化工进展 ›› 2021, Vol. 40 ›› Issue (4): 1917-1927.DOI: 10.16085/j.issn.1000-6613.2020-2085
韩小雪(), 陈妍希, 赵俏, 陈佳佳, 黄守莹, 吕静, 马新宾()
收稿日期:
2020-10-16
出版日期:
2021-04-05
发布日期:
2021-04-14
通讯作者:
马新宾
作者简介:
韩小雪(1996—),女,博士研究生,研究方向为费托合成。E-mail:基金资助:
HAN Xiaoxue(), CHEN Yanxi, ZHAO Qiao, CHEN Jiajia, HUANG Shouying, LYU Jing, MA Xinbin()
Received:
2020-10-16
Online:
2021-04-05
Published:
2021-04-14
Contact:
MA Xinbin
摘要:
利用费托合成工艺,将煤、生物质等原料气化产生的合成气转化为液体燃料或化学品,符合我国能源特点和战略需求,而高性能铁基费托合成催化剂的开发能够推动该工艺进步,载体的结构和电子环境会显著影响催化剂的性质。碳材料是铁基费托合成催化剂备受关注的一类载体。本文回顾了不同种类的碳限域载体(包括碳纳米管、介孔碳、有机物衍生、石墨烯等)在费托合成中的最新进展,并重点从几何效应和电子效应两方面阐述了碳材料对铁基费托合成催化剂的限域作用,如对气体扩散和局部浓度、铁物种还原和碳化、碳化铁的相态和晶粒尺寸的稳定性等方面的影响。今后的研究重点是解决催化剂可控制备及碳材料本身在工业操作条件下的稳定性问题,并进一步探明碳包覆结构对碳化铁物相形成和反应机理的影响机制。
中图分类号:
韩小雪, 陈妍希, 赵俏, 陈佳佳, 黄守莹, 吕静, 马新宾. 碳限域铁基费托合成催化剂研究进展[J]. 化工进展, 2021, 40(4): 1917-1927.
HAN Xiaoxue, CHEN Yanxi, ZHAO Qiao, CHEN Jiajia, HUANG Shouying, LYU Jing, MA Xinbin. Advances in carbon-confined iron-based catalysts for Fischer-Tropsch synthesis[J]. Chemical Industry and Engineering Progress, 2021, 40(4): 1917-1927.
1 | 邹才能, 潘松圻, 赵群. 论中国“能源独立”战略的内涵、挑战及意义[J]. 石油勘探与开发, 2020, 47(2): 416-426. |
ZOU Caineng, PAN Songqi, ZHAO Qun. On the connotation, challenge and significance of China’s “energy independence” strategy[J]. Petroleum Exploration and Development, 2020, 47(2): 416-426. | |
2 | 高鹏, 崔勖, 钟良枢, 等. CO/CO2加氢高选择性合成化学品和液体燃料[J]. 化工进展, 2019, 38(1): 183-195. |
GAO Peng, CUI Xu, ZHONG Liangshu, et al. CO/CO2 hydrogenation to chemicals and liquid fuels with high selectivity[J]. Chemical Industry and Engineering Progress, 2019, 38(1): 183-195. | |
3 | LU Fangxu, CHEN Xin, LEI Zhigang, et al. Revealing the activity of different iron carbides for Fischer-Tropsch synthesis[J]. Applied Catalysis B: Environmental, 2021, 281: 119-521. |
4 | CAGNOLI M V, MARCHETTI S G, GALLEGOS N G, et al. Influence of the support on the activity and selectivity of high dispersion Fe catalysts in the Fischer-Tropsch reaction[J]. Journal of Catalysis, 1990, 123(1): 21-30. |
5 | CHERNYAK S A, SUSLOVA E V, IVANOV A S, et al. Co catalysts supported on oxidized CNTs: evolution of structure during preparation, reduction and catalytic test in Fischer-Tropsch synthesis[J]. Applied Catalysis A: General, 2016, 523: 221-229. |
6 | DAS S, PÉREZ-RAMÍREZ J, GONG Jinlong, et al. Core-shell structured catalysts for thermocatalytic, photocatalytic, and electrocatalytic conversion of CO2[J]. Chemical Society Reviews, 2020, 49(10): 2937-3004. |
7 | TIAN Hao, LI Xinyu, ZENG Liang, et al. Recent advances on the design of group Ⅷ base-metal catalysts with encapsulated structures[J]. ACS Catalysis, 2015, 5(8): 4959-4977. |
8 | 薛丽君, 张迪, 魏杰, 等. 催化剂的孔道限域效应[J]. 化学进展, 2016, 28(4): 450-458. |
XUE Lijun, ZHANG Di, WEI Jie, et al. Pore confinement effects of catalysts[J]. Progress in Chemistry, 2016, 28(4): 450-458. | |
9 | 李娟, 吴梁鹏, 邱勇, 等. 费托合成催化剂的研究进展[J]. 化工进展, 2013, 32(S1): 100-109. |
LI Juan, WU Liangpeng, QIU Yong, et al. Research advances in catalysts for progress for Fischer-Tropsch synthesis[J]. Chemical Industry and Engineering Progress, 2013, 32(S1): 100-109. | |
10 | ABBASLOU R M M, TAVASSOLI A, SOLTAN J, et al. Iron catalysts supported on carbon nanotubes for Fischer-Tropsch synthesis: effect of catalytic site position[J]. Applied Catalysis A: General, 2009, 367(1/2): 47-52. |
11 | TANG Qinghu, ZHANG Qinghong, WANG Ping, et al. Characterizations of cobalt oxide nanoparticles within faujasite zeolites and the formation of metallic cobalt[J]. Chemistry of Materials, 2004, 16(10): 1967-1976. |
12 | XIONG Haifeng, ZHANG Yuhua, WANG Shuguo, et al. Preparation and catalytic activity for Fischer-Tropsch synthesis of Ru nanoparticles confined in the channels of mesoporous SBA-15[J]. The Journal of Physical Chemistry C, 2008, 112(26): 9706-9709. |
13 | JIANG Nan, YANG Guohui, ZHANG Xiongfu, et al. A novel silicalite-1 zeolite shell encapsulated iron-based catalyst for controlling synthesis of light alkenes from syngas[J]. Catalysis Communications, 2011, 12(11): 951-954. |
14 | ZHU Can, ZHANG Mingwei, HUANG Chao, et al. Carbon-encapsulated highly dispersed FeMn nanoparticles for Fischer-Tropsch synthesis to light olefins[J]. New Journal of Chemistry, 2018, 42(4): 2413-2421. |
15 | SANTEN R A VAN. Complementary structure-sensitive and insensitive catalytic relationships[J]. Accounts of Chemical Research, 2010, 40(16): 57-66. |
16 | GOODMAN E D, SCHWALBE J A, CARGNELLO M. Mechanistic understanding and the rational design of sinter-resistant heterogeneous catalysts[J]. ACS Catalysis, 2017, 7(10): 7156-7173. |
17 | MOULIJN J A, DIEPEN A E VAN, KAPTEIJN F. Catalyst deactivation: is it predictable? What to do?[J]. Applied Catalysis A: General, 2001, 212(1): 3-16. |
18 | DE SMIT E, WECKHUYSEN B M. The renaissance of iron-based Fischer-Tropsch synthesis: on the multifaceted catalyst deactivation behaviour[J]. Chemical Society Reviews, 2008, 37(12): 2758-2781. |
19 | ZHUO Ou, YANG Lijun, GAO Fujie, et al. Stabilizing the active phase of iron-based Fischer-Tropsch catalysts for lower olefins: mechanism and Strategy[J]. Chemical Science, 2019, 10(24): 6083-6090. |
20 | HUANG Xiao, YIN Zongyou, WU Shixin, et al. Graphene-based materials: synthesis, characterization, properties, and applications[J]. Small, 2011, 7(14): 1876-1902. |
21 | MOUSSA S O, PANCHAKARLA L S, HO M Q, et al. Graphene-supported, iron-based nanoparticles for catalytic production of liquid hydrocarbons from synthesis gas: the role of the graphene support in comparison with carbon nanotubes[J]. ACS Catalysis, 2014, 4(2): 535-545. |
22 | BLASE X, BENEDICT L X, SHIRLEY E L, et al. Hybridization effects and metallicity in small radius carbon nanotubes[J]. Physical Review Letters, 1994, 72(12): 1878-1881. |
23 | GUAN Jing, PAN Xiulian, LIU Xin, et al. Syngas segregation induced by confinement in carbon nanotubes: a combined first-principles and Monte Carlo study[J]. The Journal of Physical Chemistry C, 2009, 113(52): 21687-21692. |
24 | PAN Xiulian, BAO Xinhe. Reactions over catalysts confined in carbon nanotubes[J]. Chemical Communications, 2008, 47: 6271-6281. |
25 | YAO Dawei, WANG Yue, LI Ying, et al. A high-performance nanoreactor for carbon-oxygen bond hydrogenation reactions achieved by the morphology of nanotube-assembled hollow spheres[J]. ACS Catalysis, 2018, 8(2): 1218-1226. |
26 | CHEN Xiaoqi, DENG Dehui, PAN Xiulian, et al. N-doped graphene as an electron donor of iron catalysts for CO hydrogenation to light olefins[J]. Chemical Communications, 2015, 51(1): 217-220. |
27 | CHEN Wei, PAN Xiulian, WILLINGER M G, et al. Facile autoreduction of iron oxide/carbon nanotube encapsulates[J]. Journal of the American Chemical Society, 2006, 128(10): 3136-3137. |
28 | CHEN Wei, PAN Xiulian, BAO Xinhe. Tuning of redox properties of iron and iron oxides via encapsulation within carbon nanotubes[J]. Journal of the American Chemical Society, 2007, 129(23): 7421-7426. |
29 | LU Jinzhao, YANG Lijun, XU Bolian, et al. Promotion effects of nitrogen doping into carbon nanotubes on supported iron Fischer-Tropsch catalysts for lower olefins[J]. ACS Catalysis, 2014, 4(2): 613-621. |
30 | FAN Zhongli, CHEN Wei, PAN Xiulian, et al. Catalytic conversion of syngas into C2 oxygenates over Rh-based catalysts—Effect of carbon supports[J]. Catalysis Today, 2009, 147(2): 86-93. |
31 | LIU Renjie, XU Yan, LI Zhenhua, et al. A facile and efficient modification of CNTs for improved Fischer-Tropsch performance on iron catalyst: alkali modification[J]. ChemCatChem, 2016, 8(8): 1454-1458. |
32 | GALVIS H M T, DE JONG K P. Catalysts for production of lower olefins from synthesis gas: a review[J]. ACS Catalysis, 2013, 3(9): 2130-2149. |
33 | DE SMIT E, CINQUINI F, BEALE A M, et al. Stability and reactivity of ϵ-χ-θ iron carbide catalyst phases in Fischer-Tropsch synthesis: controlling μc[J]. Journal of the American Chemical Society, 2010, 132(42): 14928-14941. |
34 | WEZENDONK T A, SUN Xiaohui, DUGULAN A I, et al. Controlled formation of iron carbides and their performance in Fischer-Tropsch synthesis[J]. Journal of Catalysis, 2018, 362: 106-117. |
35 | LU Kuan, HUO Chunfang, HE Yurong, et al. Grain boundary plays a key role in carbon diffusion in carbon irons revealed by a ReaxFF study[J]. The Journal of Physical Chemistry C, 2018, 122(40): 23191-23199. |
36 | WEZENDONK T A, SANTOS V P, NASALEVICH M A, et al. Elucidating the nature of Fe species during pyrolysis of the Fe-BTC MOF into highly active and stable Fischer-Tropsch catalysts[J]. ACS Catalysis, 2016, 6(5): 3236-3247. |
37 | TENG Xinsheng, HUANG Shouying, WANG Jian, et al. Fabrication of Fe2C embedded in hollow carbon apheres: a high-performance and stable catalyst for Fischer-Tropsch synthesis[J]. ChemCatChem, 2018, 10(17): 3883-3891. |
38 | SANTOS V P, WEZENDONK T A, JAEN J J D, et al. Metal organic framework-mediated synthesis of highly active and stable Fischer-Tropsch catalysts[J]. Nature Communications, 2015, 6: 8. |
39 | Shuai LYU, LIU Chengchao, WANG Guanghui, et al. Structural evolution of carbon in an Fe@C catalyst during the Fischer-Tropsch synthesis reaction[J]. Catalysis Science & Technology, 2019, 9(4): 1013-1020. |
40 | Shuai LYU, WANG Li, LI Zhe, et al. Stabilization of ε-iron carbide as high-temperature catalyst under realistic Fischer-Tropsch synthesis conditions[J]. Nature Communications, 2020, 11(1): 6219. |
41 | CHEN Wei, FAN Zhongli, PAN Xiulian, et al. Effect of confinement in carbon nanotubes on the activity of Fischer-Tropsch iron catalyst[J]. Journal of the American Chemical Society, 2008, 130(29): 9414-9419. |
42 | ABBASLOU R M M, SOLTAN J, DALAI A K. Effects of nanotubes pore size on the catalytic performances of iron catalysts supported on carbon nanotubes for Fischer-Tropsch synthesis[J]. Applied Catalysis A: General, 2010, 379(1/2): 129-134. |
43 | CHEN Xiaoqi, DENG Dehui, PAN Xiulian, et al. Iron catalyst encapsulated in carbon nanotubes for CO hydrogenation to light olefins[J]. Chinese Journal of Catalysis, 2015, 36(9): 1631-1637. |
44 | GU Bang, HE Shun, PERON D V, et al. Synergy of nanoconfinement and promotion in the design of efficient supported iron catalysts for direct olefin synthesis from syngas[J]. Journal of Catalysis, 2019, 376: 1-16. |
45 | Kyoung-Su HA, KWAK Geunjae, Ki-Won JUN, et al. Ordered mesoporous carbon nanochannel reactors for high-performance Fischer-Tropsch synthesis[J]. Chemical Communications, 2013, 49(45): 5141-5143. |
46 | OSCHATZ M, DEELEN T W VAN, WEBER J L, et al. Effects of calcination and activation conditions on ordered mesoporous carbon supported iron catalysts for production of lower olefins from synthesis gas[J]. Catalysis Science & Technology, 2016, 6(24): 8464-8473. |
47 | KANG Shin Wook, KIM Kyeounghak, CHUN Dong Hyun, et al. High-performance Fe5C2@CMK-3 nanocatalyst for selective and high-yield production of gasoline-range hydrocarbons[J]. Journal of Catalysis, 2017, 349: 66-74. |
48 | SUN Zhenkun, SUN Bo, QIAO Minghua, et al. A general chelate-assisted co-assembly to metallic nanoparticles-incorporated ordered mesoporous carbon catalysts for Fischer-Tropsch synthesis[J]. Journal of the American Chemical Society, 2012, 134(42): 17653-17660. |
49 | HWANG Sunmi, ZHANG Chundong, HAN Seungju, et al. Mesoporous carbon as an effective support for Fe catalyst for CO2 hydrogenation to liquid hydrocarbons[J]. Journal of CO2 Utilization, 2020, 37: 65-73. |
50 | CHEN Qingjun, LIU Guoguo, DING Shuya, et al. Design of ultra-active iron-based Fischer-Tropsch synthesis catalysts over spherical mesoporous carbon with developed porosity[J]. Chemical Engineering Journal, 2018, 334: 714-724. |
51 | LIU Guoguo, CHEN Qingjun, OYUNKHAND E, et al. Nitrogen-rich mesoporous carbon supported iron catalyst with superior activity for Fischer-Tropsch synthesis[J]. Carbon, 2018, 130: 304-314. |
52 | NI Zhijiang, QIN Hengfei, KANG Shifei, et al. Effect of graphitic carbon modification on the catalytic performance of Fe@SiO2-GC catalysts for forming lower olefins via Fischer-Tropsch synthesis[J]. Journal of Colloid and Interface Science, 2018, 516: 16-22. |
53 | NI Zhijiang, ZHANG Xuefei, BAI Jirong, et al. Potassium promoted core-shell-structured FeK@SiO2-GC catalysts used for Fischer-Tropsch synthesis to olefins without further reduction[J]. New Journal of Chemistry, 2020, 44(1): 87-94. |
54 | LIU Junhui, ZHANG Anfeng, LIU Min, et al. Fe-MOF-derived highly active catalysts for carbon dioxide hydrogenation to valuable hydrocarbons[J]. Journal of CO2 Utilization, 2017, 21: 100-107. |
55 | WEZENDONK T A, WARRINGA Q S E, SANTOS V P, et al. Structural and elemental influence from various MOFs on the performance of Fe@C catalysts for Fischer-Tropsch synthesis[J]. Faraday Discussions, 2017, 197: 225-242. |
56 | LIU Junhui, SUN Yanwei, JIANG Xiao, et al. Pyrolyzing ZIF-8 to N-doped porous carbon facilitated by iron and potassium for CO2 hydrogenation to value-added hydrocarbons[J]. Journal of CO2 Utilization, 2018, 25: 120-127. |
57 | DONG Zichao, ZHAO Jie, TIAN Yajie, et al. Preparation and performances of ZIF-67-derived FeCo bimetallic catalysts for CO2 hydrogenation to light olefins[J]. Catalysts, 2020, 10(4): 17. |
58 | YANG Xiangping, GUO Xiaoxue, ZHANG Chenghua, et al. Synthesis and catalytic properties of iron based Fischer-Tropsch catalyst mediated by MOFs Fe-MIL-100[J]. Acta Chimica Sinica, 2017, 75(4): 360-366. |
59 | RAMIREZ A, GEVERS L, BAVYKINA A, et al. Metal organic framework-derived iron catalysts for the direct hydrogenation of CO2 to short chain olefins[J]. ACS Catalysis, 2018, 8(10): 9174-9182. |
60 | AN Bing, CHENG Kang, WANG Cheng, et al. Pyrolysis of metal-organic frameworks to Fe3O4@Fe5C2 core-shell nanoparticles for Fischer-Tropsch synthesis[J]. ACS Catalysis, 2016, 6(6): 3610-3618. |
61 | LIU Junhui, ZHANG Anfeng, JIANG Xiao, et al. Overcoating the surface of Fe-based catalyst with ZnO and nitrogen-doped carbon toward high selectivity of light olefins in CO2 hydrogenation[J]. Industrial & Engineering Chemistry Research, 2019, 58(10): 4017-4023. |
62 | YU Guobin, SUN Bo, PEI Yan, et al. FexOy@C spheres as an excellent catalyst for Fischer-Tropsch synthesis[J]. Journal of the American Chemical Society, 2010, 132(3): 935-937. |
63 | HONG Seok-Yong, CHUN Dong-Hyun, YANG Jung-Il, et al. A new synthesis of carbon encapsulated Fe5C2 nanoparticles for high-temperature Fischer-Tropsch synthesis[J]. Nanoscale, 2015, 7(40): 16616-16620. |
64 | TU Junling, DING Mingyue, ZHANG Qian, et al. Design of carbon-encapsulated Fe3O4 nanocatalyst with enhanced performance for Fischer-Tropsch synthesis[J]. ChemCatChem, 2015, 7(15): 2323-2327. |
65 | MA Guangyuan, WANG Xianzhou, XU Yanfei, et al. Enhanced conversion of syngas to gasoline-range hydrocarbons over carbon encapsulated bimetallic FeMn nanoparticles[J]. ACS Applied Energy Materials, 2018, 1(8): 4304-4312. |
66 | XUE Yingying, ZHAI Yongbiao, CHEN Zheng, et al. Sol-gel autocombustion combined carbothermal synthesis of iron-based catalysts for the Fischer-Tropsch reaction[J]. ChemCatChem, 2018, 10(4): 831-836. |
67 | QIN Hengfei, WANG Bin, ZHANG Chunyong, et al. Lignin based synthesis of graphitic carbon-encapsulated iron nanoparticles as effective catalyst for forming lower olefins via Fischer-Tropsch synthesis[J]. Catalysis Communications, 2017, 96: 28-31. |
68 | QIN Hengfei, ZHOU Yue, BAI Jirong, et al. Lignin-derived thin-walled graphitic carbon-encapsulated iron nanoparticles: growth, characterization, and applications[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(2): 1917-1923. |
69 | 秦恒飞, 赵晶艳, 周月, 等. 木质素基Fe@GC材料的制备及其费托性能研究[J]. 现代化工, 2018, 38(12): 95-98, 100. |
QIN Hengfei, ZHAO Jingyan, ZHOU Yue, et al. Lignin-derived graphitic carbon coated iron nanoparticles and application in Fischer-Tropsch synthesis[J]. Modern Chemical Industry, 2018, 38(12): 95-98, 100. | |
70 | YAN Qiangu, STREET J, YU Fei. Synthesis of carbon-encapsulated iron nanoparticles from wood derived sugars by hydrothermal carbonization (HTC) and their application to convert bio-syngas into liquid hydrocarbons[J]. Biomass & Bioenergy, 2015, 83: 85-95. |
71 | ZHANG Jianli, FANG Kegong, ZHANG Kan, et al. Carbon dispersed iron-manganese catalyst for light olefin synthesis from CO hydrogenation[J]. Korean Journal of Chemical Engineering, 2009, 26(3): 890-894. |
72 | ZHANG Qian, GU Juwen, CHEN Jianfeng, et al. Facile fabrication of porous Fe@C nanohybrids from natural magnetite as excellent Fischer-Tropsch catalysts[J]. Chemical Communications, 2020, 56(33): 4523-4526. |
73 | WU Jianghong, WANG Liancheng, Baoliang LYU, et al. Facile Fabrication of BCN nanosheet-encapsulated nano-iron as highly stable Fischer-Tropsch synthesis catalyst[J]. ACS Applied Materials & Interfaces, 2017, 9(16): 14319-14327. |
74 | Jin-Hee LEE, Hack-Keun LEE, CHUN Dong-Hyun, et al. Phase-controlled synthesis of thermally stable nitrogen-doped carbon supported iron catalysts for highly efficient Fischer-Tropsch synthesis[J]. Nano Research, 2019, 12(10): 2568-2575. |
75 | WANG Yifei, HUANG Shouying, TENG Xinsheng, et al. Controllable Fe/HCS catalysts in the Fischer-Tropsch synthesis: effects of crystallization time[J]. Frontiers of Chemical Science and Engineering, 2020, 14(5): 802-812. |
76 | WANG Chao, ZHAI Peng, ZHANG Zhichao, et al. Synthesis of highly stable graphene-encapsulated iron nanoparticles for catalytic syngas conversion[J]. Particle & Particle Systems Characterization, 2015, 32(1): 29-34. |
77 | LIU Jia, JI Qingmin, IMAI T, et al. Sintering-resistant nanoparticles in wide-mouthed compartments for sustained catalytic performance[J]. Scientific Reports, 2017, 7(1): 41773. |
78 | WU Tijun, LIN Jun, CHENG Yi, et al. Porous graphene-confined Fe-K as highly efficient catalyst for CO2 direct hydrogenation to light olefins[J]. ACS Applied Materials & Interfaces, 2018, 10(28): 23439-23443. |
79 | CHENG Yi, TIAN Jing, LIN Jun, et al. Potassium-promoted magnesium ferrite on 3D porous graphene as highly efficient catalyst for CO hydrogenation to lower olefins[J]. Journal of Catalysis, 2019, 374: 24-35. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[3] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[4] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[5] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[6] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[7] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[8] | 王鹏, 史会兵, 赵德明, 冯保林, 陈倩, 杨妲. 过渡金属催化氯代物的羰基化反应研究进展[J]. 化工进展, 2023, 42(9): 4649-4666. |
[9] | 张启, 赵红, 荣峻峰. 质子交换膜燃料电池中氧还原反应抗毒性电催化剂研究进展[J]. 化工进展, 2023, 42(9): 4677-4691. |
[10] | 王伟涛, 鲍婷玉, 姜旭禄, 何珍红, 王宽, 杨阳, 刘昭铁. 醛酮树脂基非金属催化剂催化氧气氧化苯制备苯酚[J]. 化工进展, 2023, 42(9): 4706-4715. |
[11] | 葛亚粉, 孙宇, 肖鹏, 刘琦, 刘波, 孙成蓥, 巩雁军. 分子筛去除VOCs的研究进展[J]. 化工进展, 2023, 42(9): 4716-4730. |
[12] | 吴海波, 王希仑, 方岩雄, 纪红兵. 3D打印催化材料开发与应用进展[J]. 化工进展, 2023, 42(8): 3956-3964. |
[13] | 毛善俊, 王哲, 王勇. 基团辨识加氢:从概念到应用[J]. 化工进展, 2023, 42(8): 3917-3922. |
[14] | 向阳, 黄寻, 魏子栋. 电催化有机合成反应的活性和选择性调控研究进展[J]. 化工进展, 2023, 42(8): 4005-4014. |
[15] | 王耀刚, 韩子姗, 高嘉辰, 王新宇, 李思琪, 杨全红, 翁哲. 铜基催化剂电还原二氧化碳选择性的调控策略[J]. 化工进展, 2023, 42(8): 4043-4057. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |