化工进展 ›› 2021, Vol. 40 ›› Issue (6): 2933-2951.DOI: 10.16085/j.issn.1000-6613.2020-1889
收稿日期:
2020-09-16
修回日期:
2021-01-29
出版日期:
2021-06-06
发布日期:
2021-06-22
通讯作者:
罗聃,周红军
作者简介:
郭博文(1989—),男,博士研究生,研究方向为电解水制氢技术。E-mail:基金资助:
GUO Bowen(), LUO Dan(), ZHOU Hongjun()
Received:
2020-09-16
Revised:
2021-01-29
Online:
2021-06-06
Published:
2021-06-22
Contact:
LUO Dan,ZHOU Hongjun
摘要:
氢能是一种清洁、高效的二次能源,是构建未来清洁社会的重要支撑。在众多制氢技术中,利用可再生能源产生电能,并通过电解水制备高纯度氢气是最具潜力的制氢路线之一。本文在介绍三种电解水制氢技术及核心部件的基础上,重点讨论了电解水析氢催化剂,特别是过渡金属基电催化剂及单原子催化剂的研究进展。本文最后对可再生能源发电与电解水制氢技术的耦合进行了分析与讨论,简述了现阶段国内外基于可再生能源发电制氢项目的开发进展。文章指出,随着电力成本下降,高效、稳定、经济的析氢催化剂的开发,可再生能源发电制氢将成为解决能源消纳、加速氢能产业化进程、最终实现我国向低碳清洁能源转型的重要途径。
中图分类号:
郭博文, 罗聃, 周红军. 可再生能源电解制氢技术及催化剂的研究进展[J]. 化工进展, 2021, 40(6): 2933-2951.
GUO Bowen, LUO Dan, ZHOU Hongjun. Recent advances in renewable energy electrolysis hydrogen production technology and related electrocatalysts[J]. Chemical Industry and Engineering Progress, 2021, 40(6): 2933-2951.
1 | JIAO Yan, ZHENG Yao, JARONIEC Mietek, et al. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions[J]. Chemical Society Reviews, 2015, 46(8): 2060-2086. |
2 | URSUA A, GANDIA L M, SANCHIS P. Hydrogen production from water electrolysis: current status and future trends[J]. Proceedings of the IEEE, 2012, 100(2): 410-426. |
3 | KOTHARI R, BUDDHI D, SAWHNEY R L. Comparison of environmental and economic aspects of various hydrogen production methods[J]. Renewable and Sustainable Energy Reviews, 2008, 12(2): 553-563. |
4 | LANG Y Z, ARNEPALLI R R, TIWARI A. A review on hydrogen production: methods, materials and nanotechnology[J]. Journal of Nanoscience and Nanotechnology, 2011, 11(5): 3719-3739. |
5 | 万燕明,熊亚林,刘坚强. 中国氢能源及燃料电池产业白皮书[R]. 2019. |
WAN Yanming, XIONG Yalin, LIU Jian. China hydrogen energy and fuel cell industry white paper[R]. 2019. | |
6 | 国家能源局. 我国可再生能源发展开发利用规模稳居世界 第一[EB/OL]. . |
Nation Energy Administration. China’s renewable energy development and utilization scale ranks first in the world[EB/OL]. . | |
7 | 杨洁. 氢能源开发与利用发展现状浅析[J]. 深冷技术, 2017(6): 59-61. |
YANG Jie. Approach to the progress state of the development and utilization of hydrogen energy[J]. Cryogenic Technology, 2017(6): 59-61. | |
8 | 罗承先. 世界可再生能源电力制氢现状[J]. 中外能源, 2017, 22(8): 25-32. |
LUO Chengxian. Present status of power-to-hydrogen technology worldwide using renewable energy[J]. Sino-Global Energy, 2017, 22(8): 25-32. | |
9 | 刘金朋, 侯焘. 氢储能技术及其电力行业应用研究综述及展望[J]. 电力与能源, 2020, 41(2): 230-233, 247. |
LIU Jinpeng, HOU Tao. Review and prospect of hydrogen energy storage technology and its application in power industry[J]. Power & Energy, 2020, 41(2): 230-233, 247. | |
10 | LEI Y P, WANG Y C, LIU Y, et al. Designing atomic active centers for hydrogen evolution electrocatalysts[J]. Angewandte Chemie:International Edition, 2020, 59(47): 20794-20812. |
11 | ZHOU Z, PEI Z X, WEI L, et al. Electrocatalytic hydrogen evolution under neutral pH conditions: current understandings, recent advances, and future prospects[J]. Energy & Environmental Science, 2020, 13(10): 3185-3206. |
12 | 瞿丽莉, 郭俊文, 史亚丽, 等. 质子交换膜电解水制氢技术在电厂的应用[J]. 热能动力工程, 2019, 34(2): 150-156. |
QU Lili, GUO Junwen, SHI Yali, et al. Application of proton exchange membrane electrolysis and hydrogen production technology in power plant[J]. Journal of Engineering for Thermal Energy and Power, 2019, 34(2): 150-156. | |
13 | 尤岩. 碱性水电解用聚砜隔膜的制备和研究[D]. 天津: 天津大学, 2010. |
YOU Yan. Preparation and investigation of polysulfone diaphragms for alkaline water electrolysis[D]. Tianjin: Tianjin University, 2010. | |
14 | 刘明义, 于波, 徐景明. 固体氧化物电解水制氢系统效率[J]. 清华大学学报(自然科学版), 2009, 49(6): 868-871. |
LIU Mingyi, YU Bo, XU Jingming. Efficiency of solid oxide water electrolysis system for hydrogen production[J]. Journal of Tsinghua University (Science and Technology), 2009, 49(6): 868-871. | |
15 | 刘太楷, 邓春明, 张亚鹏. 电解水制氢发展概况之一: 碱式电解水[J]. 材料研究与应用, 2019, 13(4): 339-346. |
LIU Taikai, DENG Chunming, ZHANG Yapeng. Development of hydrogen generation via water electrolysis Ⅰ: Alkaline water electrolysis[J]. Materials Research and Application, 2019, 13(4): 339-346. | |
16 | CHI J, YU H M. Water electrolysis based on renewable energy for hydrogen production[J]. Chinese Journal of Catalysis, 2018, 39(3): 390-394. |
17 | CHI B, LI J B, HAN Y S, et al. Effect of precipitant on preparation of Ni-Co spinel oxide by coprecipitation method[J]. Materials Letters, 2004, 58(9): 1415-1418. |
18 | GODINHO M I, CATARINO M A, SILVA PEREIRA M I DA, et al. Effect of the partial replacement of Fe by Ni and/or Mn on the electrocatalytic activity for oxygen evolution of the CoFe2O4 spinel oxide electrode[J]. Electrochimica Acta, 2002, 47(27): 4307-4314. |
19 | GILLIAM R J, GRAYDON J W, KIRK D W, et al. A review of specific conductivities of potassium hydroxide solutions for various concentrations and temperatures[J]. International Journal of Hydrogen Energy, 2007, 32(3): 359-364. |
20 | SEE D M, WHITE R E. Temperature and concentration dependence of the specific conductivity of concentrated solutions of potassium hydroxide[J]. Journal of Chemical & Engineering Data, 1997, 42(6): 1266-1268. |
21 | GODULA-JOPEK A. Hydrogen production[M]. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2015. |
22 | 王飞, 周抗寒, 管春磊, 等. PEM水电解技术在航天上的应用现状与发展趋势[J]. 上海航天, 2020, 37(2): 23-29. |
WANG Fei, ZHOU Kanghan, GUAN Chunlei, et al. Application status and development of PEM water electrolysis in aerospace field[J]. Aerospace Shanghai, 2020, 37(2): 23-29. | |
23 | 颜正辉. 氢气湿度与汽轮发电机的安全运行[J]. 东方电机, 1996, 24(3): 36-41. |
YAN Zhenghui. Hydrogen humidity and safe operation of steam turbine generator [J]. Dongfang Electrical Machine, 1996, 24(3): 36-41. | |
24 | 郭淑萍, 白松. SPE水电解制氢技术的发展[J]. 舰船防化, 2009(2): 43-47. |
GUO Shuping, BAI Song. Development of hydrogen generation technology by SPE[J]. Chemical Defence on Ships, 2009(2): 43-47. | |
25 | 孙邦兴, 杨华, 骈松. PEM型电解水制氢设备在电厂的应用[J]. 山东化工, 2020, 49(8): 182-184. |
SUN Bangxing, YANG Hua, PIAN Song. Application of PEM-type hydrogen generator by water electrolysis in power plant[J]. Shandong Chemical Industry, 2020, 49(8): 182-184. | |
26 | LETTENMEIER P, WANG R, ABOUATALLAH R, et al. Low-cost and durable bipolar plates for proton exchange membrane electrolyzers[J]. Scientific Reports, 2017, 7: 44035. |
27 | TOGHYANI S, AFSHARI E, BANIASADI E, et al. Thermal and electrochemical analysis of different flow field patterns in a PEM electrolyzer[J]. Electrochimica Acta, 2018, 267: 234-245. |
28 | GRIGORIEV S A, MILLET P, KOROBTSEV S V, et al. Hydrogen safety aspects related to high-pressure polymer electrolyte membrane water electrolysis[J]. International Journal of Hydrogen Energy, 2009, 34(14): 5986-5991. |
29 | FOUDA-ONANA F, CHANDESRIS M, MÉDEAU V, et al. Investigation on the degradation of MEAs for PEM water electrolysers part I: Effects of testing conditions on MEA performances and membrane properties[J]. International Journal of Hydrogen Energy, 2016, 41(38): 16627-16636. |
30 | DU H F, GU S, LIU R W, et al. Tungsten diphosphide nanorods as an efficient catalyst for electrochemical hydrogen evolution[J]. Journal of Power Sources, 2015, 278: 540-545. |
31 | XIAO Peng, GE Xiaoming, WANG Haibo, et al. Novel molybdenum carbide-tungsten carbide composite nanowires and their electrochemical activation for efficient and stable hydrogen evolution[J]. Advanced Functional Materials, 2015, 25(10): 1520-1526. |
32 | 赵晨欢, 张文强, 于波, 等. 固体氧化物电解池[J]. 化学进展, 2016, 28(8): 1265-1288. |
ZHAO Chenhuan, ZHANG Wenqiang, YU Bo, et al. Solid oxide electrolyzer cells[J]. Progress in Chemistry, 2016, 28(8): 1265-1288. | |
33 | STOOTS C M, O'BRIEN J E, CONDIE K G, et al. High-temperature electrolysis for large-scale hydrogen production from nuclear energy[J]. International Journal of Hydrogen Energy, 2010, 35(10): 4861-4870. |
34 | CHRONEOS A, YILDIZ B, TARANCÓN A, et al. Oxygen diffusion in solid oxide fuel cell cathode and electrolyte materials: mechanistic insights from atomistic simulations[J]. Energy & Environmental Science, 2011, 4(8): 2774. |
35 | TIETZ F, SEBOLD D, BRISSE A, et al. Degradation phenomena in a solid oxide electrolysis cell after 9000h of operation[J]. Journal of Power Sources, 2013, 223: 129-135. |
36 | WEI B, CHEN K F, WANG C C, et al. Cr deposition on porous La0.6Sr0.4Co0.2Fe0.8O3- δ electrodes of solid oxide cells under open circuit condition[J]. Solid State Ionics, 2015, 281: 29-37. |
37 | CHEN T, ZHOU Y C, YUAN C, et al. Impregnated Nd2NiO4+δ-scandia stabilized zirconia composite cathode for intermediate-temperature solid oxide fuel cells[J]. Journal of Power Sources, 2014, 269: 812-817. |
38 | XU S S, CHEN S G, LI M, et al. Composite cathode based on Fe-loaded LSCM for steam electrolysis in an oxide-ion-conducting solid oxide electrolyser[J]. Journal of Power Sources, 2013, 239: 332-340. |
39 | LI Y X, WU G J, RUAN C, et al. Composite cathode based on doped vanadate enhanced with loaded metal nanoparticles for steam electrolysis[J]. Journal of Power Sources, 2014, 253: 349-359. |
40 | STOOTS C, O'BRIEN J, HARTVIGSEN J. Results of recent high temperature co-electrolysis studies at the Idaho National Laboratory[J]. International Journal of Hydrogen Energy, 2009, 34(9): 4208-4215. |
41 | ZHANG X Y, O'BRIEN J E, TAO G, et al. Experimental design, operation, and results of a 4kW high temperature steam electrolysis experiment[J]. Journal of Power Sources, 2015, 297: 90-97. |
42 | SCHEFOLD J, BRISSE A, TIETZ F. Nine thousand hours of operation of a solid oxide cell in steam electrolysis mode[J]. Journal of the Electrochemical Society, 2011, 159(2): A137-A144. |
43 | NGUYEN V N, FANG Q P, PACKBIER U, et al. Long-term tests of a Jülich planar short stack with reversible solid oxide cells in both fuel cell and electrolysis modes[J]. International Journal of Hydrogen Energy, 2013, 38(11): 4281-4290. |
44 | MOUGIN J, MANSUY A, CHATROUX A, et al. Enhanced performance and durability of a high temperature steam electrolysis stack[J]. Fuel Cells, 2013, 13(4): 623-630. |
45 | 吴晓琳. 镍钴基氧族催化电极的制备及其电解水性能研究[D]. 杭州: 浙江大学, 2018. |
WU Xiaolin. Synthesis and studies of nickel/cobalt-based oxides and chalcogenides for electrocatalytic water splitting[D]. Hangzhou: Zhejiang University, 2018. | |
46 | ZHENG Y, JIAO Y, JARONIEC M, et al. Advancing the electrochemistry of the hydrogen-evolution reaction through combining experiment and theory[J]. Angewandte Chemie, 2015, 54(1): 52-65. |
47 | SUBBARAMAN R, TRIPKOVIC D, STRMCNIK D, et al. Enhancing hydrogen evolution activity in water splitting by tailoring Li⁺-Ni(OH)₂-Pt interfaces[J]. Science, 2011, 334(6060): 1256-1260. |
48 | WANG P T, JIANG K Z, WANG G M, et al. Phase and interface engineering of platinum-nickel nanowires for efficient electrochemical hydrogen evolution[J]. Angewandte Chemie, 2016(41): 13051-13055. |
49 | WANG P T, ZHANG X, ZHANG J, et al. Precise tuning in platinum-nickel/nickel sulfide interface nanowires for synergistic hydrogen evolution catalysis[J]. Nature Communications, 2017, 8: 14580. |
50 | WANG Y H, CHEN L, YU X M, et al. Superb alkaline hydrogen evolution and simultaneous electricity generation by Pt-decorated Ni3N nanosheets[J]. Advanced Energy Materials, 2017, 7(2): 1601390. |
51 | LIAO H B, WEI C, WANG J X, et al. A multisite strategy for enhancing the hydrogen evolution reaction on a nano-Pd surface in alkaline media[J]. Advanced Energy Materials, 2017, 7(21): 1701129. |
52 | XU J Y, LIU T F, LI J J, et al. Boosting the hydrogen evolution performance of ruthenium clusters through synergistic coupling with cobalt phosphide[J]. Energy & Environmental Science, 2018, 11(7): 1819-1827. |
53 | FU L H, LI Y B, YAO N, et al. IrMo nanocatalysts for efficient alkaline hydrogen electrocatalysis[J]. ACS Catalysis, 2020, 10(13): 7322-7327. |
54 | FAN J C, WU J D, CUI X Q, et al. Hydrogen stabilized RhPdH 2D bimetallene nanosheets for efficient alkaline hydrogen evolution[J]. Journal of the American Chemical Society, 2020, 142(7): 3645-3651. |
55 | YAO Q, HUANG B, ZHANG N, et al. Channel-rich RuCu nanosheets for pH-universal overall water splitting electrocatalysis[J]. Angewandte Chemie, 2019, 58(39): 13983-13988. |
56 | GUO Y X, GAN L F, SHANG C S, et al. A cake-style CoS2@MoS2/RGO hybrid catalyst for efficient hydrogen evolution[J]. Advanced Functional Materials, 2017, 27(5): 1602699. |
57 | XIONG Q Z, WANG Y, LIU P F, et al. Cobalt covalent doping in MoS2 to induce bifunctionality of overall water splitting[J]. Advanced Materials, 2018, 30(29):1801450.1-1801450.7. |
58 | SHANG X, HU W H, LI X, et al. Oriented stacking along vertical (002) planes of MoS2: a novel assembling style to enhance activity for hydrogen evolution[J]. Electrochimica Acta, 2017, 224: 25-31. |
59 | WANG S, ZHANG D, LI B, et al. Ultrastable in-plane 1T-2H MoS2 heterostructures for enhanced hydrogen evolution reaction[J]. Advanced Energy Materials, 2018, 8(25): 1801345. |
60 | JIANG N, YOU B, SHENG M, et al. Electrodeposited cobalt-phosphorous-derived films as competent bifunctional catalysts for overall water splitting[J]. Angewandte Chemie, 2015, 54(21): 6251-6254. |
61 | LIU Q, GU S, LI C M. Electrodeposition of nickel-phosphorus nanoparticles film as a Janus electrocatalyst for electro-splitting of water[J]. Journal of Power Sources, 2015, 299: 342-346. |
62 | LIU P, RODRIGUEZ J A. Catalysts for hydrogen evolution from the [NiFe] hydrogenase to the Ni2P(001) surface: the importance of ensemble effect[J]. Journal of the American Chemical Society, 2005, 127(42): 14871-14878. |
63 | WAN L, ZHANG J F, CHEN Y Q, et al. Varied hydrogen evolution reaction properties of nickel phosphide nanoparticles with different compositions in acidic and alkaline conditions[J]. Journal of Materials Science, 2017, 52(2): 804-814. |
64 | ZHANG Y, WANG Y, WANG T T, et al. Heterostructure of 2D CoP nanosheets/1D carbon nanotubes to significantly boost the alkaline hydrogen evolution[J]. Advanced Materials Interfaces, 2020, 7(2): 1901302. |
65 | CALLEJAS J F, MCENANEY J M, READ C G, et al. Electrocatalytic and photocatalytic hydrogen production from acidic and neutral-pH aqueous solutions using iron phosphide nanoparticles[J]. ACS Nano, 2014, 8(11): 11101-11107. |
66 | WANG C D, ZHANG Y, LI Y, et al. Synthesis of fluorine-doped α-Fe2O3 nanorods toward enhanced lithium storage capability[J]. Nanotechnology, 2017, 28(6): 065401. |
67 | ZOU X, XIONG P, ZHAO J, et al. Recent research progress in non-aqueous potassium-ion batteries[J]. Physical Chemistry Chemical Physics, 2017, 19(39): 26495-26506. |
68 | ZHAO X, ZHANG Z, CAO X, et al. Elucidating the sources of activity and stability of FeP electrocatalyst for hydrogen evolution reactions in acidic and alkaline media[J]. Applied Catalysis B: Environmental, 2020, 260: 118156. |
69 | SHI Z P, WANG Y X, LIN H L, et al. Porous nanoMoC@graphite shell derived from a MOFs-directed strategy: an efficient electrocatalyst for the hydrogen evolution reaction[J]. Journal of Materials Chemistry A, 2016, 4(16): 6006-6013. |
70 | HE C Y, TAO J Z. Three-dimensional hollow porous Co6Mo6C nanoframe as an highly active and durable electrocatalyst for water splitting[J]. Journal of Catalysis, 2017, 347: 63-71. |
71 | XIE J F, LI S, ZHANG X D, et al. Atomically-thin molybdenum nitride nanosheets with exposed active surface sites for efficient hydrogen evolution[J]. Chemical Science, 2014, 5(12): 4615-4620. |
72 | WANG Y Q, ZHANG B H, PAN W, et al. 3D porous nickel-cobalt nitrides supported on nickel foam as efficient electrocatalysts for overall water splitting[J]. ChemSusChem, 2017, 10(21): 4170-4177. |
73 | ZHU Y P, CHEN G, XU X M, et al. Enhancing electrocatalytic activity for hydrogen evolution by strongly coupled molybdenum nitride@nitrogen-doped carbon porous nano-octahedrons[J]. ACS Catalysis, 2017, 7(5): 3540-3547. |
74 | KUMAR R, RAI R, GAUTAM S, et al. Nano-structured hybrid molybdenum carbides/nitrides generated in situ for HER applications[J]. Journal of Materials Chemistry A, 2017, 5(17): 7764-7768. |
75 | LI H, WEN P, LI Q, et al. Earth-abundant iron diboride (FeB2) nanoparticles as highly active bifunctional electrocatalysts for overall water splitting[J]. Advanced Energy Materials, 2017, 7(17): 1700513. |
76 | GUPTA S, PATEL N, FERNANDES R, et al. Co-Ni-B nanocatalyst for efficient hydrogen evolution reaction in wide pH range[J]. Applied Catalysis B: Environmental, 2016, 192: 126-133. |
77 | LIANG Y H, SUN X P, ASIRI A M, et al. Amorphous Ni-B alloy nanoparticle film on Ni foam: rapid alternately dipping deposition for efficient overall water splitting[J]. Nanotechnology, 2016, 27(12): 12LT01. |
78 | LU W B, LIU T T, XIE L S, et al. In situ derived Co—B nanoarray: a high-efficiency and durable 3D bifunctional electrocatalyst for overall alkaline water splitting[J]. Small, 2017, 13(32): 1700805. |
79 | ZHANG L H, HAN L L, LIU H X, et al. Back cover: potential-cycling synthesis of single platinum atoms for efficient hydrogen evolution in neutral media[J]. Angewandte Chemie, 2017, 56(44): 13900. |
80 | DENG J, LI H B, XIAO J P, et al. Triggering the electrocatalytic hydrogen evolution activity of the inert two-dimensional MoS2 surface via single-atom metal doping[J]. Energy & Environmental Science, 2015, 8(5): 1594-1601. |
81 | LU B, GUO L, WU F, et al. Ruthenium atomically dispersed in carbon outperforms platinum toward hydrogen evolution in alkaline media[J]. Nature Communications, 2019, 10(1): 631. |
82 | ZHANG J M, XU X P, YANG L, et al. Single-atom Ru doping induced phase transition of MoS2 and S vacancy for hydrogen evolution reaction[J]. Small Methods, 2019, 3(12): 1900653. |
83 | CHEN W, PEI J, HE C T, et al. Single tungsten atoms supported on MOF-derived N-doped carbon for robust electrochemical hydrogen evolution[J]. Advanced Materials, 2018, 30(30): e1800396. |
84 | QI K, CUI X, GU L, et al. Single-atom cobalt array bound to distorted 1T MoS2 with ensemble effect for hydrogen evolution catalysis[J]. Nature Communications, 2019, 10(1): 5231. |
85 | WANG L G, DUAN X X, LIU X J, et al. Atomically dispersed Mo supported on metallic Co9S8 nanoflakes as an advanced noble-metal-free bifunctional water splitting catalyst working in universal pH conditions[J]. Advanced Energy Materials, 2020, 10(4): 1903137. |
86 | International Energy Agency. Renewable energy market update 2021[EB/OL]. . |
87 | 国家能源局. 2018年风电并网运行情况[J]. 中国机电工业, 2019(3): 28. |
Nation Energy Administration. Wind power grid operation in 2018[J]. China Machinery & Electric Industry, 2019(3): 28. | |
88 | 刘业凤, 周明杰. 太阳能电解水制氢直接耦合连接技术[J]. 电源技术, 2013, 37(7): 1171-1173, 1187. |
LIU Yefeng, ZHOU Mingjie. Direct coupling of an electrolyser to a solar PV system for hydrogen generation[J]. Chinese Journal of Power Sources, 2013, 37(7): 1171-1173, 1187. | |
89 | LIU Z X, QIU Z M, LUO Y, et al. Operation of first solar-hydrogen system in China[J]. International Journal of Hydrogen Energy, 2010, 35(7): 2762-2766. |
90 | ZHOU K L, FERREIRA J A, DE HAAN S W H. Optimal energy management strategy and system sizing method for stand-alone photovoltaic-hydrogen systems[J]. International Journal of Hydrogen Energy, 2008, 33(2): 477-489. |
91 | 郭常青, 伊立其, 闫常峰, 等. 太阳能光伏-PEM水电解制氢直接耦合系统优化[J]. 新能源进展, 2019, 7(3): 287-294. |
GUO Changqing, YI Liqi, YAN Changfeng, et al. Optimization of photovoltaic-PEM electrolyzer direct coupling systems[J]. Advances in New and Renewable Energy, 2019, 7(3): 287-294. | |
92 | PATRÍCIO R A, SALES A D, SACRAMENTO E M, et al. Wind hydrogen energy system and the gradual replacement of natural gas in the State of Ceará-Brazil[J]. International Journal of Hydrogen Energy, 2012, 37(9): 7355-7364. |
93 | 蔡国伟, 孔令国, 薛宇, 等. 风氢耦合发电技术研究综述[J]. 电力系统自动化, 2014, 38(21): 127-135. |
CAI Guowei, KONG Lingguo, XUE Yu, et al. Overview of research on wind power coupled with hydrogen production technology[J]. Automation of Electric Power Systems, 2014, 38(21): 127-135. | |
94 | 蒋东方, 高丹, 武珍, 等. 基于智能微网的氢氧联合循环与风能耦合发电系统[J]. 电力科学与工程, 2011, 27(6): 1-5. |
JIANG Dongfang, GAO Dan, WU Zhen, et al. Hydrogen and oxygen combined cycle coupled with the wind power generation system based on the microgrid technology[J]. Electric Power Science and Engineering, 2011, 27(6): 1-5. | |
95 | 浙江省电力学会农村电气化专业委员会, 国网浙江省电力有限公司经济技术研究院. 浙江生物质发电产业发展情况调查研究报告[J]. 农电管理, 2020(8): 37-42. |
Zhejiang Society For Electric Power Rural Electrification Professional Committee, State Grid Zhejiang Electric Power Company Economics & Technology Research Institute. Investigation and research report on the development of Zhejiang Biomass Power Generation Industry[J]. Rural Power Management, 2020(8): 37-42. | |
96 | 徐刚磊. 新形势下西南大型水电可持续发展机制的探讨[J]. 华电技术, 2021, 5(43): 81-85. |
XU Ganglei. Discussion on sustainable development of large hydropower projects in southwestern China under new situation[J]. Huadian Technology, 2021, 5(43): 81-85. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[3] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[4] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[5] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[6] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[7] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[8] | 王鹏, 史会兵, 赵德明, 冯保林, 陈倩, 杨妲. 过渡金属催化氯代物的羰基化反应研究进展[J]. 化工进展, 2023, 42(9): 4649-4666. |
[9] | 张启, 赵红, 荣峻峰. 质子交换膜燃料电池中氧还原反应抗毒性电催化剂研究进展[J]. 化工进展, 2023, 42(9): 4677-4691. |
[10] | 王伟涛, 鲍婷玉, 姜旭禄, 何珍红, 王宽, 杨阳, 刘昭铁. 醛酮树脂基非金属催化剂催化氧气氧化苯制备苯酚[J]. 化工进展, 2023, 42(9): 4706-4715. |
[11] | 葛亚粉, 孙宇, 肖鹏, 刘琦, 刘波, 孙成蓥, 巩雁军. 分子筛去除VOCs的研究进展[J]. 化工进展, 2023, 42(9): 4716-4730. |
[12] | 吴海波, 王希仑, 方岩雄, 纪红兵. 3D打印催化材料开发与应用进展[J]. 化工进展, 2023, 42(8): 3956-3964. |
[13] | 向阳, 黄寻, 魏子栋. 电催化有机合成反应的活性和选择性调控研究进展[J]. 化工进展, 2023, 42(8): 4005-4014. |
[14] | 王耀刚, 韩子姗, 高嘉辰, 王新宇, 李思琪, 杨全红, 翁哲. 铜基催化剂电还原二氧化碳选择性的调控策略[J]. 化工进展, 2023, 42(8): 4043-4057. |
[15] | 刘毅, 房强, 钟达忠, 赵强, 李晋平. Ag/Cu耦合催化剂的Cu晶面调控用于电催化二氧化碳还原[J]. 化工进展, 2023, 42(8): 4136-4142. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |