化工进展 ›› 2021, Vol. 40 ›› Issue (3): 1425-1437.DOI: 10.16085/j.issn.1000-6613.2020-0818
张巍1(), 汤云灏1, 尹艳山1, 龚蔚成2, 宋健3, 马英2, 阮敏1, 徐慧芳1, 陈冬林1
收稿日期:
2020-05-13
出版日期:
2021-03-05
发布日期:
2021-03-17
通讯作者:
张巍
作者简介:
张巍(1974—),男,博士,讲师,硕士生导师,研究方向为燃烧过程与污染物控制。E-mail:基金资助:
ZHANG Wei1(), TANG Yunhao1, YIN Yanshan1, GONG Weicheng2, SONG Jian3, MA Ying2, RUAN Min1, XU Huifang1, CHEN Donglin1
Received:
2020-05-13
Online:
2021-03-05
Published:
2021-03-17
Contact:
ZHANG Wei
摘要:
钙钛矿因其结构稳定并具有优异的物化性质,近年来在催化剂方面的应用受到了广泛关注。本文综述了采用不同方法对镧系钙钛矿进行改性来增强催化剂的活性、抗毒性、稳定性和选择性的研究进展;分析了镧系钙钛矿的结构、表面参数、活性氧和低温还原性对于挥发性有机物转化效率的影响,重点阐述了通过优选钙钛矿的制备方法、制备负载型钙钛矿和掺杂型钙钛矿等改性方法来提高镧系钙钛矿催化剂的性能,由此展望了未来改性镧系钙钛矿催化剂的研究方向:采用非金属元素掺杂或多种强化方法结合制备高效催化剂、利用催化燃烧协同光催化氧化转化挥发性有机物、进一步通过实验和仿真模拟制备理想钙钛矿催化剂催化氧化多种挥发性有机物混合物以满足工业化需求。
中图分类号:
张巍, 汤云灏, 尹艳山, 龚蔚成, 宋健, 马英, 阮敏, 徐慧芳, 陈冬林. 改性镧系钙钛矿催化剂强化挥发性有机物催化氧化的研究进展[J]. 化工进展, 2021, 40(3): 1425-1437.
ZHANG Wei, TANG Yunhao, YIN Yanshan, GONG Weicheng, SONG Jian, MA Ying, RUAN Min, XU Huifang, CHEN Donglin. Research progress in enhanced catalytic oxidation of VOCs by modified La-based perovskite catalyst[J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1425-1437.
模板 | 模板比表面积/m2?g-1 | 催化剂 | 催化剂比表面积/m2?g-1 | 平均孔径/nm | 孔体积/cm3?g-1 | 参考文献 |
---|---|---|---|---|---|---|
KIT-6 | 948 | LaMnO3 | 155 | 4.8 | 0.2 | [ |
KIT-6 | 948 | LaCoO3 | 125 | 4.8 | 0.1 | [ |
KIT-6 | 789 | LaFeO3 | 138 | 4.2 | 0.196 | [ |
SBA-15 | 710.9 | LaMnO3 | 119.6 | 7.7 | 0.33 | [ |
SBA-15 | 710.9 | LaFeO3 | 92.25 | 4.9 | 0.33 | [ |
二氧化硅纳米球 | 192 | LaFeO3 | 65 | 5.6 | 0.116 | [ |
表1 部分采取硬模板法制备的有序介孔钙钛矿催化剂参数
模板 | 模板比表面积/m2?g-1 | 催化剂 | 催化剂比表面积/m2?g-1 | 平均孔径/nm | 孔体积/cm3?g-1 | 参考文献 |
---|---|---|---|---|---|---|
KIT-6 | 948 | LaMnO3 | 155 | 4.8 | 0.2 | [ |
KIT-6 | 948 | LaCoO3 | 125 | 4.8 | 0.1 | [ |
KIT-6 | 789 | LaFeO3 | 138 | 4.2 | 0.196 | [ |
SBA-15 | 710.9 | LaMnO3 | 119.6 | 7.7 | 0.33 | [ |
SBA-15 | 710.9 | LaFeO3 | 92.25 | 4.9 | 0.33 | [ |
二氧化硅纳米球 | 192 | LaFeO3 | 65 | 5.6 | 0.116 | [ |
1 | 李宇, 李永峰, 吴青青, 等. 金属基体整体式催化剂的制备及在VOCs催化燃烧中的应用研究进展[J]. 化工进展, 2011, 30(4): 74-80, 91. |
LI Yu, LI Yongfeng, WU Qingqing, et al. Preparation of monolithic catalyst with metallic substrate and application in catalytic combustion of VOCs[J]. Chemical Industry and Engineering Progress, 2011, 30(4): 74-80, 91. | |
2 | KAMAL Muhammad Shahzad, RAZZAK Shaikh A, HOSSAIN Mohammad M. Catalytic oxidation of volatile organic compounds (VOCs)—A review[J]. Atmospheric Environment, 2016, 140: 117-134. |
3 | 户英杰, 王志强, 程星星, 等. 燃烧处理挥发性有机污染物的研究进展[J]. 化工进展, 2018, 37(1): 319-329 |
HU Yingjie, WANG Zhiqiang, CHENG Xingxing, et al. Recent progress in the removal of volatile organic compounds by combustion[J]. Chemical Industry and Engineering Progress, 2018, 37(1): 319-329. | |
4 | 中华人民共和国国家环境保护局, 中国国家标准化管理委员会. 大气污染物综合排放标准: [S]. 北京: 中国标准出版社, 1996. |
National Environmental Protection Agency of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Integrated emission standard of air pollutants: [S]. Beijing: Standards Press of China, 1996. | |
5 | 中华人民共和国国家环境保护总局, 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 饮食业油烟排放标准: [S]. 北京: 中国标准出版社, 2001. |
State Environmental Protection Administration of the People’s Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Emission standard of cooking fume: [S]. Beijing: Standards Press of China, 2001. | |
6 | 刘敏敏, 王永强, 赵朝成, 等. 三维有序大孔钙钛矿催化剂在挥发性有机物催化燃烧中的研究进展[J]. 化工进展, 2017, 36(8): 2934-2940. |
LIU Minmin, WANG Yongqiang, ZHAO Zhaocheng, et al. Research progress in 3DOM perovskite catalyst for catalytic combustion of VOCs[J]. Chemical Industry and Engineering Progress, 2017, 36(8): 2934-2940. | |
7 | 李红花, 汪浩, 严辉. ABO3钙钛矿型复合氧化物光催化剂设计评述[J]. 化工进展, 2006, 25(11): 68-72. |
LI Honghua, WANG Hao, YAN Hui. Review of designing ABO3 perovskite photocatalysts[J]. Chemical Industry and Engineering Progress, 2006, 25(11): 68-72. | |
8 | 祝杰, 刘艳春, 曾令可, 等. 稀土钙钛矿型复合氧化物汽车尾气处理催化剂研究现状[J]. 工业催化, 2010, 18(3): 17-21. |
ZHU Jie, LIU Yanchun, ZENG Lingke, et al. Researches in rare earth perovskite-type oxides catalysts for automotive exhaust treatment[J]. Industrial Catalysis, 2010, 18(3): 17-21. | |
9 | 黄永海, 易红宏, 唐晓龙, 等. 催化燃烧技术用于油烟废气净化的研究进展[J]. 化工进展, 2017, 36(4): 1270-1277. |
HUANG Yonghai, YI Honghong, TANG Xiaolong, et al. Research progress in the removal of cooking oil fumes by catalytic combustion[J]. Chemical Industry and Engineering Progress, 2017, 36(4): 1270-1277. | |
10 | ITOH Takanori, IDEMOTO Yasushi, IMAI Hideto. Local structure change around Co and Fe ions in (La0.6Sr0.4)(Co0.2Fe0.8)O3-δas revealed by in-situ X-ray absorption spectroscopy and first-principles calculation[J]. Journal of Solid State Chemistry, 2017, 258: 702-711. |
11 | SOUZA Roger A De, Saiful ISLAM M, ELLEN Ivers-Tiffée. Formation and migration of cation defects in the perovskite oxide LaMnO3[J]. Journal of Materials Chemistry, 1999, 9(7): 1621-1627. |
12 | 曹全喜, 刘俊杰, 黄云霞, 等. 钙钛矿型氧化物功能材料中氧空位的形成和影响[C]//全国敏感元件与传感器学术会议, 西安, 2005: 86-89. |
CAO Quanxi, LIU Junjie, HUANG Yunxia, et al. Formation and effect of oxygen vacancies in perovskite-type oxide functional materials[C]//National Conference on Sensitive Components and Sensors, Xi’an, 2005: 86-89. | |
13 | NAVICKAS Edvinas, CHEN Yan, LU Qiyang, et al. Dislocations accelerate oxygen ion diffusion in La0.8Sr0.2MnO3 epitaxial thin films[J]. ACS Nano, 2017, 11(11): 11475-11487. |
14 | ASHOK Anchu, KUMAR Anand, Bhosale RAHUL R, et al. Combustion synthesis of bifunctional LaMO3(M=Cr, Mn, Fe, Co, Ni) perovskites for oxygen reduction and oxygen evolution reaction in alkaline media[J]. Journal of Electroanalytical Chemistry, 2018, 809: 22-30. |
15 | HEIDINGER Bertrand, Royer SÉBASTIEN, ALAMDARI Houshang, et al. Reactive grinding synthesis of LaBO3(B: Mn, Fe) perovskite; properties for toluene total oxidation[J]. Catalysts, 2019, 9(8): 633. |
16 | HUANG Haibao, XU Ying, FENG Qiuyu, et al. Low temperature catalytic oxidation of volatile organic compounds: a review[J]. Catalysis Science & Technology, 2015, 5(5): 2649-2669. |
17 | WANG Yuan, ARANDIYAN Hamidreza, SCOTT Jason, et al. Recent advances in ordered meso/macroporous metal oxides for heterogeneous catalysis: a review[J]. Journal of Materials Chemistry A, 2017, 5(19): 8825-8848. |
18 | NAIR Mahesh Muraleedharan, KLEITZ Freddy, KALIAGUINE Serge. Kinetics of methanol oxidation over mesoporous perovskite catalysts[J]. ChemCatChem, 2012, 4(3): 387-394. |
19 | GAO Baozu, DENG Jiguang, LIU Yuxi, et al. Mesoporous LaFeO3 catalysts for the oxidation of toluene and carbon monoxide[J]. Chinese Journal of Catalysis, 2013, 34(12): 2223-2229. |
20 | AFZAL Shahzad, QUAN Xie, ZHANG Jianlin. High surface area mesoporous nanocast LaMO3(M=Mn,Fe) perovskites for efficient catalytic ozonation and an insight into probable catalytic mechanism[J]. Applied Catalysis B: Environmental, 2017, 206: 692-703. |
21 | ZHANG Runduo, LI Peixin, LIU Ning, et al. Effect of hard-template residues of the nanocasted mesoporous LaFeO3 with extremely high surface areas on catalytic behaviors for methyl chloride oxidation[J]. Journal of Materials Chemistry A, 2014, 2(41): 17329-17340. |
22 | XIAO Ping, ZHU Junjiang, ZHAO Dan, et al. Porous LaFeO3 prepared by an in-situ carbon templating method for catalytic transfer hydrogenation reactions[J]. ACS Applied Materials & Interfaces, 2019, 11(17): 15517-15527. |
23 | MENG Qingjie, WANG Wanglong, WENG Xiaole, et al. Active oxygen species in Lan+1NinO3n+1 layered perovskites for catalytic oxidation of toluene and methane[J]. The Journal of Physical Chemistry C, 2016, 120(6): 3259-3266. |
24 | ZANG Meng, ZHAO Chaocheng, WANG Yongqiang, et al. Low temperature catalytic combustion of toluene over three-dimensionally ordered La0.8Ce0.2MnO3/cordierite catalysts[J]. Applied Surface Science, 2019, 483: 355-362. |
25 | LI Chialiang, LIN Yuchuan. Methanol partial oxidation over palladium-, platinum-, and rhodium-integrated LaMnO3 perovskites[J]. Applied Catalysis B: Environmental, 2011, 107(3/4): 284-293. |
