1 |
薛博, 刘勇, 王沉, 等. 碳捕获、封存与利用技术及煤层封存CO2研究进展[J]. 化学世界, 2020, 61(4): 294-297.
|
|
XUE Bo, LIU Yong, WANG CHen, et al. Progress on carbon capture,storge and utilization technology and coal seam CO2 storage[J]. Chemical World, 2020, 61(4): 294-297.
|
2 |
JIANG Kai, ASHWORTH Peta, ZHANG Shiyi, et al. China’s carbon capture, utilization and storage (CCUS) policy: a critical review[J]. Renewable and Sustainable Energy Reviews, 2020, 119: 109601.
|
3 |
李庆勋, 王宗宝, 娄舒洁, 等. 二氧化碳加氢制甲醇研究进展[J]. 现代化工, 2019(5): 19-23.
|
|
LI Qinxun, WANG Zongbao, LOU Shujie, et al. Research progress in methanol production from carbon dioxide hydrogenation[J]. Modern Chemical Industry, 2019(5): 19-23.
|
4 |
MCFARLAN Andrew. Techno-economic assessment of pathways for electricity generation in northern remote communities in Canada using methanol and dimethyl ether to replace diesel[J]. Renewable and Sustainable Energy Reviews, 2018, 90(8): 63-76.
|
5 |
LI Wenhui, WANG Haozhi, JIANG Xiao, et al. A short review of recent advances in CO2 hydrogenation to hydrocarbons over heterogeneous catalysts[J]. RSC Advances, 2018, 8(14): 7651-7669.
|
6 |
YANG Haiyan, ZHANG Chen, GAO Peng, et al. A review of the catalytic hydrogenation of carbon dioxide into value-added hydrocarbons[J]. Catalysis Science & Technology, 2017, 7(20): 4580-4598.
|
7 |
LI Jiachen, WANG Liguo, CAO Yan, et al. Recent advances on the reduction of CO2 to important C2+ oxygenated chemicals and fuels[J]. Chinese Journal of Chemical Engineering, 2018, 26(11): 2266-2279.
|
8 |
SHEN W J, JUN K W, CHOI H S, et al. Thermodynamic investigation of methanol and dimethyl ether synthesis from CO2 hydrogenation[J]. Korean Journal of Chemical Engineering, 2000, 17(2): 210-216.
|
9 |
丁凡舒, 聂小娃, 刘民, 等. Fe基催化剂上二氧化碳加氢制C2+烃的研究进展[J]. 应用化学,2016, 2(33): 123-132.
|
|
DING Fanshu, NIE Xiaowa, LIU Min, et al. Research progress in catalytic conversion of carbon dioxide to C2+ hydrocarbons over Fe-based catalysts[J]. Chinese Journal of Applied Chemistry, 2016, 2(33): 123-132.
|
10 |
张忠涛, 李方伟, 迟克彬, 等. 甲醇工艺新进展[J]. 辽宁化工, 2001,30(11): 477-480.
|
|
ZHANG Zhongtao, LI Fangwei, CHI Kebin, et al. New development of methanol technology[J]. Liaoning Chemical Industry, 2001, 30(11): 477-480.
|
11 |
BANSODE Atul, URAKAWA Atsushi. Towards full one-pass conversion of carbon dioxide to methanol and methanol-derived products[J]. Journal of Catalysis, 2014, 309: 66-70.
|
12 |
ANGELO Laetitia, KOBL Kilian, TEJADA Leidy Marcela Martinez, et al. Study of CuZnMOx oxides (M=Al, Zr, Ce, CeZr) for the catalytic hydrogenation of CO2 into methanol[J]. Comptes Rendus Chimie, 2015, 18(3): 250-260.
|
13 |
LIAO F L, HUANG Y, GE J, et al. Morphology-dependent interactions of ZnO with Cu nanoparticles at the materials’ interface in selective hydrogenation of CO2 to CH3OH[J]. Angew. Chem. Int. Ed. Engl., 2011, 50(9): 2162-2165.
|
14 |
PHONGAMWONG Thanaree, CHANTAPRASERTPORN Usanee, WITOON Thongthai, et al. CO2 hydrogenation to methanol over CuO-ZnO-ZrO2-SiO2 catalysts: effects of SiO2 contents[J]. Chem. Eng. J. (Amsterdam, Neth), 2017, 316: 692-703.
|
15 |
BANSODE Atul, TIDONA Bruno, ROHR Philipp Rudolf VON, et al. Impact of K and Ba promoters on CO2 hydrogenation over Cu/Al2O3 catalysts at high pressure[J]. Catal. Sci. Technol., 2013, 3(3): 767-778.
|
16 |
JIANG Xiao, KOIZUMI Naoto, GUO Xinwen, et al. Bimetallic Pd-Cu catalysts for selective CO2 hydrogenation to methanol[J]. Applied Catalysis B: Environmental, 2015, 170/171: 173-185.
|
17 |
LADERA Rosa, PÉREZ-ALONSO Francisco J, GONZÁLEZ-CARBALLO Juan M, et al. Catalytic valorization of CO2via methanol synthesis with Ga-promoted Cu-ZnO-ZrO2 catalysts[J]. Applied Catalysis B: Environmental, 2013, 142/143: 241-248.
|
18 |
JAMIL Toyir, PILAR Ramírez de la Piscina, Luis G Fierro JOSÉ, et al. Highly effective conversion of CO to methanol over supported and promoted copper-based catalysts influence of support and promoter[J]. Applied Catalysis B: Environmental, 2001, 29: 207-215.
|
19 |
SŁOCZYŃSKI J, GRABOWSKI R, OLSZEWSKI P, et al. Effect of metal oxide additives on the activity and stability of Cu/ZnO/ZrO2 catalysts in the synthesis of methanol from CO2 and H2[J]. Applied Catalysis A: General, 2006, 310: 127-137.
|
20 |
ARENA Francesco, MEZZATESTA Giovanni, ZAFARANA Giovanni, et al. Effects of oxide carriers on surface functionality and process performance of the Cu-ZnO system in the synthesis of methanol via CO2 hydrogenation[J]. Journal of Catalysis, 2013, 300(1): 41-51.
|
21 |
WITOON Thongthai, CHALORNGTHAM Jiraporn, DUMRONGBUNDITKUL Porntipar, et al. CO2 hydrogenation to methanol over Cu/ZrO2 catalysts: effects of zirconia phases[J]. Chem. Eng. J. (Amsterdam, Neth), 2016, 293(3): 27-36.
|
22 |
LI Molly Meng-Jung, ZENG Ziyan, LIAO Fenglin, et al. Enhanced CO2 hydrogenation to methanol over CuZn nanoalloy in Ga modified Cu/ZnO catalysts[J]. Journal of Catalysis, 2016, 343: 157-167.
|
23 |
KUSAMA Hitoshi, OKABE Kiyomi, SAYAMA Kazuhiro, et al. CO2 hydrogenation to ethanol over promoted Rh SiO2 catalysts[J]. Catalysis Today, 1996, 28: 261-266.
|
24 |
KONG H, LI H Y, LIN G D, et al. Pd-decorated CNT-promoted Pd-Ga2O3 catalyst for hydrogenation of CO2 to methanol[J]. Catalysis Letters, 2011, 141(6): 886-894.
|
25 |
QU Jin, ZHOU Xiwen, XU Feng, et al. Shape effect of Pd-promoted Ga2O3 nanocatalysts for methanol synthesis by CO2 hydrogenation[J]. The Journal of Physical Chemistry C, 2014, 118(42): 24452-24466.
|
26 |
VENUGOPAL Akula, PALGUNADI Jelliarko, DEOG Jung-Kwang, et al. Hydrotalcite derived Cu-Zn-Cr catalysts admixed with γ-Al2O3 for single step dimethyl ether synthesis from syngas: influence of hydrothermal treatment[J]. Catalysis Today, 2009, 147(2): 94-99.
|
27 |
SONG Yingquan, LIU Xiaoran, XIAO Linfei, et al. Pd-promoter/MCM-41: a highly effective bifunctional catalyst for conversion of carbon dioxide[J]. Catalysis Letters, 2015, 145(6): 1272-1280.
|
28 |
WU Jingang, MASAHIRO Saito, MASAMI Takeuchi, et al. The stability of Cu/ZnO-based catalysts in methanol synthesis from a CO2-rich feed and from a CO-rich feed[J]. Applied Catalysis A: General, 2001, 218: 235-240.
|
29 |
WANG J J, LI G N, LI Z L, et al. A highly selective and stable ZnO-ZrO2 solid solution catalyst for CO2 hydrogenation to methanol[J]. Science Advances, 2017, 3(10): 1-10.
|
30 |
UMEGAKI Tetsuo, KURATANI Kentaro, YAMADA Yusuke, et al. Hydrogen production via steam reforming of ethyl alcohol over nano-structured indium oxide catalysts[J]. Journal of Power Sources, 2008, 179(2): 566-570.
|
31 |
LORENZ Harald, JOCHUM Wilfrid, Bernhard KLÖTZER, et al. Novel methanol steam reforming activity and selectivity of pure In2O3[J]. Applied Catalysis A: General, 2008, 347(1): 34-42.
|
32 |
SUN Kaihang, FAN Zhigang, YE Jingyun, et al. Hydrogenation of CO2 to methanol over In2O3 catalyst[J]. Journal of CO2 Utilization, 2015, 12: 1-6.
|
33 |
MARTIN O, MARTIN A J, MONDELLI C, et al. Indium oxide as a superior catalyst for methanol synthesis by CO2 hydrogenation[J]. Angew. Chem. Int. Ed. Engl., 2016, 55(21): 6261-6265.
|
34 |
STRÖM L, P-A CARLSSON, SKOGLUNDH M, et al. Hydrogen-assisted SCR of NOx over alumina-supported silver and indium catalysts using C2-hydrocarbons and oxygenates[J]. Applied Catalysis B: Environmental, 2016, 181: 403-412.
|
35 |
YE Jingyun, LIU Changjun, GE Qingfeng. DFT study of CO2 adsorption and hydrogenation on the In2O3 surface[J]. The Journal of Physical Chemistry C, 2012, 116(14): 7817-7825.
|
36 |
YE Jingyun, LIU Changjun, MEI Donghai, et al. Active oxygen vacancy site for methanol synthesis from CO2 hydrogenation on In2O3 (110): a DFT study[J]. ACS Catalysis, 2013, 3(6): 1296-1306.
|
37 |
YE Jingyun, LIU Chang-jun, MEI Donghai, et al. Methanol synthesis from CO2 hydrogenation over a Pd4/In2O3 model catalyst: a combined DFT and kinetic study[J]. Journal of Catalysis, 2014, 317: 44-53.
|
38 |
RUI Ning, WANG Zongyuan, SUN Kaihang, et al. CO2 hydrogenation to methanol over Pd/In2O3: effects of Pd and oxygen vacancy[J]. Applied Catalysis B: Environmental, 2017, 218: 488-497.
|
39 |
FREI M S, CAPDEVILA-CORTADA M, GARCíA-MUELAS R, et al. Mechanism and microkinetics of methanol synthesis via CO2 hydrogenation on indium oxide[J]. Journal of Catalysis, 2018, 361: 313-321.
|
40 |
ZHANG Minhua, DOU Maobin, YU Yingzhe. Theoretical study of the promotional effect of ZrO2 on In2O3 catalyzed methanol synthesis from CO2 hydrogenation[J]. Applied Surface Science, 2018, 433: 780-789.
|
41 |
ZHANG M H, DOU M B, YU Y Z. DFT study of CO2 conversion on InZr3(110) surface[J]. Phys. Chem. Chem. Phys., 2017, 19(42): 28917-28927.
|
42 |
DOU Maobin, ZHANG Minhua, CHEN Yifei, et al. DFT study of In2O3-catalyzed methanol synthesis from CO2 and CO hydrogenation on the defective site[J]. New Journal of Chemistry, 2018, 42(5): 3293-3300.
|
43 |
TSOUKALOU A, ABDALA P M, STOIAN D, et al. Structural evolution and dynamics of an In2O3 catalyst for CO2 hydrogenation to methanol: an operando XAS-XRD and in situ TEM study[J]. J. Am. Chem. Soc., 2019, 141(34): 13497-13505.
|
44 |
CHEN Pengjing, TAO Longang, ZHU Jian, et al. Morphology-controllable hexagonal-phase indium oxide in situ structured onto a thin-felt Al2O3/Al-Fiber for the hydrogenation of CO2 to methanol[J]. Energy Technology, 2019, 7(3): 1800747.
|
45 |
CHEN Tian-yuan, CAO Chenxi, CHEN Tianbao, et al. Unraveling highly tunable selectivity in CO2 hydrogenation over bimetallic In-Zr oxide catalysts[J]. ACS Catalysis, 2019, 9(9): 8785-8797.
|
46 |
FREI Matthias S, MONDELLI Cecilia, CESARINI Alessia, et al. Role of zirconia in indium oxide-catalyzed CO2 hydrogenation to methanol[J]. ACS Catalysis, 2019, 10(2): 1133-1145.
|
47 |
曹晨熙, 陈天元, 丁晓旭, 等. 负载型铟基催化剂二氧化碳加氢动力学研究[J]. 化工学报,2019, 70(10): 3985-3993.
|
|
CAO Chenxi, CHEN Tianyuan, DING Xiaoxu, et al. Kinetics study on supported indium-based catalysts in carbon dioxide hydrogenation[J]. CIESC Journal, 2019, 70(10): 3985-3993.
|
48 |
SHI Zhisheng, TAN Qingqing, WU Dongfang. A novel core-shell structured CuIn@SiO2 catalyst for CO2 hydrogenation to methanol[J]. AIChE Journal, 2018, 65(3): 1047-1058.
|
49 |
SNIDER Jonathan L, STREIBEL Verena, HUBERT McKenzie A, et al. Revealing the synergy between oxide and alloy phases on the performance of bimetallic In-Pd catalysts for CO2 hydrogenation to methanol[J]. ACS Catalysis, 2019, 9(4): 3399-3412.
|
50 |
FREI M S, MONDELLI C, GARCIA-MUELAS R, et al. Atomic-scale engineering of indium oxide promotion by palladium for methanol production via CO2 hydrogenation[J]. Nat. Commun., 2019, 10(1): 3377.
|
51 |
AKKHARAPHATTHAWON Naphattanun, CHANLEK Narong, CHENG Chin Kui, et al. Tuning adsorption properties of GaxIn2-xO3 catalysts for enhancement of methanol synthesis activity from CO2 hydrogenation at high reaction temperature[J]. Applied Surface Science, 2019, 489(2):78-86.
|
52 |
CHOU Chen-Yu, LOBO Raul F. Direct conversion of CO2 into methanol over promoted indium oxide-based catalysts[J]. Applied Catalysis A: General, 2019, 583: 117144.
|
53 |
GAO P, LI S G, BU X N, et al. Direct conversion of CO2 =into liquid fuels with high selectivity over a bifunctional catalyst[J]. Nat. Chem., 2017, 9(10): 1019-1024.
|
54 |
GAO P, DANG S S, LI S G, et al. Direct production of lower olefins from CO2 conversion via bifunctional catalysis[J]. ACS Catalysis, 2017, 8(1): 571-578.
|
55 |
DANG S S, GAO P, LIU Z Y, et al. Role of zirconium in direct CO2 hydrogenation to lower olefins on oxide/zeolite bifunctional catalysts[J]. Journal of Catalysis, 2018, 364(3): 82-93.
|