化工进展 ›› 2021, Vol. 40 ›› Issue (2): 709-721.DOI: 10.16085/j.issn.1000-6613.2020-0613
王博1(), 宋永一1(), 王鑫1, 孟庆强2, 张彪1, 赵丽萍1, 吴斯侃1
收稿日期:
2020-04-20
修回日期:
2020-08-27
出版日期:
2021-02-05
发布日期:
2021-02-09
通讯作者:
宋永一
作者简介:
王博(1994—),男,硕士,助理工程师,研究方向为生物质热转化。E-mail:基金资助:
Bo WANG1(), Yongyi SONG1(), Xin WANG1, Qingqiang MENG2, Biao ZHANG1, Liping ZHAO1, Sikan WU1
Received:
2020-04-20
Revised:
2020-08-27
Online:
2021-02-05
Published:
2021-02-09
Contact:
Yongyi SONG
摘要:
氢气是理想的清洁能源,也是重要的化工原料。但是,目前的制氢技术多以化石燃料为原料,制氢过程具有高能耗和高污染的弊端,这使氢能的清洁属性大打折扣。随着社会经济的发展和城市化进程的加快,城市固体废弃物的产量逐年递增,这其中的大部分有机物都有成为制氢原料的潜力。以有机固体废弃物(简称“有机固废”)为原料的制氢工艺对于氢能的清洁化发展和固废的资源化利用具有双重意义。本文以有机固废热化学转化制氢过程为对象,对该过程的原料预处理、技术路线、催化剂和吸附剂、技术经济分析、生命周期评价和生态风险评估等方面的研究进展进行综述,重点聚焦大型中试装置和工业化示范项目。通过分析各类技术路线的优劣性,总结得出新型热化学转化制氢技术受成本和装备的限制,大规模利用进展缓慢。在传统热化学转化制氢领域中,有机固废气化制氢最具大规模应用潜力。根据有机固废制氢的发展现状,还对该领域催化剂和吸附剂未来的研究方向以及技术经济分析和生命周期评价的热点问题进行讨论。最后对有机固废制氢的前景作出展望。
中图分类号:
王博, 宋永一, 王鑫, 孟庆强, 张彪, 赵丽萍, 吴斯侃. 有机固体废弃物热化学制氢研究进展[J]. 化工进展, 2021, 40(2): 709-721.
Bo WANG, Yongyi SONG, Xin WANG, Qingqiang MENG, Biao ZHANG, Liping ZHAO, Sikan WU. Hydrogen production from organic solid waste by thermochemical conversion process: a review[J]. Chemical Industry and Engineering Progress, 2021, 40(2): 709-721.
有机固废 | C | H | S | N | O① | Cl | VM(挥发分) | FC①(固定碳) | Ash(灰分) | 水分 | 参考文献 |
---|---|---|---|---|---|---|---|---|---|---|---|
厨余 | 42.04 | 8.52 | — | 1.85 | — | — | 81.23 | 7.26 | 9.02 | 2.49 | [ |
松木 | 46.42 | 4.38 | 0.16 | 0.30 | 38.97 | — | 76.16 | 14.07 | 0.26 | 9.51 | [ |
秸秆 | 41.60 | 6.03 | 0.16 | 1.35 | 31.17 | — | 65.98 | 15.19 | 6.56 | 12.28 | [ |
纸张 | 41.05 | 6.73 | 0.91 | 0.37 | 44.78 | — | 73.84 | 13.57 | 12.59 | — | [ |
聚丙烯 | 84.14 | 14.96 | 0.24 | 0.23 | 0.43 | — | 99.97 | 0.03 | — | — | [ |
聚氯乙烯 | 38.64 | 4.77 | 0.14 | 0.11 | 0.31 | 56.03 | 97.23 | 2.77 | — | — | [ |
橡胶② | 69.94 | 5.78 | 1.42 | 0.40 | 3.72 | — | 59.59 | 21.01 | 18.44 | 0.39 | [ |
表1 几种典型有机固体废弃物的工业分析和元素分析(质量分数) (%)
有机固废 | C | H | S | N | O① | Cl | VM(挥发分) | FC①(固定碳) | Ash(灰分) | 水分 | 参考文献 |
---|---|---|---|---|---|---|---|---|---|---|---|
厨余 | 42.04 | 8.52 | — | 1.85 | — | — | 81.23 | 7.26 | 9.02 | 2.49 | [ |
松木 | 46.42 | 4.38 | 0.16 | 0.30 | 38.97 | — | 76.16 | 14.07 | 0.26 | 9.51 | [ |
秸秆 | 41.60 | 6.03 | 0.16 | 1.35 | 31.17 | — | 65.98 | 15.19 | 6.56 | 12.28 | [ |
纸张 | 41.05 | 6.73 | 0.91 | 0.37 | 44.78 | — | 73.84 | 13.57 | 12.59 | — | [ |
聚丙烯 | 84.14 | 14.96 | 0.24 | 0.23 | 0.43 | — | 99.97 | 0.03 | — | — | [ |
聚氯乙烯 | 38.64 | 4.77 | 0.14 | 0.11 | 0.31 | 56.03 | 97.23 | 2.77 | — | — | [ |
橡胶② | 69.94 | 5.78 | 1.42 | 0.40 | 3.72 | — | 59.59 | 21.01 | 18.44 | 0.39 | [ |
1 | 伊文婧, 梁琦, 裴庆冰. 氢能促进我国能源系统清洁低碳转型的应用及进展[J]. 环境保护, 2018, 46(2): 30-34. |
YIN W J, LIANG Q, PEI Q B. Enhance the hydrogen application in China’s energy system to accelerate the energy transition: status and progress[J]. Environmental Protection, 2018, 46(2): 30-34. | |
2 | 赵永志, 蒙波, 陈霖新, 等. 氢能源的利用现状分析[J]. 化工进展, 2015, 34(9): 3248-3255. |
ZHAO Y Z, MEGN B, CHEN L X, et al. Utilization status of hydrogen energy[J]. Chemical Industry and Engineering Process, 2015, 34(9): 3248-3255. | |
3 | PARTHASARATHY P, NARAYANAN K S. Hydrogen production from steam gasification of biomass: Influence of process parameters on hydrogen yield: a review[J]. Renewable Energy, 2014, 66: 570-579. |
4 | 蒋利军, 陈霖新. 氢能技术现状及挑战[J]. 能源, 2019(3): 24-27. |
JIANG L J, CHEN L X. Status and challenges of hydrogen technology[J]. Energy, 2019(3): 24-27. | |
5 | KAZA S, YAO L, BHADA-TATA P, et al. What a waste 2.0: a global snapshot of solid waste management to 2050[M]. Washington DC: World Bank Group, 2018: 1-37. |
6 | 王敏. 国内外新能源制氢发展现状及未来趋势[J]. 化学工业, 2018, 36(6): 13-18. |
WANG M. The status quo and trend of producing hydrogen from new energy[J]. Chemical Industry, 2018, 36(6): 13-18. | |
7 | QIAO Y Y, XU F F, XU S L, et al. Pyrolysis characteristics and kinetics of typical municipal solid waste components and their mixture: analytical TG-FTIR study[J]. Energy & Fuels, 2018, 32(10): 10801-10812. |
8 | SAAD J M, WILLIAMS P T. Pyrolysis-catalytic-dry reforming of waste plastics and mixed waste plastics for syngas production[J]. Energy & Fuels, 2016, 30(4): 3198-3204. |
9 | 黄云龙, 郭庆杰, 田红景, 等. 餐厨垃圾热解实验研究[J]. 高校化学工程学报, 2012, 26(4): 721-728. |
HUANG Y L, GUO Q J, TIAN H J, et al. Study on pyrolysis of kitchen waste (KW) by using thermo gravimetric analyzer (TGA) and tube furnace[J]. Journal of Chemical Engineering of Chinese Universities, 2012, 26(4): 721-728. | |
10 | 刘阳, 刘捷成, 俞海淼, 等. 新型镍基镁渣催化重整松木热解挥发分焦油析出特性研究[J]. 化工学报, 2019, 70(8): 2991-2999. |
LIU Y, LIU J C, YU H M, et al. Characteristics of tar formation during catalytic reforming of pyrolysis volatile from pine saw dust over novel Ni-based magnesium slag catalyst[J]. CIESC Journal, 2019, 70(8): 2991-2999. | |
11 | 姚灿, 田红, 覃静萍, 等. 基于等转化率法的芒草和玉米秸秆热解特性及动力学研究[J]. 林产化学与工业. 2018, 38(1): 93-100. |
YAO C, TIAN H, QIN J P, et al. Pyrolysis characteristics and kinetics of Chinese silvergrass and corn stalk based on iso-conversional methods[J]. Chemistry and Industry of Forest Products, 2018, 38(1): 93-100. | |
12 | XU F F, WANG B, YANG D, et al. Thermal degradation of typical plastics under high heating rate conditions by TG-FTIR: pyrolysis behaviors and kinetic analysis[J]. Energy Conversion and Management, 2018, 171: 1106-1115. |
13 | XU F F, WANG B, YANG D, et al. TG-FTIR and Py-GC/MS study on pyrolysis mechanism and products distribution of waste bicycle tire[J]. Energy Conversion and Management, 2018, 179: 288-297. |
14 | 田忠平, 房飞祥, 孙大朋, 等. 基于筛分处理的生活垃圾分选工艺应用研究[J]. 环境卫生工程, 2018, 26(2): 94-96. |
TIAN Z P, FANG F X, SUN D P, et al. Practical application of waste sorting based on screening[J]. Environmental Sanitation Engineering, 2018, 26(2): 94-96. | |
15 | MOSIER N, WYMAN C, DALE B, et al. Features of promising technologies for pretreatment of lignocellulosic biomass[J]. Bioresource Technology, 2005, 96: 673-686. |
16 | TAYLOR M J, ALABDRABALAMEER H A, SKOULOU V. Choosing physical, physicochemical and chemical methods of pre-treating lignocellulosic wastes to repurpose into solid fuels[J]. Sustainability, 2019, 11: 2-27. |
17 | SAHOO D, UMMALYMA S B, KUMAR O A, et al. Effect of dilute acid pretreatment of wild rice grass (Zizania latifolia) from Loktak Lake for enzymatic hydrolysis[J]. Bioresource Technology, 2018, 253: 252-255. |
18 | HASSAN S S, WILLIAMS G A, JAISWAL A K. Emerging technologies for the pretreatment of lignocellulosic biomass[J]. Bioresource Technology, 2018, 262: 310-318. |
19 | SINGH R, KRISHNA B B, KUMAR J, et al. Opportunities for utilization of non-conventional energy sources for biomass pretreatment[J]. Bioresource Technology, 2015, 199: 398-407. |
20 | ZANZI R, SJÖSTRÖM K, BJÖRNBOM E. Rapid high-temperature pyrolysis of biomass in a free-fall reactor[J]. Fuel, 1996, 75(5): 545-550. |
21 | 杨帆. 城市生活垃圾催化热解制氢实验研究[D]. 武汉: 华中科技大学, 2008. |
YANG F. Experimental study on hydrogen production from municipal solid waste by catalytic pyrolysis[D]. Wuhan: Huazhong University of Science & Technology, 2008. | |
22 | HUO E, LEI H, LIU C, et al. Jet fuel and hydrogen produced from waste plastics catalytic pyrolysis with activated carbon and MgO[J]. Science of The Total Environment, 2020, 727: 138411. |
23 | 姚丁丁. 废塑料催化热解制备富氢气体和碳纳米管的实验研究[D]. 武汉: 华中科技大学, 2018. |
YAO D D. Hydrogen rich syngas and carbon nanotubes production from pyrolysis-catalysis of waste plastics[D]. Wuhan: Huazhong University of Science & Technology, 2018. | |
24 | ERKIAGA A, LOPEZ G, BARBARIAS I, et al. HDPE pyrolysis-steam reforming in a tandem spouted bed-fixed bed reactor for H2 production[J]. Journal of Analytical and Applied Pyrolysis, 2015, 116: 34-41. |
25 | LOPEZ G, ALVAREZ J, AMUTIO M, et al. Kinetic modeling and experimental validation of biomass fast pyrolysis in a conical spouted bed reactor[J]. Chemical Engineering Journal, 2019, 373: 677-686. |
26 | LOPEZ G, OLAZAR M, AGUADO R, et al. Vacuum pyrolysis of waste tires by continuously feeding into a conical spouted bed reactor[J]. Industrial & Engineering Chemistry Research, 2010, 49(19): 8990-8997. |
27 | ARREGI A, LOPEZ G, AMUTIO M, et al. Hydrogen production from biomass by continuous fast pyrolysis and in-line steam reforming[J]. RSC Advances, 2016, 6(31): 25975-25985. |
28 | ARREGI A, LOPEZ G, AMUTIO M, et al. Kinetic study of the catalytic reforming of biomass pyrolysis volatiles over a commercial Ni/Al2O3 catalyst[J]. International Journal of Hydrogen Energy, 2018, 43(27): 12023-12033. |
29 | 王晓明, 肖显斌, 刘吉, 等. 双流化床生物质气化炉研究进展[J]. 化工进展, 2015, 34(1): 26-31. |
WANG X M, XIAO X B, LIU J, et al. Research progress of dual fluidized bed biomass gasifier[J]. Chemical Industry and Engineering Process, 2015, 34(1): 26-31. | |
30 | WALLMAN P H, THORSNESS C B, WINTER J D. Hydrogen production from wastes[J]. Energy, 1998, 23(4): 271-278. |