26 | STEGE Walter P, LUIS E Cadús, BARBERO Bibiana P. La1-xCaxMnO3 perovskites as catalysts for total oxidation of volatile organic compounds[J]. Catalysis Today, 2011, 172(1): 53-57. |
27 | WANG Li, XIE Hongkai, WANG Xingdan, et al. Preparation of LaMnO3 for catalytic combustion of vinyl chloride[J]. Chinese Journal of Catalysis, 2017, 38(8): 1406-1412. |
28 | CHANG Hui, BJRGUM Erlend, MIHAI Oana, et al. Effects of oxygen mobility in La-Fe-based perovskites on the catalytic activity and selectivity of methane oxidation[J]. ACS Catalysis, 2020, 10(6): 3707-3719. |
29 | GHOLIZADEH Ahmad, MALEKZADEH Azim, GHIASI Mahnaz. Structural and magnetic features of La0.7Sr0.3Mn1-xCoxO3 nano-catalysts for ethane combustion and CO oxidation[J]. Ceramics International, 2016, 42(5): 5707-5717. |
30 | YAO Junxuan, LU Huaiqian, XIAO Yong, et al. Sub-molten salt-acid treatment of LaCoO3 for a highly active catalyst towards propane combustion[J]. Catalysis Communications, 2019, 128: 105718. |
31 | DENG Jiguang, ZHANG Lei, DAI Hongxing, et al. A study on the relationship between low-temperature reducibility and catalytic performance of single-crystalline La0.6Sr0.4MnO3+δ microcubes for toluene combustion[J]. Catalysis Letters, 2009, 130(3/4): 622-629. |
32 | LIU Yuxi, DAI Hongxing, DU Yucheng, et al. Lysine-aided PMMA-templating preparation and high performance of three-dimensionally ordered macroporous LaMnO3 with mesoporous walls for the catalytic combustion of toluene[J]. Applied Catalysis B: Environmental, 2012, 119/120: 20-31. |
33 | LI Bing, YANG Qilei, PENG Yue, et al. Enhanced low-temperature activity of LaMnO3 for toluene oxidation: the effect of treatment with an acidic KMnO4[J]. Chemical Engineering Journal, 2019, 366: 92-99. |
34 | ZHANG Chuanhui, WANG Chao, HUA Wenchao, et al. Relationship between catalytic deactivation and physicochemical properties of LaMnO3 perovskite catalyst during catalytic oxidation of vinyl chloride[J]. Applied Catalysis B: Environmental, 2016, 186: S0926337315303350. |
35 | LI Xinwen, DAI Hongxing, DENG Jiguang, et al. Au/3DOM LaCoO3: high-performance catalysts for the oxidation of carbon monoxide and toluene[J]. Chemical Engineering Journal, 2013, 228: 965-975. |
36 | WANG Sibo, DU Shoucheng, TANG Wenxiang, et al. Mesoporous perovskite nanotube-array enhanced metallic-state platinum dispersion for low temperature propane oxidation[J]. ChemCatChem, 2018, 10(10): 2184-2189. |
37 | ZHU Linlin, LU Guanzhong, WANG Yanqin, et al. Effects of preparation methods on the catalytic performance of LaMn0.8Mg0.2O3 perovskite for methane combustion[J]. Chinese Journal of Catalysis, 2010, 31(8): 1006-1012. |
38 | ZAWADZKI Mirosław, JANUSZ Trawczynski. Synthesis, characterization and catalytic performance of LSCF perovskite for VOC combustion[J]. Catalysis Today, 2011, 176(1): 449-452. |
39 | ZHANG Chuanhui, GUO Yanglong, GUO Yun, et al. LaMnO3 perovskite oxides prepared by different methods for catalytic oxidation of toluene[J]. Applied Catalysis B: Environmental, 2014, 148/149: 490-498. |
40 | WANG Shan, XU Xuelian, ZHU Junjiang, et al. Effect of preparation methodon physicochemical properties and catalytic performances of LaCoO3 perovskite for CO oxidation[J]. Journal of Rare Earths, 2019, 37: 970-977. |
41 | CHEN Hanlin, WEI Gaolin, LIANG Xiaoliang, et al. The distinct effects of substitution and deposition of Ag in perovskite LaCoO3 on the thermally catalytic oxidation of toluene[J]. Applied Surface Science, 2019, 489: 905-912. |
42 | EYSSLER Arnim, WINKLER Alexander, MANDALIEV Peter, et al. Influence of thermally induced structural changes of 2wt% Pd/LaFeO3 on methane combustion activity[J]. Applied Catalysis B: Environmental, 2011, 106(3/4): 494-502. |
43 | Hessam ZIAEI-AZAD, KHODADADI Abbasali, Parvaneh ESMAEILNEJAD-AHRANJANI, et al. Effects of Pd on enhancement of oxidation activity of LaBO3(B=Mn, Fe, Co and Ni) pervoskite catalysts for pollution abatement from natural gas fueled vehicles[J]. Applied Catalysis B: Environmental, 2011, 102(1/2): 62-70. |
44 | MUKAI Daiki, IZUTSU Yoshiyuki, SEKINE Yasushi. Highly and stably dispersed Pt catalysts supported over La1-xSrxAlO3-0.5x perovskite for oxidative methane activation and their structures[J]. Applied Catalysis A: General, 2013, 458: 71-81. |
45 | WANG Yongqiang, XUE Yufen, ZHAO Chaocheng, et al. Catalytic combustion of toluene with La0.8Ce0.2MnO3 supported on CeO2 with different morphologies[J]. Chemical Engineering Journal, 2016, 300: 300-305. |
46 | Anne GIROIR-FENDLER, Maria ALVES-FORTUNATO, RICHARD Melissandre. Synthesis of oxide supported LaMnO3 perovskites to enhance yields in toluene combustion[J]. Applied Catalysis B: Environmental, 2016, 180: 29-37. |
47 | JING Zhongyu, LI Huaiyou, JIANG Zhidong. The chemical interaction of support and active phase in sintering resistant La0.8Ca0.2FeO3 perovskite catalysts[J]. Fuel, 2019, 243: 322-331. |
48 | 王永强, 肖丽, 孙启猛, 等. Pd/La0.8Ce0.2MnO3/ZSM-5的制备及其甲苯催化燃烧活性[J]. 燃烧化学学报, 2014, 42(9): 1146-1152. |
WANG Yongqiang, XIAO Li, SUN Qimeng, et al. Preparation of the Pd/La0.8Ce0.2MnO3/ZSM-5 catalyst and its performance in catalytic combustion of toluene[J]. Journal of Fuel Chemistry and Technology, 2014, 42(9): 1146-1152. | |
49 | ZANG Meng, ZHAO Chaocheng, WANG Yongqiang, et al. A review of recent advances in catalytic combustion of VOCs on perovskite-type catalysts[J]. Journal of Saudi Chemical Society, 2019, 23(6): 645-654. |
50 | XIAO Gang, XIN Song, WANG He, et al. Catalytic oxidation of styrene over Ce-substitution La1-xCexMnO3 catalysts[J]. Industrial & Engineering Chemistry Research, 2019, 58(14): 5388-5396. |
51 | HE Fang, CHEN Jing, LIU Shuai, et al. La1-xSrxFeO3 perovskite-type oxides for chemical-looping steam methane reforming: identification of the surface elements and redox cyclic performance[J]. International Journal of Hydrogen Energy, 2019, 44(21): 10265-10276. |
52 | ZHU Xinbo, TU Xin, CHEN Menghan, et al. La0.8M0.2MnO3(M=Ba, Ca, Ce, Mg and Sr) perovskite catalysts for plasma-catalytic oxidation of ethyl acetate[J]. Catalysis Communications, 2016, 92: 35-39. |
53 | TAN Guotai, DAI Shouyu, DUAN Ping, et al. Structural, electric and magnetic properties of the electron-doped manganese oxide: La1-x TexMnO3(x=0.1, 0.15)[J]. Journal of Applied Physics, 2003, 93(9): 5480-5483. |
54 | TARJOMANNEJAD Ali, NIAEI Aligholi, FARZI Ali, et al. Catalytic oxidation of CO over LaMn1-xBxO3 (B=Cu, Fe) perovskite-type oxides[J]. Catalysis Letters, 2016, 146: 1544-1551. |
55 | HOSSEINI Seyed Ali, SALARI Dariush, NIAEI Aligholi, et al. Physical-chemical property and activity evaluation of LaB0.5Co0.5O3 (B=Cr, Mn, Cu) and LaMnxCo1-xO3(x=0.1, 0.25, 0.5) nano perovskites in VOC combustion[J]. Journal of Industrial and Engineering Chemistry, 2013, 19(6): 1903-1909. |
56 | ZHANG Chuanhui, WANG Chao, ZHAN Wangcheng, et al. Catalytic oxidation of vinyl chloride emission over LaMnO3 and LaB0.2Mn0.8O3 (B=Co, Ni, Fe) catalysts[J]. Applied Catalysis B: Environmental, 2013, 129: 509-516. |
57 | LI Zhishan, Lin LYU, WANG Jinsong, et al. Engineering phosphorus-doped LaFeO3-δperovskite oxide as robust bifunctional oxygen electrocatalysts in alkaline solutions[J]. Nano Energy, 2018, 47: 199-209. |
58 | CHEN Dailing, PAN Kuanlun, CHANG Moo Been. Catalytic removal of phenol from gas streams by perovskite-type catalysts[J]. Journal of Environmental Sciences, 2016, 56(6): 131-139. |
59 | ZHANG Jingyi, TAN Dongdong, MENG Qingjie, et al. Structural modification of LaCoO3 perovskite for oxidation reactions: the synergistic effect of Ca2+ and Mg2+co-substitution on phase formation and catalytic performance[J]. Applied Catalysis B: Environmental, 2015, 172/173: 18-26. |
60 | SHEN Yujuan, ZHU Yinlong, SUNARSO Jaka, et al. New phosphorus-doped perovskite oxide as an oxygen reduction reaction electrocatalyst in an alkaline solution[J]. Chemistry A European Journal, 2018, 24(27): 6950-6957. |
61 | BASHAN Veysi, Yasin UST. Perovskite catalysts for methane combustion: applications, design, effects for reactivity and partial oxidation[J]. International Journal of Energy Research, 2019, 43(14): 7755-7789. |
62 | PANDECH Narasak, SARASAMAK Kanoknan, LIMPIJUMNONG Sukit. Elastic properties of perovskite ATiO3(A=Be, Mg, Ca, Sr, and Ba) and PbBO3(B=Ti, Zr, and Hf): first principles calculations[J]. Journal of Applied Physics, 2015, 117(17): 174108. |
63 | CHEN Shuxia, WANG Yu, JIA Aiping, et al. Enhanced activity for catalytic oxidation of 1,2-dichloroethane over Al-substituted LaMnO3 perovskite catalysts[J]. Applied Surface Science, 2014, 307: 178-188. |
64 | Huei-Ru FUH, LIU Yun-Ping, CHEN Shao-Hua, et al. Electronic structures of compensated magnetism in double perovskites A2CrRu(Os)O6(A=Si, Ge, Sn, and Pb) from ab initio calculations[J]. Journal of Alloys & Compounds, 2013, 547: 126-131. |
65 | THOMAS Chris I, SUCHOMEL Matthew R, DUONG Giap V, et al. Structure and magnetism of the a site scandium perovskite (Sc0.94Mn0.06)Mn0.65Ni0.35O3 synthesized at high pressure[J]. Philosophical Transactions of the Royal Society A: Mathematical Physical and Engineering Sciences, 2014, 372: 20130012. |
66 | HANCOCK C A, PORRAS-VAZQUEZ J M, KEENAN P J, et al. Oxyanions in perovskites: from superconductors to solid oxide fuel cells[J]. Dalton Transactions, 2015, 44: 10559-10569. |
67 | JIANG Bingshiun, CHANG Ray, LIN Yuchuan. Partial oxidation of ethanol to acetaldehyde over LaMnO3-based perovskites: a kinetic study[J]. Industrial & Engineering Chemistry Research, 2013, 52(1): 37-42. |
68 | 牛茜, 李兵, 徐校良, 等. 催化燃烧法处理挥发性有机化合物研究进展[J]. 现代化工, 2013, 33(11): 19-23. |
NIU Qian, LI Bing, XU Xiaoliang, et al. Research progress in catalytic combustion of volatile organic compounds[J]. Modern Chemical Industry, 2013, 33(11): 19-23. | |
69 | Tze Yuen YEO, ASHOK Jangam, KAWI Sibudjing. Recent developments in sulphur-resilient catalytic systems for syngas production[J]. Renewable & Sustainable Energy Reviews, 2019, 100: 52-70. |
70 | SHIN Haebin, BAEK Minsung, KIM Do Heui. Sulfur resistance of Ca-substituted LaCoO3 catalysts in CO oxidation[J]. Molecular Catalysis, 2019, 468: 148-153. |
71 | 张巍, 卢程, 董鹏飞, 等. 铜系低温选择性催化还原脱硝催化剂的研究进展[J]. 化工进展, 2018, 37(10): 3865-3974. |
ZHANG Wei, LU Cheng, DONG Pengfei, et al. Research progress of low temperature SCR denitration catalyst for copper[J]. Chemical Industry and Engineering Progress, 2018, 37(10): 3865-3974. | |
72 | 于旭霞, 冯俊小. 催化燃烧治理氯苯类挥发性有机化合物的最新进展[J]. 化工进展, 2016, 35(5): 1514-1518. |
YU Xuxia, FENG Junxiao. Recent process in the removal of chlorobenzenes volatile organic compounds by catalytic combustion[J]. Chemical Industry and Engineering Progress, 2016, 35(5): 1514-1518. | |
73 | LU Yuanjiao, DAI Qiguang, WANG Xingyi. Catalytic combustion of chlorobenzene on modified LaMnO3 catalysts[J]. Catalysis Communications, 2014, 54: 114-117. |
74 | DAI Qiguang, BAI Shuxing, WANG Zhengyi, et al. Catalytic combustion of chlorobenzene over Ru-doped ceria catalysts[J]. Applied Catalysis B: Environmental, 2012, 126: 64-75. |
75 | DAI Qiguang, BAI Shuxing, WANG Xingyi, et al. Catalytic combustion of chlorobenzene over Ru-doped ceria catalysts: mechanism study[J]. Applied Catalysis B: Environmental, 2013, 129: 580-588. |
76 | WANG Wanglong, MENG Qingjie, XUE Yehui, et al. Lanthanide perovskite catalysts for oxidation of chloroaromatics: secondary pollution and modifications[J]. Journal of Catalysis, 2018, 366: 213-222. |
77 | CHEN Huawei, LI Jinpeng, CUI Wei, et al. Precise fabrication of surface-reconstructed LaMnO3 perovskite with enhanced catalytic performance in CH4 oxidation[J]. Applied Surface Science, 2019, 505: 144112. |
78 | REZLESCU Nicolae, REZLESCU Elena, DORIN Popa Paul Dorin, et al. Some nanograined ferrites and perovskites for catalytic combustion of acetone at low temperature[J]. Ceramics International, 2015, 41(3): 4430-4437. |
79 | QIN Yu, SHEN Fangxia, ZHU Tianle, et al. Catalytic oxidation of ethyl acetate over LaBO3(B=Co, Mn, Ni, Fe) perovskites supported silver catalysts[J]. RSC Advances, 2018, 8: 33425-33431. |
80 | WANG Li, WANG Chen, XIE Hongkai, et al. Catalytic combustion of vinyl chloride over Sr doped LaMnO3[J]. Catalysis Today, 2018, 327: 190-195. |
[1] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[2] | 高雨飞, 鲁金凤. 非均相催化臭氧氧化作用机理研究进展[J]. 化工进展, 2023, 42(S1): 430-438. |
[3] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[4] | 赵景超, 谭明. 表面活性剂对电渗析减量化工业含盐废水的影响[J]. 化工进展, 2023, 42(S1): 529-535. |
[5] | 李化全, 王明华, 邱贵宝. 硫酸酸解钙钛矿相精矿的行为[J]. 化工进展, 2023, 42(S1): 536-541. |
[6] | 王谨航, 何勇, 史伶俐, 龙臻, 梁德青. 气体水合物阻聚剂研究进展[J]. 化工进展, 2023, 42(9): 4587-4602. |
[7] | 葛亚粉, 孙宇, 肖鹏, 刘琦, 刘波, 孙成蓥, 巩雁军. 分子筛去除VOCs的研究进展[J]. 化工进展, 2023, 42(9): 4716-4730. |
[8] | 林晓鹏, 肖友华, 管奕琛, 鲁晓东, 宗文杰, 傅深渊. 离子聚合物-金属复合材料(IPMC)柔性电极的研究进展[J]. 化工进展, 2023, 42(9): 4770-4782. |
[9] | 史天茜, 石永辉, 武新颖, 张益豪, 秦哲, 赵春霞, 路达. Fe2+对厌氧氨氧化EGSB反应器运行性能的影响[J]. 化工进展, 2023, 42(9): 5003-5010. |
[10] | 张丽宏, 金要茹, 程芳琴. 煤气化渣资源化利用[J]. 化工进展, 2023, 42(8): 4447-4457. |
[11] | 毛善俊, 王哲, 王勇. 基团辨识加氢:从概念到应用[J]. 化工进展, 2023, 42(8): 3917-3922. |
[12] | 向阳, 黄寻, 魏子栋. 电催化有机合成反应的活性和选择性调控研究进展[J]. 化工进展, 2023, 42(8): 4005-4014. |
[13] | 陈俊俊, 费昌恩, 段金汤, 顾雪萍, 冯连芳, 张才亮. 高生物活性聚醚醚酮化学改性研究进展[J]. 化工进展, 2023, 42(8): 4015-4028. |
[14] | 张耀杰, 张传祥, 孙悦, 曾会会, 贾建波, 蒋振东. 煤基石墨烯量子点在超级电容器中的应用[J]. 化工进展, 2023, 42(8): 4340-4350. |
[15] | 杨鹏威, 于琳竹, 王放放, 蒋昊轩, 赵光金, 李琦, 杜铭哲, 马双忱. 氨储能在新型电力系统的应用前景、挑战及发展[J]. 化工进展, 2023, 42(8): 4432-4446. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |