1 |
MONICA T,STEFANO P T.γ-Alumina as a support for catalysts: a review of fundamental aspects[J].Eur. J. Inorg. Chem.,2005,17:3393-3403.
|
2 |
BARTHOMEW C H,FARRAUTO R J.Fundamentals of industrial catalytic processes[M].2nd. Hoboken:Wiley,2005:3-59.
|
3 |
XIA Y,YANG P,SUN Y,et al.One-dimensional nanostructures:synthesis, characterization, and applications[J].Advanced Materials,2003,15(5):353-389.
|
4 |
CHEN X Y,ZHANG Z J,LI X L,et al.Controlled hydrothermal synthesis of colloidal boehmite (γ-AlOOH) nanorods and nanoflakes and their conversion intoγ-Al2O3 nanocrystals[J].Solid State Communications,2008,145(7):368-373.
|
5 |
HOU H W,XIE Y,YANG Q,et al.Preparation and characterization of γ-AlOOH nanotubes and nanorods[J].Nanotechnology,2005,16(6):19-25.
|
6 |
LIU X,LI X,YAN Z.Facile route to prepare bimodal mesoporous γ-Al2O3 as support for highly active CoMo-based hydrodesulfurization catalyst[J].Applied Catalysis B: Environmental, 2012,121/122(13):50-56.
|
7 |
LI G,LU X,TANG Z,et al.Preparation of NiMo/γ-Al2O3 catalysts with large pore size for vacuum residue hydrotreatment[J].Materials Research Bulletin,2013,48(11):4526-4530.
|
8 |
CAI W Q,ZHUO J L,FANG J M,et al.2-Ethyl-9,10-anthraquinone assisted sol-gel synthesis of Pd/γ-Al2O3nanorods with enhanced catalytic performance in 2-ethyl-9,10-anthraquinone hydrogenation[J].Chinese Journal of Chemical Engineering,2019,1(3):1-7.
|
9 |
GAO X Q,LU W D,LU A H,et al.Rod-shaped porous alumina-supported Cr2O3 catalyst with low acidity for propane dehydrogenation[J].Chinese Journal of Chemical Engineering,2019,40(2):184-191.
|
10 |
CAI W Q,HU Y Z,CHEN J,et al.Synthesis of nanorods-like mesoporous γ-Al2O3 with enhanced affinity towards Congo red removal: effects of anions and structure-directing agents[J].Cryst. Eng. Comm.,2012,14:972-977.
|
11 |
李志强.重油转化——21世纪石油炼制技术的焦点[J].炼油设计,1999,29(12):8-14.
|
|
LI Z Q.Heaby oil upgrading——A focus of petroleum refining techniques in 21st century[J].Petroleum Refinery Engineering,1999,29(12):8-14.
|
12 |
ABSIHABI M,STANISLOUS A,ALMUGHNI T,et al.Hydroprocessing of vacuum residues, relation between catalyst activity, deactivation and pore size distribution[J].Fuel,1995,74(8):1211-1215.
|
13 |
辛勤,罗梦飞.现代催化研究方法[M].北京:科学出版社,2009:15-23.
|
|
XIN Q,LUO M F.Modern catalytic research methods[M].Beijing:Science Press,2009:15-23.
|
14 |
DINGE M,AUTET P,RAYBAUD P,et al.Use of DFT to achieve a rational understanding of acid-basic properties of γ-alumina surfaces[J].J. Catal.,2004,226(1):54-68.
|
15 |
张涛,臧璟龄,胡爱华,等.锂对于γ-Al2O3表面酸中心的调变作用及其积炭性能的影响[J].催化学报,1990,11 (5):341-347.
|
|
ZHANG T,ZANG J L,HU A H,et al.Effect of lithium on the acidic property of γ-Al2O3 and its carbon deposition[J].Chinese Journal of Catalysis,1990,11(5):341-347.
|
16 |
唐国旗,张春富,孙长山,等.活性氧化铝载体的研究进展[J].化工进展,2011,30(8):1756-1765.
|
|
TANG G Q,ZHANG C F,SUN C S,et al.Research progress of γ-alumina support[J].Chemical Industry and Engineering Progress,2011,30(8):1756-1765.
|
17 |
PARRY E P.An infrared study of pyridine adsorbed on acidic solids. Characterization of surface acidity[J].J. Catal.,1963,2(5):371-379.
|
18 |
CORMA A,FORNES V,ORTEGE E.The nature of acid sites on fluorinated γ-Al2O3[J].J. Catal.,1985,92(2):284-290.
|
19 |
HUGGINS B A,ELLIS P D.Aluminum-27 nuclear magnetic resonance study of aluminas and their surfaces[J].Journal of the American Chemical Society,1992,114(6):2098-2108.
|
20 |
TSYGANENKO A A,MARDILOVICH P P.Structure of alumina surfaces[J].Journal of the Chemical Society,Faraday Transactions,1996,92(23):4843-4852.
|
21 |
SAKASHITA Y,ARAKI Y,SHIMADA H.Effects of surface orientation of alumina supports on the catalytic functionality of molybdenum sulfides[J].Appl. Catal. A,2001,15:101-110.
|