31 | ANDREA M F, SARA R H, LUCA D Z, et al. Techno-economic analysis of in-situ production by electrolysis, biomass gasification and delivery systems for hydrogen refuelling stations: rome case study[J]. Energy Procedia, 2018, 148: 82-89. |
32 | MONETI M, DI CARLO A, BOCCI E, et al. Influence of the main gasifier parameters on a real system for hydrogen production from biomass[J]. International Journal of Hydrogen Energy, 2016, 41(28): 11965-11973. |
33 | 孙宁, 应浩, 徐卫, 等. 松木屑催化气化制取富氢燃气[J]. 化工进展, 2017, 36(6): 2158-2163. |
SUN N, YING H, XU W, et al. Catalytic gasification of pine sawdust for producing hydrogen-rich gas[J]. Chemical Industry and Engineering Process, 2017, 36(6): 2158-2163. | |
34 | ZHANG L, WU W, SIQU N, et al. Thermochemical catalytic-reforming conversion of municipal solid waste to hydrogen-rich synthesis gas via carbon supported catalysts[J]. Chemical Engineering Journal, 2019, 361: 1617-1629. |
35 | ZHANG L, WU W, ZHANG Y, et al. Clean synthesis gas production from municipal solid waste via catalytic gasification and reforming technology[J]. Catalysis Today, 2018, 318: 39-45. |
36 | 王晶博, 张静, 钱益斌, 等. CaO对城市生活垃圾原位水蒸气气化制备富氢燃气的影响[J]. 环境科学研究, 2014, 27(3): 279-286. |
WANG J B, ZHANG J, QIAN Y B, et al. Influence of CaO on hydrogen-rich gas production from in-situ steam gasification of the municipal solid waste[J]. Research of Environmental Sciences, 2014, 27(3): 279-286. | |
37 | 丁兆军. 生物质制氢技术综合评价研究[D]. 北京: 中国矿业大学(北京), 2010. |
DING Z J. Study on comprehensive evaluation of hydrogen production technology from biomass[D]. Beijing: China University of Mining & Technology(Beijing), 2010. | |
38 | 晏波, 韦朝海. 超临界水气化有机物制氢研究[J]. 化学进展, 2008, 20(10): 1553-1561. |
YAN B, WEI C H. Hydrogen production from organic compounds by supercritical water gasification[J]. Progress in Chemistry, 2008, 20(10): 1553-1561. | |
39 | RODRIGUEZ C C, KRUSE A. Supercritical water gasification of biomass for hydrogen production :a review[J]. The Journal of Supercritical Fluids, 2018, 133: 573-590. |
40 | AGON N, HRABOVSKÝ M, CHUMAK O, et al. Plasma gasification of refuse derived fuel in a single-stage system using different gasifying agents[J]. Waste Management, 2016, 47: 246-255. |
41 | DU C, MO J, LI H. Renewable hydrogen production by alcohols reforming using plasma and plasma-catalytic technologies: challenges and opportunities[J]. Chemical Reviews, 2015, 115(3): 1503-1542. |
42 | 杜长明, 吴焦, 黄娅妮. 等离子体热解气化有机废弃物制氢的关键技术分析[J]. 中国环境科学, 2016, 36(11): 3429-3440. |
DU C M, WU J, HUANG Y N. Analysis of critical technology for hydrogen production in plasma pyrolysis and gasification of organic waste[J]. China Environmental Science, 2016, 36(11): 3429-3440. | |
43 | MUNIR M T, MARDON I, AL-ZUHAIR S, et al. Plasma gasification of municipal solid waste for waste-to-value processing[J]. Renewable and Sustainable Energy Reviews, 2019, 116: 109461. |
44 | IDRIS R, CHONG C T, ANI F N. Microwave-induced pyrolysis of waste truck tyres with carbonaceous susceptor for the production of diesel-like fuel[J]. Journal of the Energy Institute, 2019, 92(6): 1831-1841. |
45 | 周军, 吴雷, 周晶晶, 等. 煤催化微波热解技术及其碳基吸波催化剂研究进展[J]. 化工进展, 2019, 38(9): 4060-4074. |
ZHOU J, WU L, ZHOU J J, et al. Advances in coal catalytic microwave pyrolysis and its carbon-based absorbing microwave catalysts[J]. Chemical Industry and Engineering Progress, 2019, 38(9): 4060-4074. | |
46 | 肖志良, 左宋林. 生物质气化与催化剂的研究进展[J]. 生物质化学工程, 2012, 46(1): 39-44. |
XIAO Z L, ZUO S L. Research progress on biomass gasification and catalysts[J]. Biomass Chemical Engineering, 2012, 46(1): 39-44. | |
47 | SANTAMARIA L, LOPEZ G, ARREGI A, et al. Stability of different Ni supported catalysts in the in-line steam reforming of biomass fast pyrolysis volatiles[J]. Applied Catalysis B: Environmental, 2019, 242: 109-120. |
48 | 王云珠, 泮子恒, 赵燚, 等. 吸附强化蒸汽重整制氢中CO2固体吸附剂的研究进展[J]. 化工进展, 2019, 38(11): 5103-5113. |
WANG Y Z, PAN Z H, ZHAO Y, et al. Research progress in CO2 solid sorbents for hydrogen production by sorption-enhanced steam reforming: a review[J]. Chemical Industry and Engineering Process, 2019, 38(11): 5103-5113. | |
49 | 林启睿, 许增栋, 吴素芳. 纳米钙基吸附剂脱碳强化生物乙醇蒸汽重整制氢工艺[J]. 高校化学工程学报, 2018, 32(1): 161-167. |
LIN Q R, XU Z F, WU S F. Hydrogen production via sorption enhanced steam reforming of bio-ethanol using nano Ca-based adsorbents[J]. Journal of Chemical Engineering of Chinese Universities, 2018, 32(1): 161-167. | |
50 | WU Y, LIAO Y, LIU G, et al. Syngas production by chemical looping gasification of biomass with steam and CaO additive[J]. International Journal of Hydrogen Energy, 2018, 43(42): 19375-19383. |
51 | DANG C, WANG H, YU H, et al. Sorption-enhanced steam reforming of glycerol over Ni-Cu-Ca-Al catalysts for producing fuel-cell grade hydrogen[J]. International Journal of Hydrogen Energy, 2017(42): 17446-17456. |
52 | CHAI Y, GAO N, WANG M, et al. H2 production from co-pyrolysis/gasification of waste plastics and biomass under novel catalyst Ni-CaO-C[J]. Chemical Engineering Journal, 2020, 382: 122947. |
53 | 赵正浩, 向文国, 陈时熠, 等. 基于钴改性的钙基吸附剂污泥富氢气化[J]. 化工进展, 2019, 38(10): 4747-4754. |
ZHAO Z H, XIANG W G, CHEN S Y, et al. Performance of cobalt modified calcium sorbents for steam gasification of sewage sludge[J]. Chemical Industry and Engineering Process, 2019, 38(10): 4747-4754. | |
54 | OZCAN D C, SHANKS B H, WHEELOCK T D. Improving the stability of a Cao-based sorbent for CO2 by thermal pretreatment[J]. Industrial & Engineering Chemistry Research, 2011, 50(11): 6933-6942. |
55 | WANG K, GUO X, ZHAO P, et al. CO2 capture of limestone modified by hydration-dehydration technology for carbonation/calcination looping[J]. Chemical Engineering Journal, 2011, 173: 158-163. |
56 | KAZI S S, ARANDA A, MEYER J, et al. High performance CaO-based sorbents for pre- and post-combustion CO2 capture at high temperature[J]. Energy Procedia, 2014, 63: 2207-2215. |
57 | ZHAO P, SUN J, LI Y, et al. Synthesis of Efficient CaO sorbents for CO2 capture using a simple organometallic calcium-based carbon template route[J]. Energy & Fuels, 2016, 30(9): 7543-7550. |
58 | GAO N, CHEN K, QUAN C. Development of CaO-based adsorbents loaded on charcoal for CO2 capture at high temperature[J]. Fuel, 2020, 260: 116411. |
59 | KOIRALA R, GUNUGUNURI K R, PRATSINIS S E, et al. Effect of zirconia doping on the structure and stability of CaO-based sorbents for CO2 capture during extended operating cycles[J]. The Journal of Physical Chemistry C, 2011, 115(50): 24804-24812. |
60 | STRÖHLE J, JUNK M, KREMER J, et al. Carbonate looping experiments in a 1MWth pilot plant and model validation[J]. Fuel, 2014, 127: 13-22. |
61 | DIETER H, BIDWE A R, VARELA-DUELLI G, et al. Development of the calcium looping CO2 capture technology from lab to pilot scale at IFK, University of Stuttgart[J]. Fuel, 2014, 127: 23-37. |
62 | WOO Y, CHO S, KIM J, et al. Optimization-based approach for strategic design and operation of a biomass-to-hydrogen supply chain[J]. International Journal of Hydrogen Energy, 2016, 41(12): 5405-5418. |
63 | SALKUYEH Y K, SAVILLE B A, MACLEAN H L. Techno-economic analysis and life cycle assessment of hydrogen production from different biomass gasification processes[J]. International Journal of Hydrogen Energy, 2018, 43(20): 9514-9528. |
64 | SARA H R, ENRICO B, MAURO V, et al. Techno-economic analysis of hydrogen production using biomass gasification : a small scale power plant study[J]. Energy Procedia, 2016, 101: 806-813. |
65 | 谢欣烁, 杨卫娟, 施伟, 等. 制氢技术的生命周期评价研究进展[J]. 化工进展, 2018, 37(6): 2147-2158. |
XIE X S, YANG W J, SHI W, et al. Life cycle assessment of technologies for hydrogen production: a review[J]. Chemical Industry and Engineering Process, 2018, 37(6): 2147-2158. | |
66 | MORENO J, DUFOUR J. Life cycle assessment of hydrogen production from biomass gasification. evaluation of different Spanish feedstocks[J]. International Journal of Hydrogen Energy, 2013, 38(18): 7616-7622. |
67 | 马瀚程, 蔡鹏涛, 詹明秀, 等. 有机固废共热解气化产物及其污染物排放特性研究综述[J]. 能源工程, 2020(3): 80-85. |
MA H C, CAI P T, ZHAN M X, et al. Review of research on co-pyrolysis gasification products and pollutant emissions of organic solid wastes[J]. Energy Engineering, 2020(3): 80-85. | |
68 | ABU E Z, BRAMER E A, BREM G. Review of catalysts for tar elimination in biomass gasification processes[J]. Industrial & Engineering Chemistry Research, 2004, 43(22): 6911-6919. |
69 | WILK V, HOFBAUER H. Conversion of fuel nitrogen in a dual fluidized bed steam gasifier[J]. Fuel, 2013, 106: 793-801. |
70 | 解强, 沈吉敏, 张宪生, 等. 热处理过程中城市生活垃圾氯释放特性的研究[J]. 中国矿业大学学报, 2003, 32(6): 641-645. |
XIE Q, SHEN J M, ZHANG X S, et al. Behavior of chlorine in municipal solid waste during heat treatment[J]. Journal of China University of Mining & Technology, 2003, 32(6): 641-645. | |
71 | 刘国涛, 唐利兰. 城市有机垃圾热解过程中NH3、H2S和HCl的析出特性[J]. 环境工程学报, 2016, 10(8): 4499-4503. |
LIU G T, TANG L L. Release characteristics of NH3, H2S and HCl during pyrolysis of organic fraction of municipal solid wastes[J]. Chinese Journal of Environmental Engineering, 2016, 10(8): 4499-4503. | |
72 | LEI M, HAI J, CHENG J, et al. Emission characteristics of toxic pollutants from an updraft fixed bed gasifier for disposing rural domestic solid waste[J]. Environmental Science & Pollution Research, 2017, 24: 19807-19815. |
73 | 杨上兴. 城市固体废弃物热解过程中重金属迁移[D]. 广州: 华南理工大学, 2014. |
YANG S X. Study on the migration characteristic of trace element during pyrolysis of municipal solid waste[D]. Guangzhou: South China University of Technology, 2014. | |
74 | VERHULS D, BUEKENS A, PHILIP A, et al. Thermodynamic behavior of metal chlorides and sulfates under the conditions of incineration[J]. Environmental Science & Technology, 1996, 30: 50-56. |
75 | ZHANG G, HAI J, CHENG J. Characterization and mass balance of dioxin from a large-scale municipal solid waste incinerator in China[J]. Waste Management, 2012, 32(6): 1156-1162. |
76 | WILKEN M, CORNELSEN B, ZESCHMARLAHL B, et al. Distribution of PCDD/PCDF and other organochlorine compounds in different municipal solid waste fractions[J]. Chemosphere, 1992, 25(7/8/9/10): 1517-1523. |
77 | 曾东, 胡立琼, 雷鸣, 等. 生活垃圾热解气化污染物产生与排放控制技术综述[J]. 环境保护与循环经济, 2018, 38(11): 17-21, 28. |
ZENG D, HU L Q, LEI M, et al. Review on the production and emission control technologies of MSW pyrolysis and gasification[J]. Environmental Protection and Circular Economy, 2018, 38(11): 17-21, 28. | |
78 | 朱葛, 赵长遂, 林良生, 等. 石化污泥与煤流化床混烧NOx的排放特性[J]. 电站系统工程, 2008, 24(4): 22-24. |
ZHU G, ZHAO C S, LIN L S, et al. NOx emission characteristics during co-combustion of petrochemical sludge and coal in fluidized bed[J]. Power System Engineering, 2008, 24(4): 22-24. | |
79 | 张睿智, 罗永浩, 殷仁豪. 垃圾气化过程中H2对二英抑制作用的实验研究[J]. 中国电机工程学报, 2016, 36(8): 2195-2201. |
ZHANG R Z, LUO Y H, YIN R H. Experimental study on the inhibition effect of H2 on dioxin emission in MSW gasification[J]. Proceedings of the CSEE, 2016, 36(8): 2195-2201. |
[1] | 王胜岩, 邓帅, 赵睿恺. 变电吸附二氧化碳捕集技术研究进展[J]. 化工进展, 2023, 42(S1): 233-245. |
[2] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[3] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[4] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[5] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[6] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[7] | 张凤岐, 崔成东, 鲍学伟, 朱炜玄, 董宏光. 胺液吸收-分步解吸脱硫工艺的设计与评价[J]. 化工进展, 2023, 42(S1): 518-528. |
[8] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[9] | 邵博识, 谭宏博. 锯齿波纹板对挥发性有机物低温脱除过程强化模拟分析[J]. 化工进展, 2023, 42(S1): 84-93. |
[10] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[11] | 王鹏, 史会兵, 赵德明, 冯保林, 陈倩, 杨妲. 过渡金属催化氯代物的羰基化反应研究进展[J]. 化工进展, 2023, 42(9): 4649-4666. |
[12] | 张启, 赵红, 荣峻峰. 质子交换膜燃料电池中氧还原反应抗毒性电催化剂研究进展[J]. 化工进展, 2023, 42(9): 4677-4691. |
[13] | 王伟涛, 鲍婷玉, 姜旭禄, 何珍红, 王宽, 杨阳, 刘昭铁. 醛酮树脂基非金属催化剂催化氧气氧化苯制备苯酚[J]. 化工进展, 2023, 42(9): 4706-4715. |
[14] | 葛亚粉, 孙宇, 肖鹏, 刘琦, 刘波, 孙成蓥, 巩雁军. 分子筛去除VOCs的研究进展[J]. 化工进展, 2023, 42(9): 4716-4730. |
[15] | 吴海波, 王希仑, 方岩雄, 纪红兵. 3D打印催化材料开发与应用进展[J]. 化工进展, 2023, 42(8): 3956-3964. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |