.5±0.4 | 819.4±41.1 | 66.5±2.4 | 76 |
BPU1 | 18.8±0.4 | 627.6±60.3 | 84.2±2.8 | 77 |
BPU2 | 33.9±1.2 | 585.2±12.2 | 90.7±1.6 | 76 |
BPU3 | 19.4±2.1 | 517.2±27.2 | 81.1±5.6 | 79 |
BPU4 | 13.6±1.4 | 551.6±43.4 | 79.3±3.5 | 75 |
BPU5 | 20.7±1.8 | 540.7±21.7 | 84.1±2.2 | 75 |
CPU | 31.8±2.1 | 409.2±21.8 | 84.4±2.8 | 82 |
1 | KROL Piotr. Synthesis methods, chemical structures and phase structures of linear polyurethanes. properties and applications of linear polyurethanes in polyurethane elastomers, copolymers and ionomers[J]. Progress in Materials Science, 2007, 52(6): 915-1015. |
2 | 杨舒逸, 金怀洋, 高山俊, 等. 热塑性聚氨酯弹性体改性研究进展[J]. 工程塑料应用, 2018, 46 (6): 138-142. |
YANG Shuyi, JIN Huaiyang, GAO Shanjun, et al. Research progress on modification of thermoplastic polyurethane elastomer[J]. Engineering Plastics Application, 2018, 46(6): 138-142. | |
3 | 山西省化工研究所. 聚氨酯弹性体手册 [M]. 北京:化学工业出版社, 2001. |
Shanxi Provincial Institute of Chemical Industry. Polyurethane elastomers manual[M]. Beijing: Chemical Industry Press, China, 2001. | |
4 | XIE Fengwei, ZHANG Tianlong, BRYANT Peter, et al. Degradation and stabilization of polyurethane elastomers[J]. Progress in Polymer Science, 2019, 90: 211-268. |
5 | ENGELS Hans Wilhelm, PIRKL Hans Georg, ALBERS Reinhard, et al. Polyurethanes: versatile materials and sustainable problem solvers for today’s challenges[J]. Angewandte Chemie: International Edition, 2013, 52(36): 9422-9441. |
6 | 张聪聪, 郑梦凯, 李伯耿. 软段结构对聚氨酯弹性体性能的影响[J]. 化工学报, 2019, 70(10): 4043-4051. |
ZHANG Congcong, ZHENG Mengkai, LI Baigeng. Effect of soft segment structure on properties of polyurethane elastomers[J]. CIESC Journal, 2019, 70(10): 4043-4051. | |
7 | HU Jinlian, YANG Zhuohong, YEUNG Lapyan, et al. Crosslinked polyurethanes with shape memory properties[J]. Polymer International, 2005, 54(5): 854-859. |
8 | LI Mei, ZHANG Rongchun, LI Xiaohui, et al. High-performance recyclable cross-linked polyurethane with orthogonal dynamic bonds: the molecular design, microstructures, and macroscopic properties[J]. Polymer, 2018, 148: 127-137. |
9 | 李翰模, 杨一林, 李志鹏, 等. 基于网络结构设计制备宽温域高阻尼聚氨酯弹性体[J]. 高分子材料科学与工程, 2017, 3(6): 146-151. |
LI Hanmo, YANG Yilin, LI Zhipeng, et al. Preparation of high damping polyurethane with wide temperature range based on network structure designing[J]. Polymer Materials Science & Engineering, 2017, 33(6): 146-151. | |
10 | BRONDI Cosimo, DI CAPRIO Maria Rosaria, SCHERILLO Giuseppe, et al. Thermosetting polyurethane foams by physical blowing agents: chasing the synthesis reaction with the pressure[J]. Journal of Supercritical Fluids, 2019, 154:104630. |
11 | 郑建伟, 夏修炀, 王惟, 等. 气相甲醛对聚氨酯硬段晶区的化学改性[J]. 高分子材料科学与工程, 2007, 23(5): 227-229. |
ZHENG Jianwei, XIA Xiuyang, WANG Wei, et al. Study on the chemical modification of hard segments of polyurethane elastomer by formaldehyde[J]. Polymer Materials Science & Engineering,2007, 23(5): 227-229. | |
12 | INOUE K. Functional dendrimers, hyperbranched and star polymers[J]. Progress in Polymer Science, 2000, 25(4): 453-571. |
13 | LIU Tuo, LI Jing, PAN Yi, et al. A new approach to shape memory polymer: design and preparation of poly(methyl methacrylate) composites in the presence of star poly(ethylene glycol) [J]. Soft Matter, 2011, 7(5): 1641-1643. |
14 | WANG Ling, DING Wei, SONG Kaoping, et al. Synthesis of a branched star copolymer by aqueous SET-LRP and its thermo-stimuli response[J]. Journal of Macromolecular Science, A, 2020, 57(4): 266-273. |
15 | CAO Xiaodong, HABIBI Yousself, LUCIA Lucian A. One-pot polymerization, surface grafting, and processing of waterborne polyurethane-cellulose nanocrystal nanocomposites[J]. Journal of Materials Chemistry, 2009, 19(38): 7137-7145. |
16 | XUE Liang, DAI Shiyao, LI Zhi. Biodegradable shape-memory block co-polymers for fast self-expandable stents[J]. Biomaterials, 2010, 31(32): 8132-8140. |
17 | 祝仰文.微支化微交联聚丙烯酰胺的合成及性能研究[J].西南石油大学学报(自然科学版), 2017, 39(2): 179-184. |
ZHU Yangwen. Synthesis and performance of partially branched and partially crosslinked polyacrylamides[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2017, 39(2): 179-184. | |
18 | ZHANG Junle, FU Peng, ZHAO Qingxiang, et al. Progress in the synthesis of amphiphilic branched polymers[J]. Polymer Materials Science & Engineering, 2010, 26(8): 154-156. |
19 | Khine Yi MYA, GOSE Halima Binte, PREYSCH Thorsten, et al. Star-shaped POSS-polycaprolactone polyurethanes and their shape memory performance[J]. Journal of Materials Chemistry, 2011, 21(13): 4827-4836. |
20 | BOTHE Martin, Khine Yi MYA, LIN Esther Marie JIE, et al. Triple-shape properties of branched POSS-polycaprolactone polyurethane networks[J]. Soft Matter, 2012, 8(4): 965-972. |
21 | YANG Xifeng, WANG Lin, WANG Wenxi, et al. Triple shape memory effect of branched polyurethane[J]. ACS Applied Materials & Interfaces, 2014, 6(9): 6545-6554. |
22 | 陈政, 张帆, 黄美松, 等. 支化结构阴/非离子聚氨酯丙烯酸酯的制备与性能[J].精细化工, 2011, 28(8): 791-796. |
CHEN Zheng, ZHANG Fan, HANG Meisong, et al. Preparation and performance of star-shape anionic/non-ionic polyurethane-acrylate[J]. Fine Chemicals, 2011, 28(8): 791-796. | |
23 | 张彬. 聚醚多元醇的合成及其聚氨酯弹性体制备研究[D]. 太原:中北大学, 2015. |
ZHANG Bin. Research on the synthesis of polyether polyols and its application in preparation of polyurethane elastomer[D]. Taiyuan: Zhongbei University, 2015. | |
24 | 张美杰, 赵秀丽. 多代超支化聚氨酯的合成与表征[J]. 材料保护, 2013, 46(S1): 8-11. |
ZHANG Meijie, ZHAO Xiuli. Synthesis and characterization of multigenerations hyperbranched polyurethanes [J]. Materials Protection, 2013, 46(S1): 8-11. | |
25 | Miriam SAENZ-PEREZ, LIZUNDIA Erlantz, LAZA Jose Manuel, et al. Methylene diphenyl diisocyanate (MDI) and toluene diisocyanate (TDI) based polyurethanes: thermal, shape-memory and mechanical behavior[J]. RSC Advances, 2016, 6(73): 69094-69102. |
26 | 张士玉. 交联型聚氨酯的合成及其室温自修复性能的研究[D]. 青岛: 青岛科技大学, 2017. |
ZHANG Shiyu. Synthesis and room temperature self-healing performance of crosslinked polyurethane[D]. Qingdao: Qingdao University of Science & Technology, 2017. | |
27 | TANG Qiheng, GAO Kezheng. Structure analysis of polyether-based thermoplastic polyurethane elastomers by FTIR, 1H NMR and 13C NMR[J]. International Journal of Polymer Analysis and Characterization, 2017, 22(7): 569-574. |
28 | STERN Theodor. Conclusive chemical deciphering of the consistently occurring double-peak carbonyl-stretching FTIR absorbance in polyurethanes[J]. Polymers for Advanced Technologies, 2019, 30(3): 675-687. |
29 | LIU Jin, MA Dezhu, LI Zhen. FTIR studies on the compatibility of hard-soft segments for polyurethane-imide copolymers with different soft segments[J]. European Polymer Journal, 2002, 38(4): 661-665. |
30 | XU Zhaozan, CUI Yangli, LI Tingting, et al. Enhanced mechanical and shape memory properties of poly(propylene glycol)-based star-shaped polyurethane[J]. Macromolecular Chemistry and Physics, 2020, 221(13): 2000082. |
31 | 李月婷. 聚醚型聚氨酯及其复合材料的控制制备与形状记忆性[D]. 北京: 北京化工大学, 2017. |
LI Yueting. Preparation and shape memory properties of polyether polyurethane and its composites [D]. Beijing: Beijing University of Chemical Technology, 2017. | |
32 | BARRETO LUNA Carlos Bruno, SIQUEIRA Danilo Diniz, BARBOSA FERREIRA Eduardo da Silva, et al. Reactive compatilization of PCL/WP upon addition of PCL-MA. Smart option for recycling industry[J]. Materials Research Express, 2019, 6(12): 125317-125317. |
33 | 丁琳, 杨建军, 吴庆云, 等. 内交联水性聚氨酯自消光树脂的制备及表征[J].精细化工, 2017, 34(12): 1334-1339. |
DING Lin, YANG Jianjun, WU Qingyun, et al. Synthesis and characterization of internal crosslinking waterborne polyurethane self-matting resin[J]. Fine Chemicals. 2017, 34(12): 1334-1339. | |
34 | 朱广超, 王贵友, 胡春圃. 交联密度对脂肪族聚氨酯弹性体结构与性能的影响[J]. 高分子学报, 2011(3): 274-280. |
ZHU Guangchao, WANG Guiyou, HU Chunpu. Effect of crosslinking desnsity on the structures and properties of aliphatic polyurethane elastomer. [J]. Acta Polymerica Sinica, 2011(3): 274-280. | |
35 | CHEN S, MO F, YANG Y, et al. Development of zwitterionic polyurethanes with multi-shape memory effects and self-healing properties[J]. Journal of Materials Chemistry A. 2015, 3(6): 2924-2933. |
36 | 朱聪, 杜瑞春, 张秋红等. 交联型聚氨酯阻尼材料性能研究[J]. 南京大学学报(自然科学版), 2019, 55(5): 825-831. |
ZHU Cong, DU Ruichun, ZHANG Qiuhong, et al. Study on the damping properties of cross-linking polyurethanes[J]. Journal of Nanjing University (Natural Sciences), 2019, 55(5): 825-831. | |
37 | 肖建华, 陈思维. 医用级热塑性聚氨酯的流变性能[J]. 高分子材料科学与工程, 2016, 32(12): 87-90. |
XIAO Jianhua, CHEN Siwei. Rheological properties of medical grade thermoplastic polyurethane[J]. Polymer Materials Science & Engineering, 2016, 32(12): 87-90. | |
38 | 徐晓梅, 郑晓婷, 刘晶如, 等.支链长度及支化程度对聚苯乙烯流变行为的影响[J].高分子材料科学与工程, 2015, 31(4): 78-82. |
XU Xiaomei, ZHENG Xiaoting, LIU Jingru, et al. Influence of branch length and branching level on rheological behaviors of branching polystyrene[J]. Polymer Materials Science & Engineering, 2015, 31(4): 78-82. |
[1] | 黄格省, 师晓玉, 丁文娟, 王春娇, 慕彦君, 侯雨璇. 光伏电池封装胶膜材料发展现状与前景分析[J]. 化工进展, 2023, 42(10): 5037-5046. |
[2] | 张洪铭, 卢炯元, 王三反. 燃料电池用阴离子交换膜分子结构研究进展[J]. 化工进展, 2022, 41(S1): 318-330. |
[3] | 田亚州, 胡钰婧, 李继友, 任江燕, 王立伟, 王修利, 丁颖, 程珏, 张军营. 香草醇基环氧树脂的合成、固化动力学及性能[J]. 化工进展, 2022, 41(S1): 477-484. |
[4] | 郭睿, 李平安, 赵云飞. 硅改性BPA-PA酚醛环氧树脂导电胶的合成及性能[J]. 化工进展, 2022, 41(8): 4473-4480. |
[5] | 杨济凡, 张守玉, 曹忠耀, 郎森, 刘思梦, 周义, 胡南, 吴玉新. 水热氧化预处理对棉秆成型颗粒理化性质的影响[J]. 化工进展, 2022, 41(8): 4417-4424. |
[6] | 马骏, 孙冬, 张明爽, 张兰河, 陈子成. 氧化石墨烯改性环氧树脂涂料的制备及防腐性能[J]. 化工进展, 2021, 40(8): 4456-4462. |
[7] | 刁帅, 刘会娥, 陈爽, 于安然, 许文龙, 张广智. 软模板法石墨烯气凝胶的可控制备及其吸油性能[J]. 化工进展, 2020, 39(7): 2742-2750. |
[8] | 蒋旭光, 龙凌, 赵晓利, 孔莉倓. 固化材料在生活垃圾焚烧飞灰处置中的应用概况及前景[J]. 化工进展, 2019, 38(s1): 216-225. |
[9] | 雷苏,曾鹏鑫,王鹏,张路珧,姚睿璇,赵传文,孙健,郭亚飞,祝秀明,卢平. Na2CO3基吸附剂颗粒制备及其脱碳性能[J]. 化工进展, 2019, 38(08): 3562-3571. |
[10] | 李伯耿, 张明轩, 刘伟峰, 王文俊. 聚烯烃类弹性体——现状与进展[J]. 化工进展, 2017, 36(09): 3135-3144. |
[11] | 解月伟, 解一军, 高晓哲, 樊芳. 紫外光固化可剥离胶的研究与制备[J]. 化工进展, 2015, 34(12): 4301-4304,4342. |
[12] | 高璇,刘立柱,翁凌,金镇镐,朱兴松. 甲基纳迪克-桐马-环氧体系云母带用黏合剂的制备与性能[J]. 化工进展, 2014, 33(03): 753-757. |
[13] | 王艺霏,丁雪佳,苏 昱,欧远辉,胡文涛,刘凤娇,庞凯敏,张 乐. HDPE-g-MAH和POE-g-MAH对HDPE/PA6共混物性能的影响[J]. 化工进展, 2013, 32(09): 2170-2174. |
[14] | 冯春云1,孙 宁1,2,姜少华1,李亦彪1,程 建3,朱章卫3. UV固化超支化聚氨酯丙烯酸树脂的研究进展[J]. 化工进展, 2013, 32(05): 1086-1090. |
[15] | 李万捷,林殷雷,郑玉刚. MDI-50型聚氨酯弹性体的合成及性能 [J]. 化工进展, 2011, 30(7): 1542-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |