化工进展 ›› 2021, Vol. 40 ›› Issue (5): 2471-2483.DOI: 10.16085/j.issn.1000-6613.2020-1123
陈郑1,2(), 赵秀梅3(), 穆廷桢1, 杨茂华1, 苗得露1, 赵胥浩1, 张建4, 邢建民1,2()
收稿日期:
2020-06-18
出版日期:
2021-05-06
发布日期:
2021-05-24
通讯作者:
赵秀梅,邢建民
作者简介:
陈郑(1996—),男,硕士研究生,研究方向为天然气脱硫。E-mail:基金资助:
CHEN Zheng1,2(), ZHAO Xiumei3(), MU Tingzhen1, YANG Maohua1, MIAO Delu1, ZHAO Xuhao1, ZHANG Jian4, XING Jianmin1,2()
Received:
2020-06-18
Online:
2021-05-06
Published:
2021-05-24
Contact:
ZHAO Xiumei,XING Jianmin
摘要:
天然气作为绿色、高效的优质清洁能源,在我国能源结构中所占比例日益增加。因为天然气中含有一定量的有毒有害气体硫化氢,所以天然气在使用之前就需要脱除其中的硫化氢气体。生物脱硫是利用微生物脱除气体和废水中的含硫化合物,具有操作条件温和、能量消耗低、环境污染小、脱硫效率高、副产生物硫黄等优势。因此,天然气生物脱硫技术已成为天然气净化研究的热点之一。本文首先介绍了天然气中硫化氢气体的主要来源,回顾了工业上广泛应用的天然气脱硫技术(克劳斯法脱硫和络合铁法脱硫);随后阐述了生物脱硫的主要菌种以及脱硫机理,并重点介绍了天然气生物脱硫技术的典型工艺(Bio-SR脱硫和Shell-Paques脱硫)和新型工艺 (嗜盐嗜碱生物脱硫);最后指出了天然气生物脱硫技术的发展方向。
中图分类号:
陈郑, 赵秀梅, 穆廷桢, 杨茂华, 苗得露, 赵胥浩, 张建, 邢建民. 天然气生物脱硫技术研究进展[J]. 化工进展, 2021, 40(5): 2471-2483.
CHEN Zheng, ZHAO Xiumei, MU Tingzhen, YANG Maohua, MIAO Delu, ZHAO Xuhao, ZHANG Jian, XING Jianmin. Advance in biological desulfurization technology of natural gas[J]. Chemical Industry and Engineering Progress, 2021, 40(5): 2471-2483.
1 | 何生厚. 高含硫化氢和二氧化碳天然气田开发工程技术[M]. 北京:中国石化出版社, 2008: 454. |
HE Shenghou. High concentration of hydrogen sulfide and carbon dioxide natural gas field development engineering technology[M]. Beijing: China Petrochemical Press, 2008: 454. | |
2 | 王开岳. 天然气净化工艺: 脱硫脱碳、脱水、硫黄回收及尾气处理[M]. 北京: 石油工业出版社, 2005: 423. |
WANG Kaiyue. Natural gas purification process: desulfurization and decarbonization, dehydration, sulfur recovery and tail gas treatment[M]. Beijing: Petroleum Industry Press, 2005: 423. | |
3 | NAM B, KIM H, CHOI Y, et al. Neurologic sequela of hydrogen sulfide poisoning[J]. Industrial Health, 2004, 42(1): 83-87. |
4 | ES'KOV A S, VORONIN V P, STEPANOK N A. Special features of hydrogen embrittlement of structural steels in biogenous hydrogen sulfide[J]. Materials Science, 1994, 29(5): 518-520. |
5 | 中华人民共和国国家卫生健康委员会. 工作场所有害因素职业接触限值第1部分: 化学有害因素: [S]. 北京: 中国标准出版社, 2019. |
National Health Commission of the People’s Republic of China. Occupational exposure limits for hazardous agents in the workplace—part 1: chemical hazardous agents: [S]. Beijing: Standards Press of China, 2019. | |
6 | 国家市场监督管理总局, 中国国家标准化管理委员会. 天然气: [S]. 北京: 中国标准出版社, 2018. |
State Administration for Market Regulation, Standardization Administration of the People’s Republic of China. Natural gas: [S]. Beijing: Standards Press of China, 2018. | |
7 | GOLDHABER M B, ORR W L. Kinetic controls on thermochemical sulfate reduction as a source of sedimentary H2S[M]//VAIRAVAMURTHY M A, SCHOONEN M A A. Geochemical Transformations of Sedimentary Sulfur. New York: American Chemical Society, 1995: 412-425. |
8 | DING K, LI S, YUE C. Investigation of two kinds of thermochemical sulfate reduction systems[J]. Energy Sources Part A-Recovery Utilization and Environmental Effects, 2010, 32(12): 1130-1141. |
9 | ZHANG S C, ZHU G Y, HE K. The effects of thermochemical sulfate reduction on occurrence of oil-cracking gas and reformation of deep carbonate reservoir and the interaction mechanisms[J]. Acta Petrologica Sinica, 2011, 27(3): 809-826. |
10 | ZHANG S C, SHUAI Y H, HE K, et al. Research on the initiation mechanism of thermochemical sulfate reduction(TSR)[J]. Acta Petrologica Sinica, 2012, 28(3): 739-748. |
11 | ZHAO H, LIU W H, BORJIGIN T, et al. Study of thermochemical sulfate reduction of different organic matter: insight from systematic TSR simulation experiments[J]. Marine and Petroleum Geology, 2019, 100: 434-446. |
12 | BARTON L L, FAUQUE G D. Biochemistry, physiology and biotechnology of sulfate-reducing bacteria[J]. Advances in Applied Microbiology, 2009, 68: 41-98. |
13 | HAOO J, CHEN J M, HUANG L, et al. Sulfate-reducing bacteria[J]. Critical Reviews in Environmental Science and Technology, 1996, 26(2): 155-187. |
14 | MUYZER G, STAMS A J M. The ecology and biotechnology of sulphate-reducing bacteria[J]. Nature Reviews Microbiology, 2008, 6(6): 441-454. |
15 | 张颖, 阚振江, 江浩,等.油气田开发中H2S成因及其生物治理方法初探[J]. 石油化工安全环保技术, 2010, 26(5):60-64. |
ZHANG Ying, KAN Zhenjiang, JIANG Hao, et al. Preliminary study on causes of H2S in oil and gas exploitation and biotic control method[J]. Petrochemical Safety and Environmental Protection Technology, 2010, 26(5): 60-64. | |
16 | 刘天齐. 三废处理工程技术手册废气卷[M]. 北京: 化学工业出版社, 1999: 765. |
LIU Tianqi. Three waste treatment engineering technical manual waste gas[M]. Beijing: Chemical Industry Press, 1999: 765. | |
17 | PIÉPLU A, SAUR O, LAVALLEY J C, et al. Claus catalysis and H2S selective oxidation[J]. Catalysis Reviews, 1998, 40(4): 409-450. |
18 | MCMANUS D, MARTELL A E. The evolution, chemistry and applications of chelated iron hydrogen sulfide removal and oxidation processes[J]. Journal of Molecular Catalysis A: Chemical, 1997, 117(1): 289-297. |
19 | MCMANUS D. Chelated iron catalyzed oxidation of hydrogen sulfide to sulfur by air[J]. Abstracts of Papers of the American Chemical Society, 1996, 211: 613-631. |
20 | HU Y. High-efficiency H2S removal process: LO-CAT[J]. Petroleum Refinery Engineering, 2007, 37(11): 30-35. |
21 | YING L, YOUZHI L, GUISHENG Q, et al. Selection of chelated Fe(Ⅲ)/Fe(Ⅱ) catalytic oxidation agents for desulfurization based on iron complexation method[J]. China Petroleum Processing & Petrochemical Technology, 2014, 16(2): 50-58. |
22 | ROBERTS J A, ROBERTS R S. A novel approach to eliminating sulfur deposition in liquid redox hydrogen sulfide removal systems[C]//SPE Western Regional Meeting. Irvine, California: Society of Petroleum Engineers, 2005: 7. |
23 | LE STRAT P Y, COT M, BALLAGUET J P, et al. New redox process successful in high-pressure gas streams[J]. Oil & Gas Journal, 2001, 99(48): 46. |
24 | BALLAGUET J P, STREICHER C, GUILLON S, et al. Sulfint HP: a new redox process for the direct high pressure removal of H2S[C]// Laurance Reid Gas Conditioning Conference, Norman Oklahoma, 2001: 319-336. |
25 | FRIEDRICH C G, BARDISCHEWSKY F, ROTHER D, et al. Prokaryotic sulfur oxidation[J]. Current Opinion in Microbiology, 2005, 8(3): 253-259. |
26 | GHOSH W, DAM B. Biochemistry and molecular biology of lithotrophic sulfur oxidation by taxonomically and ecologically diverse bacteria and archaea[J]. FEMS Microbiology Reviews, 2009, 33(6): 999-1043. |
27 | 徐鈜绣, 姜丽晶, 李少能, 等. 南大西洋深海热液区可培养硫氧化微生物多样性及其硫氧化特性[J]. 微生物学报, 2016, 56(1): 88-100. |
XU Hongxiu, JIANG Lijing, LI Shaoneng, et al. Cultivable sulfur-oxidizing microbial diversity and sulfur-oxidizing characteristics in the deep-sea hydrothermal area of the South Atlantic[J]. Acta Microbiologica Sinica, 2016, 56(1): 88-100. | |
28 | LENS P N L, VISSER A, JANSSEN A J H, et al. Biotechnological treatment of sulfate-rich wastewaters[J]. Critical Reviews in Environmental Science and Technology, 1998, 28(1): 41-88. |
29 | 高凯. 硫氧化菌筛选及生物脱硫基础研究[D]. 无锡: 江南大学, 2014. |
GAO Kai. Sulfur oxidizing bacteria screening and basic research of biological sulfur removal[D]. Wuxi: Jiangnan University, 2014. | |
30 | GARRITY G M, HOLT J G, OVERMANN J, et al. Phylum BXI. Chlorobi phy. nov[M]//BOONE D R, CASTENHOLZ R W, GARRITY G M. Bergey’s Manual® of Systematic Bacteriology. New York: Springer, 2001: 601-623. |
31 | 罗剑飞. 硫氧化菌群落结构分析及其特性研究[D]. 广州: 华南理工大学, 2011. |
LUO Jianfei. Microbial community analysis and characterization of sulfur-oxidizing bacteria[D]. Guangzhou: South China University of Technology, 2011. | |
32 | GEMERDEN H VAN. Production of elemental sulfur by green and purple sulfur bacteria[J]. Archives of Microbiology, 1986, 146(1): 52-56. |
33 | IMHOFF J F, HIRAISHI A, SŰLING J. Anoxygenic phototrophic purple bacteria[M]//BRENNER D J, KRIEG N R, STALEY J T, et al. Bergey’s Manual of Systematic Bacteriology. Boston, MA: Springer, 2005: 119-132. |
34 | IMHOFF J F. The family ectothiorhodospiraceae[M]//DWORKIN M, FALKOW S, ROSENBERG E, et al. The Prokaryotes: Volume6: Proteobacteria: Gamma Subclass. New York: Springer, 2006: 874-886. |
35 | IMHOFF J F. The chromatiaceae[M]//DWORKIN M, FALKOW S, ROSENBERG E, et al. The Prokaryotes. New York: Springer, 2006: 846-873. |
36 | BRUNE D C. Sulfur compounds as photosynthetic electron donors[M]//BLANKENSHIP R E, MADIGAN M T, BAUER C E. Anoxygenic Photosynthetic Bacteria. Dordrecht: Springer Netherlands, 1995: 847-870. |
37 | GRAFF A, STUBNER S. Isolation and molecular characterization of thiosulfate-oxidizing bacteria from an Italian rice field soil[J]. Systematic and Applied Microbiology, 2003, 26(3): 445-452. |
38 | DEB C, STACKEBRANDT E, PRADELLA S, et al. Phylogenetically diverse new sulfur chemolithotrophs of α-proteobacteria isolated from Indian soils[J]. Current Microbiology, 2004, 48(6): 452-458. |
39 | ITO T, SUGITA K, Isolation OKABE S., characterization, and in situ detection of a novel chemolithoautotrophic sulfur-oxidizing bacterium in wastewater biofilms growing under microaerophilic conditions[J]. Applied and Environmental Microbiology, 2004, 70(5): 3122. |
40 | KUENEN J G, ROBERTSON L A. The use of natural bacterial populations for the treatment of sulphur-containing wastewater[J]. Biodegradation, 1992, 3(2/3): 239-254. |
41 | SOROKIN D Y, LYSENKO A M, MITYUSHINA L L, et al. Thioalkalimicrobium aerophilumgen. nov., sp. nov. and Thioalkalimicrobium sibericum sp. nov., and Thioalkalivibrio versutusgen. nov., sp. nov., Thioalkalivibrio nitratis sp. nov., novel and Thioalkalivibrio denitrificancs sp. nov., novel obligately alkaliphilic and obligately chemolithoautotrophic sulfur-oxidizing bacteria from soda lakes[J]. International Journal of Systematic and Evolutionary Microbiology, 2001, 51(2): 565-580. |
42 | LEROUX N W, WAKERLEY D S, HUNT S D. Thermophilic thiobacillus-type bacteria from icelandic thermal areas[J]. Journal of General Microbiology, 1977, 100(1): 197-201. |
43 | CALDWELL D E, BRANNAN D K, KIEFT T L. Thermothrix thiopara: selection and adaptation of a filamentous sulfur-oxidizing bacterium colonizing hot spring tufa at pH 7.0 and 74℃[J]. Ecological Bulletins, 1983(35): 129-134. |
44 | JANNASCH H W. Chemosynthetically sustained ecosystems in the deep sea[J]. Autotrophic Bacteria, 1988, 7(3): 45-65. |
45 | SOROKIND Y, BANCIU H, ROBERTSON L A, et al. Halophilic and haloalkaliphilicsulfur-oxidizingbacteria[M]//ROSENBERG E, DELONG E F, LORY S, et al. The prokaryotes: prokaryotic physiology and biochemistry. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013: 529-554. |
46 | BANCIU H, SOROKIN D Y, KLEEREBEZEM R, et al. Growth kinetics of haloalkaliphilic, sulfur-oxidizing bacterium Thioalkalivibrio versutus strain ALJ 15 in continuous culture[J]. Extremophiles: Life Under Extreme Conditions, 2004, 8(3): 185-192. |
47 | FOTI M, MA S B, SOROKIN D Y, et al. Genetic diversity and biogeography of haloalkaliphilic sulphur-oxidizing bacteria belonging to the genus Thioalkalivibrio[J]. FEMS Microbiology Ecology, 2006, 56(1): 95-101. |
48 | MOHAPATRA B R, GOULD W D, DINARDO O, et al. An overview of the biochemical and molecular aspects of microbial oxidation of inorganic sulfur compounds[J]. Clean Soil Air Water, 2008, 36(10-11): 823-829. |
49 | DAHL C. Cytoplasmic sulfur trafficking in sulfur-oxidizing prokaryotes[J]. Iubmb Life, 2015, 67(4): 268-274. |
50 | 刘阳, 姜丽晶, 邵宗泽. 硫氧化细菌的种类及硫氧化途径的研究进展[J]. 微生物学报, 2018, 58(2): 191-201. |
LIU Yang, JIANG Lijing, SHAO Zongze. Advances in sulfur-oxidizing bacterial taxa and their sulfur oxidation pathways[J]. Acta Microbiologica Sinica, 2018, 58(2): 191-201. | |
51 | FRIGAARD N U, DAHL C. Sulfur metabolism in phototrophic sulfur bacteria[J]. Advances in Microbial Physiology, 2008, 54:103-200. |
52 | GRABARCZYK D B, BERKS B C. Intermediates in the Sox sulfur oxidation pathway are bound to a sulfane conjugate of the carrier protein Sox YZ[J]. PLoS One, 2017, 12(3): e0173395. |
53 | KURTH J M, BRITO J A, REUTER J, et al. Electron accepting units of the diheme cytochrome c TsdA, a bifunctional thiosulfate dehydrogenase/tetrathionate reductase[J]. Journal of Biological Chemistry, 2016, 291(48): 24804-24818. |
54 | KAPPLER U. Bacterial sulfite-oxidizing enzymes[J]. Biochimica et Biophysica Acta-Bioenergetics, 2011, 1807(1): 1-10. |
55 | QUENTMEIER A, KRAFT R, KOSTKA S, et al. Characterization of a new type of sulfite dehydrogenase from Paracoccus pantotrophus GB17[J]. Archives of Microbiology, 2000, 173(2): 117-125. |
56 | 穆廷桢. 嗜盐嗜碱多能硫碱弧菌SOB306代谢工程及脱硫工艺研究[D]. 北京: 中国科学院大学, 2016. |
MU Tingzhen. Metabolic engineering of haloalkaliphilic Thialkalivibrio versutus SOB306 and its application in biodesulfurization[D]. Beijing: Universitity of Chinese Academy of Sciences, 2016. | |
57 | 陈赓良. 天然气生物脱硫工艺评述[J]. 天然气与石油, 2015, 33(3): 33-38. |
CHEN Gengliang. Review on natural gas biological desulfurization process[J]. Natural Gas and Oil, 2015, 33(3): 33-38. | |
58 | KLEINJAN W E, DE KEIZER A, JANSSEN A J H. Biologically produced sulfur[M]//STEUDEL R. Elemental Sulfur and Sulfur-Rich Compounds I. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003: 167-188. |
59 | KLEINJAN W E, LAMMERS J N, DE KEIZER A, et al. Effect of biologically produced sulfur on gas absorption in a biotechnological hydrogen sulfide removal process[J]. Biotechnology and Bioengineering, 2006, 94(4): 633-644. |
60 | CHEN C Y, TSAI T H, CHANG C H, et al. Airlift bioreactor system for simultaneous removal of hydrogen sulfide and ammonia from synthetic and actual waste gases[J]. Journal of Environmental Science and Health, Part A, 2018, 53(8): 694-701. |
61 | TOTH G, NEMESTOTHY N, BELAFI-BAKO K, et al. Degradation of hydrogen sulfide by immobilized Thiobacillus thioparus in continuous biotrickling reactor fed with synthetic gas mixture[J]. International Biodeterioration & Biodegradation, 2015, 105: 185-191. |
62 | BOSCH P L F VAN DEN, BEUSEKOM O C VAN, BUISMAN C J N, et al. Sulfide oxidation at halo-alkaline conditions in a fed-batch bioreactor[J]. Biotechnology and Bioengineering, 2007, 97(5): 1053-1063. |
63 | CHENG R, ZHOU W, LIN L, et al. Removal of high concentrations of H2S from simulated natural gas by Acidithiobacillus ferrooxidans immobilized on polyurethane foam[J]. Journal of Chemical Technology and Biotechnology, 2013, 88(5): 975-978. |
64 | DUMONT E, CABRAL F D A S, LE CLOIREC P, et al. Biofiltration using peat and a nutritional synthetic packing material: influence of the packing configuration on H2S removal[J]. Environmental Technology, 2013, 34(9-12): 1123-1129. |
65 | 陈金才. Halothiobacillus neapolitanus CYJN-1筛选、耐盐机理及其脱硫性能研究[D]. 无锡: 江南大学, 2015. |
CHEN Jincai. Salt-tolerant mechanism and biodesulfurization function of screened Halothiobacillus neapolitanus CYJN-1[D]. Wuxi: Jiangnan University, 2015. | |
66 | MU T Z, YANG M H, ZHAO J X, et al. Improvement of desulfurizing activity of haloalkaliphilic Thialkalivibrio versutus SOB306 with the expression of Vitreoscilla hemoglobin gene[J]. Biotechnology Letters, 2017, 39(3): 447-452. |
67 | SHARSHAR M M, SAMAK N A, HAO X M, et al. Enhanced growth-driven stepwise inducible expression system development in haloalkaliphilic desulfurizing Thioalkalivibrio versutus[J]. Bioresource Technology, 2019, 288: 121486. |
68 | 徐波, 何金龙, 黄黎明,等. 天然气生物脱硫技术及其研究进展[J]. 天然气工业, 2013, 33(1): 116-121. |
XU Bo, HE Jinlong, HUANG Liming, et al. Biodesulfurization in natural gas sweetening process and its research progress[J].Natural Gas Industry, 2013, 33(1): 116-121. |
[1] | 赵巍, 赵德银, 李世瀚, 刘洪达, 孙进, 郭艳秋. 三嗪型天然气管道缓蚀型减阻剂合成与应用[J]. 化工进展, 2023, 42(S1): 391-399. |
[2] | 闫青, 张云峰, 赵敏伟, 宋宁, 高辉, 周静. LNG接收站大跨距补偿平台的可行性分析[J]. 化工进展, 2023, 42(S1): 158-165. |
[3] | 杨玉地, 李文韬, 钱永康, 惠军红. 工业燃烧室天然气湍流扩散火焰长度影响因素分析[J]. 化工进展, 2023, 42(S1): 267-275. |
[4] | 陈翔宇, 卞春林, 肖本益. 温度分级厌氧消化工艺的研究进展[J]. 化工进展, 2023, 42(9): 4872-4881. |
[5] | 于姗, 段元刚, 张怡欣, 唐春, 付梦瑶, 黄靖元, 周莹. 分步法分解硫化氢制氢和硫黄催化剂研究进展[J]. 化工进展, 2023, 42(7): 3780-3790. |
[6] | 阮鹏, 杨润农, 林梓荣, 孙永明. 甲烷催化部分氧化制合成气催化剂的研究进展[J]. 化工进展, 2023, 42(4): 1832-1846. |
[7] | 龚陈俊, 梅道锋. 钨修饰对镍载氧体的沼气化学链重整制氢性能影响[J]. 化工进展, 2023, 42(4): 2130-2141. |
[8] | 袁礼, 王学谦, 李翔, 王郎郎, 马懿星, 宁平, 熊亦然. 催化脱除钢铁副产煤气中COS和H2S的研究进展[J]. 化工进展, 2023, 42(10): 5147-5161. |
[9] | 张潇, 王占一, 吴峙颖, 刘玉婷, 刘子龙, 刘欣佳, 张遂安. 压裂支撑剂的覆膜改性技术[J]. 化工进展, 2023, 42(1): 386-400. |
[10] | 张辛亥, 赵思琛, 朱辉, 王凯, 张首石. 活性碳纤维负载型脱硫剂在矿井气体环境条件下的应用[J]. 化工进展, 2022, 41(S1): 415-423. |
[11] | 张辛亥, 赵思琛, 朱辉, 张首石, 王凯. 多种碳材料与碳酸钠复合后脱硫性能对比[J]. 化工进展, 2022, 41(S1): 424-435. |
[12] | 贾文龙, 孙溢彬, 汤丁, 陈家文, 雷思罗, 李长俊. 基于支持向量机的输气管道泄漏压降信号智能识别方法[J]. 化工进展, 2022, 41(9): 4713-4722. |
[13] | 王玉娟, 唐建峰, 花亦怀, 陈静, 桑伟, 刘云飞. 不同开车工况对天然气脱碳装置响应特性影响[J]. 化工进展, 2022, 41(4): 1770-1780. |
[14] | 马小娟, 王彧斐, 冯霄. 天然气水合物开采平台能量系统优化[J]. 化工进展, 2022, 41(3): 1667-1676. |
[15] | 陈伟锋, 尚娟, 邢百汇, 魏皓天, 顾超华, 花争立. 关于天然气管网安全掺氢比10%的商榷[J]. 化工进展, 2022, 41(3): 1487-1493. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |