化工进展 ›› 2021, Vol. 40 ›› Issue (11): 5907-5918.DOI: 10.16085/j.issn.1000-6613.2020-2404
冯俊杰1(), 孙冰1(), 石宁1, 高正明2, 孙万付1
收稿日期:
2020-11-29
修回日期:
2020-12-25
出版日期:
2021-11-05
发布日期:
2021-11-19
通讯作者:
孙冰
作者简介:
冯俊杰(1989—),男,博士,高级工程师,研究方向为多相流体力学与微反应器。E-mail:基金资助:
FENG Junjie1(), SUN Bing1(), SHI Ning1, GAO Zhengming2, SUN Wanfu1
Received:
2020-11-29
Revised:
2020-12-25
Online:
2021-11-05
Published:
2021-11-19
Contact:
SUN Bing
摘要:
多相微反应器等微通道设备具有高效、安全等优势与广阔的应用前景,其中气泡分散相的形变、聚并、破裂等诸多流体力学行为对反应体系具有非常重要的影响,然而由于微通道的尺度特征以及多相流动非均匀性、复杂性等特点,复杂限域结构内的气泡形变与破裂机理认识仍不够充分。本文针对近年来在微尺度限域结构中的气泡形变与破裂等研究进展进行综述,首先概述了微通道多相流主要研究对象及研究方法,探讨了含有颗粒等受限狭窄空间及复杂多相条件下的传递机理研究进展,总结了气泡界面演变及不稳定破裂过程的多相相间作用机制。最后,提出研究体系构建、研究方法改进、相间作用解析以及工程化需求匹配是微尺度复杂限域空间内的气泡行为研究关键,并对下一步研究方向进行了分析与展望。
中图分类号:
冯俊杰, 孙冰, 石宁, 高正明, 孙万付. 微通道限域空间内的气泡破裂研究进展与展望[J]. 化工进展, 2021, 40(11): 5907-5918.
FENG Junjie, SUN Bing, SHI Ning, GAO Zhengming, SUN Wanfu. Bubble breakup under influence of confined structures in microchannel[J]. Chemical Industry and Engineering Progress, 2021, 40(11): 5907-5918.
1 | ZHANG Jisong, WANG Kai, TEIXEIRA A R, et al. Design and scaling up of microchemical systems: a review[J]. Annual Review of Chemical and Biomolecular Engineering, 2017, 8: 285-305. |
2 | SUN Bing, JIANG Jie, SHI Ning, et al. Application of microfluidics technology in chemical engineering for enhanced safety[J]. Process Safety Progress, 2016, 35(4): 365-373. |
3 | 骆广生, 王凯, 王玉军, 等. 微化工系统的原理和应用[J]. 化工进展, 2011, 30(8): 1637-1642. |
LUO Guangsheng, WANG Kai, WANG Yujun, et al. Principles and applications of micro-structured chemical system[J] Chemical Industry and Engineering Progress, 2011, 30(8): 1637-1642. | |
4 | 陈光文, 袁权. 微化工技术[J]. 化工学报, 2003, 54(4): 427-439. |
CHEN Guangwen, YUAN Quan. Micro-chemical technology[J]. Journal of Chemical Industry and Engineering (China), 2003, 54(4): 427-439. | |
5 | YANG Cuixian, TEIXEIRA A R, SI Yanxiang, et al. Catalytic hydrogenation of N-4-nitrophenyl nicotinamide in a micro-packed bed reactor[J]. Green Chemistry, 2018, 20(4): 886-893. |
6 | HESSEL V, ANGELI P, GAVRIILIDIS A, et al. Gas-liquid and gas-liquid-solid microstructured reactors: contacting principles and applications[J]. Industrial & Engineering Chemistry Research2005, 44(25): 9750-9769. |
7 | LIANG Gangtao, MASCARENHAS N, MUDAWAR I. Analytical and experimental determination of slug flow parameters, pressure drop and heat transfer coefficient in micro-channel condensation[J]. International Journal of Heat and Mass Transfer, 2017, 111: 1218-1233. |
8 | ZHANG Jun, YAN Sheng, SLUYTER R, et al. Inertial particle separation by differential equilibrium positions in a symmetrical serpentine micro-channel[J]. Scientific Reports, 2014, 4: 4527. |
9 | BURNS J R, RAMSHAW C. The intensification of rapid reactions in multiphase systems using slug flow in capillaries[J]. Lab on a Chip, 2001, 1(1): 10-15. |
10 | YUN Zhenyu, ZUO Kaiyuan, CAO Cheng, et al. The whole process, bubble dynamic analysis in two-phase transport of the passive miniature direct methanol fuel cells[J]. Journal of Power Sources, 2019, 416: 9-20. |
11 | CHEN Guangwen, ZHAO Yuchao, YUE Jun, et al. Transport phenomena in micro-chemical engineering [J]. CIESC Journal, 2013, 64(1): 63-75. |
12 | FU Taotao, MA Youguang. Bubble formation and breakup dynamics in microfluidic devices: a review[J]. Chemical Engineering Science, 2015, 135: 343-372. |
13 | FREYTES V M, ROSEN M, D’ONOFRIO A. Capillary film and breakup mechanism in the squeezing to dripping transition regime at the mesoscale between micro and milli-fluidics[J]. Chaos, 2018, 28(10): 103104. |
14 | SHUI Lingling, EIJKEL J, BERG A. Multiphase flow in micro- and nanochannels[J]. Sensors and Actuators B: Chemical, 2007, 121(1): 263-276. |
15 | KOBAYASHI J, MORI Yo, OKAMOTO K, et al. A microfluidic device for conducting gas-liquid-solid hydrogenation reactions[J]. Science, 2004, 304(5675): 1305-1308. |
16 | ZHANG Yuming, YAO Meiqin, GAO Shiqiu, et al. Reactivity and kinetics for steam gasification of petroleum coke blended with black liquor in a micro fluidized bed [J]. Applied Energy, 2015, 160: 820-828. |
17 | LIEDTKE Anne-Kathrin, BORNETTE Frédéric, PHILIPPE Régis. Gas-liquid-solid “slurry Taylor” flow Experimental evaluation through the catalytic hydrogenation of 3-methyl-1-pentyn-3-ol[J]. Chemical Engineering Journal, 2013, 227: 174-181. |
18 | CHEN Delai, DU Wenbin, LIU Ying, et al. The chemistrode: a droplet-based microfluidic device for stimulation and recording with high temporal, spatial, and chemical resolution[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(44): 16843-16848. |
19 | KOVARIK M, GACH P, ORNOFF D. Micro total analysis systems for cell biology and biochemical assays[J]. Analytical Chemistry, 2012, 84(2): 516-540. |
20 | YAGODNITSYNA A, KOVALEV A, BILSKY A. Flow patterns of immiscible liquid-liquid flow in a rectangular microchannel with T-junction[J]. Chemical Engineering Journal, 2016, 303: 547-554. |
21 | ASHWOOD A C, VANDEN H S J, RODARTE M A, et al. A multiphase, micro-scale PIV measurement technique for liquid film velocity measurements in annular two-phase flow[J]. International Journal of Multiphase Flow, 2015, 68: 27-39. |
22 | RAFFEL M, FAVIER D, BERTON E, et al. μ-PIV and ELDV wind tunnel investigations of the laminar separation bubble above a helicopter blade tip[J]. Measurement Science & Technology, 2005, 17(7): 1-13. |
23 | GUNTHER A, JENSEN K. Multiphase microfluidics: from flow characteristics to chemical and materials synthesis[J]. Lab on a Chip, 2006, 6(12): 1487-1503. |
24 | LIU Qingming, WANG Wujun, PALM B. Numerical study of the interactions and merge of multiple bubbles during convective boiling in micro channels[J]. International Communications in Heat and Mass Transfer, 2017, 80: 10-17. |
25 | TAEIBI-RAHNI M, FALLAH K, NAJAFI M, et al. Numerical simulation of the formation of drop in a T-shape micro channel, using LBM[C]// The 16th Conference of Fluid Dynamics, 2015. |
26 | TRIPLETT K A, GHIAASIAAN S M., ABDEL-KHALIKA S I, et al. Gas-liquid two-phase flow in microchannels (Ⅰ): Two-phase flow patterns[J]. International Journal of Multiphase Flow, 1999, 25: 377-394. |
27 | CHEN Bin, LI Guojie, WANG Weimeng, et al. 3D numerical simulation of droplet passive breakup in a micro-channel T-junction using the volume-of-fluid method[J]. Applied Thermal Engineering, 2015, 88: 94-101. |
28 | ROUMPEA E, KOVALCHUK N M, CHINAUD M. Experimental studies on droplet formation in a flow-focusing microchannel in the presence of surfactants[J]. Chemical Engineering Science, 2019, 195: 507-518. |
29 | GARSTECKI P, FUERSTMAN M, STONE H, et al. Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up[J]. Lab on a Chip, 2006, 6(3): 437-446. |
30 | HOANG D A, STEIJIN V VAN, PORTELA L M, et al. Benchmark numerical simulations of segmented two-phase flows in microchannels using the volume of fluid method[J]. Computers & Fluids, 2013, 86: 28-36. |
31 | CHEN W L, TWU M C, PAN C. Gas-liquid two-phase flow in micro-channels[J]. International Journal of Multiphase Flow2002, 28(7): 1235-1247. |
32 | 赵玉潮, 陈光文. 微化工系统的并行放大研究进展[J]. 中国科学: 化学, 2015, 45(1): 16-23. |
ZHAO Yuchao, CHEN Guangwen. Progress in research on numbering-up of microchemical system[J]. Scientia Sinica Chimica, 2015, 45(1): 16-23. | |
33 | YAMAMOTO A, MORI S, SUZUKI M. Scale-up or numbering-up of a micro plasma reactor for the carbon dioxide decomposition[J]. Thin Solid Films, 2007, 515(9): 4296-4300. |
34 | 韩腾腾, 张莉, 宣晋, 等. 微通道并行模块化设计制造及规模化制备功能材料[J]. 化工进展, 2017, 36(S1): 51-57. |
HAN Tengteng, ZHANG Li, XUAN Jin, et al. Modularized microchannel parallelization design and fabrication for mass production of functional materials[J]. Chemical Industry and Engineering Progress, 2017, 36(S1): 51-57. | |
35 | KAKAC S, BON B. A review of two-phase flow dynamic instabilities in tube boiling systems[J]. International Journal of Heat and Mass Transfer, 2008, 51(3/4): 399-433. |
36 | CHEN Jinfang, WANG Shuangfeng, CHEN Song. Experimental investigation of two-phase distribution in parallel micro-T channels under adiabatic condition[J]. Chemical Engineering Science, 2012, 84: 706-717. |
37 | KAWAHARA A, M-Y CHUNG P, KAWAJI M. Investigation of two-phase flow pattern, void fraction and pressure drop in a microchannel [J]. International Journal of Multiphase Flow, 2002, 28(9): 1411-1435. |
38 | LIANG Fachun, CHEN Jing, WANG Jilong, et al. Gas-liquid two-phase flow equal division using a swirling flow distributor[J]. Experimental Thermal and Fluid Science, 2014, 59: 43-50. |
39 | TONKOVICH A, KUHLMANN D, ROGERS A, et al. Microchannel technology scale-up to commercial capacity[J]. Chemical Engineering Research and Design, 2005, 83(6): 634-639. |
40 | MENDORF M, NACHTRODT H, MESCHER A, et al. Design and control techniques for the numbering-up of capillary microreactors with uniform multiphase flow distribution[J]. Industrial & Engineering Chemistry Research, 2010, 49(21): 10908-10916. |
41 | RAN Rui, SUN Qi, BABY T, et al. Multiphase microfluidic synthesis of micro- and nanostructures for pharmaceutical applications[J]. Chemical Engineering Science, 2017, 169: 78-96. |
42 | 袁炜, 刘卫卫, 李倩, 等. 微反应器技术在聚合中的应用研究进展[J]. 高分子通报, 2019(1): 94-101. |
YUAN Wei, LIU Weiwei, LI Qian, et al. Research progress of the applications of microreactor technology in polymerization[J]. Chinese Polymer Bulletin, 2019(1): 94-101. | |
43 | 刘冉, 夏国栋, 杜墨. 三角形微通道内纳米流体流动与换热特性[J]. 化工学报, 2016, 67(12): 4936-4943. |
LIU Ran, XIA Guodong, DU Mo. Characteristics of convective heat transfer in triangular microchannel heat sink using different nanofluids[J]. CIESC Journal, 2016, 67(12): 4936-4943. | |
44 | YANG G Q, DU B, FAN L S. Bubble formation and dynamics in gas-liquid-solid fluidization — A review[J]. Chemical Engineering Science, 2007, 62(1/2): 2-27. |
45 | LU Qi, ZHANG Yu, LIU Yu, et al. An experimental investigation on the characteristics of flow instability with the evolution of two-phase interface morphology[J]. International Journal of Heat and Mass Transfer, 2019, 138: 468-482. |
46 | 王立锋, 叶文华, 范征锋, 等. 二维可压缩流体Kelvin-Helmholtz不稳定性[J]. 物理学报, 2009(9): 6381-6386. |
WANG Lifeng, YE Wenhua, FAN Zhengfeng, et al. Kelvin-Helmholtz instability in compressible fluids[J]. Acta Physica Sinica, 2009(9): 6381-6386. | |
47 | MALEKPOUR A, GHASEMIZAD A. The investigation of rayleigh-taylor instability growth rate in inertial confinement fusion[C]// The Investigation of Ablative Rayleigh-Taylor Instability and the Energy Gain of Inertial Confinement Fusion Fuel Targets, 2020. |
48 | 梁宏. 复杂微通道内多相流体流动的格子Boltzmann方法研究[D]. 武汉: 华中科技大学, 2015. |
LIANG Hong. Lattice Boltzman method for multiphase fluid flows in complex microchannels[D]. Wuhan: Huazhong University of Science and Technology, 2015. | |
49 | 刘佩尧, 朱宝杰, 张莹, 等. 基于FTM的Kelvin-Helmholtz不稳定性衍化数值分析[J]. 应用力学学报, 2017, 34(6): 1061-1066. |
LIU Peiyao, ZHU Baojie, ZHANG Ying, et al. Numerical simulation of Kelvin-Helmholtz instability using front tracking method[J]. Chinese Journal of Applied Mechanics, 2017, 34(6): 1061-1066. | |
50 | 邓小龙. 高速气流中液滴表面Kelvin-Helmholtz不稳定性的计算流体力学研究[C]//多相流与非牛顿流暨全国多相流与非牛顿流学术研讨会, 2012. |
DENG Xiaolong. Computational hydrodynamic study of the Kelvin-Helmholtz instability of droplet surface in high-velocity airflow[C]// The 8th National Multiphase Flow and Now Newtonian Flow Academic Symposium, 2012. | |
51 | HECHT J, ALON U, SHVARTS D. Potential flow models of Rayleigh-Taylor and Richtmyer-Meshkov bubble fronts[J]. Physics of Fluids, 1994, 6(12): 4019-4030. |
52 | PADILLA-MARTINEZ J P, RAMIREZ-SAN-JUAN J C, KORNEEV N, et al. Breaking the Rayleigh-Plateau instability limit using thermocavitation within a droplet [J]. Atomization & Sprays, 2013, 23(6): 487-503. |
53 | WANG Xiaoda, ZHU Chunying, FU Taotao, et al. Critical lengths for the transition of bubble breakup in microfluidic T-junctions[J]. Chemical Engineering Science, 2014, 111: 244-254. |
54 | DAI Caili, FANG Sisi, WU Yinign, et al. Experimental study of bubble breakup process in non-Newtonian fluid in 3-D pore-throat microchannels[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 535: 130-138. |
55 | WANG Jingtao, YU Dongming. Asymmetry of flow fields and asymmetric breakup of a droplet[J]. Microfluidics and Nanofluidics, 2014, 18(4): 709-715. |
56 | THAMEEM R, RALLABANDI B, HILGENFELDT S. Particle migration and sorting in microbubble streaming flows[J]. Biomicrofluidics, 2016, 10(1): 014124. |
57 | LI Yanjun, LIU Mingyan, LI Xiangnan. Flow regimes in gas-liquid-solid mini-fluidized beds with single gas orifice[J]. Powder Technology, 2018, 333: 293-303. |
58 | 谢灵丹. 微通道内微细颗粒对气液传质的影响研究[D]. 天津: 天津大学, 2010. |
XIE Lingdan. Effects of fine particle on the gas-liguid mass transfer in the micro-channel[D]. Tianjin: Tianjin Univeristy, 2010. | |
59 | XU Yonggui, LIU Mingyan, TANG Can. Three-dimensional CFD-VOF-DPM simulations of effects of low-holdup particles on single-nozzle bubbling behavior in gas-liquid-solid systems[J]. Chemical Engineering Journal, 2013, 222: 292-306. |
60 | HAN Qiqi, YANG Ning, ZHU Jiahua. Onset velocity of circulating fluidization and particle residence time distribution: a CFD-DEM study[J]. Particuology, 2015, 21: 187-195. |
61 | TANG Can, LIU Mingyan, XU Yonggui. 3-D numerical simulations on flow and mixing behaviors in gas-liquid-solid microchannels[J]. AIChE Journal, 2013, 59(6): 1934-1951. |
62 | CHEN An, JING Yu, SANG Funing, et al. Determination of the interaction mechanism of 10m oil-in-water emulsion droplets using optical tweezers[J]. Chemical Engineering Science, 2018: 341-347. |
63 | SUSSMAN M, PUCKETT E G. A coupled level set and volume-of-fluid method for computing 3D and axisymmetric incompressible two-phase flows[J]. Journal of Computational Physics, 2000, 162(2): 301-337. |
64 | LINDKEN R, ROSSI M, GROSSE S, et al. Micro-particle image velocimetry (microPIV): recent developments, applications, and guidelines[J]. Lab on a Chip, 2009, 9(17): 2551-2567. |
[1] | 王太, 苏硕, 李晟瑞, 马小龙, 刘春涛. 交流电场中贴壁气泡的动力学行为[J]. 化工进展, 2023, 42(S1): 133-141. |
[2] | 盛维武, 程永攀, 陈强, 李小婷, 魏嘉, 李琳鸽, 陈险峰. 微气泡和微液滴双强化脱硫反应器操作分析[J]. 化工进展, 2023, 42(S1): 142-147. |
[3] | 杨寒月, 孔令真, 陈家庆, 孙欢, 宋家恺, 王思诚, 孔标. 微气泡型下向流管式气液接触器脱碳性能[J]. 化工进展, 2023, 42(S1): 197-204. |
[4] | 史天茜, 石永辉, 武新颖, 张益豪, 秦哲, 赵春霞, 路达. Fe2+对厌氧氨氧化EGSB反应器运行性能的影响[J]. 化工进展, 2023, 42(9): 5003-5010. |
[5] | 奚永兰, 王成成, 叶小梅, 刘洋, 贾昭炎, 曹春晖, 韩挺, 张应鹏, 田雨. 微纳米气泡在厌氧消化中的应用研究进展[J]. 化工进展, 2023, 42(8): 4414-4423. |
[6] | 邓建, 王凯, 骆广生. 面向硝基化学品安全生产的绝热连续微反应技术发展及思考[J]. 化工进展, 2023, 42(8): 3923-3925. |
[7] | 刘卫孝, 刘洋, 高福磊, 汪伟, 汪营磊. 微反应器在含能材料合成与品质提升中的应用[J]. 化工进展, 2023, 42(7): 3349-3364. |
[8] | 陈蔚阳, 宋欣, 殷亚然, 张先明, 朱春英, 付涛涛, 马友光. 矩形微通道内液相黏度对气泡界面的作用机制[J]. 化工进展, 2023, 42(7): 3468-3477. |
[9] | 章凯, 金捍宇, 刘思宇, 王帅. 鼓泡流态化气泡间相互作用下相间传质过程的模拟[J]. 化工进展, 2023, 42(6): 2828-2835. |
[10] | 齐承鲁, 张忠良, 王明超, 李耀鹏, 宫晓辉, 孙鹏, 郑斌. 内置管束布置对换热器内固体颗粒流动的影响[J]. 化工进展, 2023, 42(5): 2306-2314. |
[11] | 刘宇龙, 姚俊虎, 舒闯闯, 佘跃惠. 磁性Fe3O4纳米颗粒的生物合成及其在提高采收率中的应用[J]. 化工进展, 2023, 42(5): 2464-2474. |
[12] | 卢兴福, 戴波, 杨世亮. 转鼓内圆柱形颗粒混合的超二次曲面离散单元法模拟[J]. 化工进展, 2023, 42(5): 2252-2261. |
[13] | 司银芳, 胡语婕, 张凡, 董浩, 佘跃惠. 生物合成氧化锌纳米颗粒材料及其抗菌应用[J]. 化工进展, 2023, 42(4): 2013-2023. |
[14] | 侯婉, 陈汇龙, 程谦, 陈英健, 卫泽鹏, 赵斌娟. 高温密封润滑膜汽液固流动特性数值计算分析[J]. 化工进展, 2023, 42(2): 699-710. |
[15] | 杨泛明, 贺国文. 颗粒状NiO的制备及其电化学性能和CO2吸附性能[J]. 化工进展, 2023, 42(2): 907-916. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |