1 | KUBA T, SMOLDERS G, LOOSDRECHT M C M V, et al. Biological phosphorus removal from wastewater by anaerobic-anoxic sequencing batch reactor[J]. Waterence and Technology, 1993, 27(5/6): 241-252. | 2 | BAEZA J A, GABRIEL D, LAFUENTE J. Improving the nitrogen removal efficiency of an A2/O based WWTP by using an on-line knowledge based expert system[J]. Water Research, 2002, 36(8): 2109-2123. | 3 | XU X Y, LIU G, ZHU L. Enhanced denitrifying phosphorous removal in a novel anaerobic/aerobic/anoxic (AOA) process with the diversion of internal carbon source[J]. Bioresource Technology, 2011, 102(22): 10340-10345. | 4 | ZHOU Y, PIJUAN M, YUAN Z G. Development of a 2-sludge, 3-stage system for nitrogen and phosphorous removal from nutrient-rich wastewater using granular sludge and biofilms[J]. Water Research, 2008, 42(12): 3207-3217. | 5 | KUBA T, LOOSDRECHT M C M V, BRANDSE F A, et al. Occurrence of denitrifying phosphorus removing bacteria in modified UCT-type wastewater treatment plants[J]. Water Research, 1997, 31(4): 777-786. | 6 | 叶丽红, 李冬, 张杰, 等. 亚硝化-反硝化除磷技术研究进展[J]. 北京工业大学学报, 2016,42(4): 585-593. | 6 | YE L H, LI D, ZHANG J, et al. Advance of research on the technology of nitrite-denitrifying phosphorus removal[J]. Journal of Beijin University of Technology, 2016,42(4): 585-593. | 7 | 章璋, 朱易春, 王佳琪, 等. 短程反硝化除磷的影响因素分析[J]. 江西理工大学学报, 2019,40(1): 46-53. | 7 | ZHANG Z, ZHU Y C, WANG J Q, et al. Analysis of influential factors of partial denitrifying dephosphatation[J]. Journal of Jiangxi University of Science and Technology, 2019, 40(1): 46-53. | 8 | KONG Y, NIELSEN J L, NIELSEN P H. Microautoradiographic study of rhodocyclus-related polyphosphate-accumulating bacteria in full-scale enhanced biological phosphorus removal plants[J]. Applied and Environmental Microbiology, 2004, 70(9): 5383-5390. | 9 | JEON C O, LEE D S, PARK J M. Microbial communities in activated sludge performing enhanced biological phosphorus removal in a sequencing batch reactor[J]. Water Research, 2003, 37(9): 2195-2205. | 10 | HU J Y, ONG S L, NG W J, et al. A new method for characterizing denitrifying phosphorus removal bacteria by using three different types of electron acceptors[J]. Water Research, 2003, 37(14): 3463-3471. | 11 | DABERT P, FLEURAT-LESSARD A, MOUNIER E, et al. Monitoring of the microbial community of a sequencing batch reactor bioaugmented to improve its phosphorus removal capabilities[J]. Water Science and Technology, 2001, 43(3): 1-8. | 12 | JABARI P, MUNZ G, OLESZKIEWICZ J A. Selection of denitrifying phosphorous accumulating organisms in IFAS systems: comparison of nitrite with nitrate as an electron acceptor[J]. Chemosphere, 2014, 109: 20-27. | 13 | OEHMEN A, LEMOS P C, CARVALHO G, et al. Advances in enhanced biological phosphorus removal: from micro to macro scale[J]. Water Research, 2007, 41(11): 2271-2300. | 14 | GUISASOLA A, QURIE M, VARGAS M D M, et al. Failure of an enriched nitrite-DPAO population to use nitrate as an electron acceptor[J]. Process Biochemistry, 2009, 44(7): 689-695. | 15 | CARVALHO G, LEMOS P C, OEHMEN A, et al. Denitrifying phosphorus removal: linking the process performance with the microbial community structure[J]. Water Research, 2007, 41(19): 4383-4396. | 16 | RUBIO-RINCóN F J, LOPEZ-VAZQUEZ C M, WELLES L, et al. Cooperation between Candidatus competibacter and Candidatus accumulibacter clade Ⅰ, in denitrification and phosphate removal processes[J]. Water Research, 2017, 120: 156-164. | 17 | MARTIN H G, IVANOVA N, KUNIN V, et al. Metagenomic analysis of two enhanced biological phosphorus removal (EBPR) sludge communities[J]. Nature Biotechnology, 2006, 24(10): 1263-1269. | 18 | HE S, GALL D L, MCMAHON K D. Candidatus accumulibacter population structure in enhanced biological phosphorus removal sludges as revealed by polyphosphate kinase genes[J]. Applied and Environmental Microbiology, 2007, 73(18): 5865-5874. | 19 | PETERSON S B, WARNECKE F, MADEJSKA J, et al. Environmental distribution and population biology of Candidatus accumulibacter, a primary agent of biological phosphorus removal[J]. Environmental Microbiology, 2008, 10(10): 2692-2703. | 20 | OEHMEN A, CARVALHO G, LOPEZ-VAZQUEZ C M, et al. Incorporating microbial ecology into the metabolic modelling of polyphosphate accumulating organisms and glycogen accumulating organisms[J]. Water Research, 2010, 44(17): 4992-5004. | 21 | CAMEJO P Y, OWEN B R, MARTIRANO J, et al. Candidatus accumulibacter phosphatis clades enriched under cyclic anaerobic and microaerobic conditions simultaneously use different electron acceptors[J]. Water Research, 2016, 102: 125-137. | 22 | MAO Y, GRAHAM D W, TAMAKI H, et al. Dominant and novel clades of Candidatus accumulibacter phosphatis in 18 globally distributed full-scale wastewater treatment plants[J]. Scientific Reports, 2015, 5(11857): 1-10. | 23 | OEHMEN A, CARVALHO G, FREITAS F, et al. Assessing the abundance and activity of denitrifying polyphosphate accumulating organisms through molecular and chemical techniques[J]. Water Science and Technology, 2010, 61(8): 2061-2068. | 24 | ZENG W, BAI X, GUO Y, et al. Interaction of Candidatus accumulibacter and nitrifying bacteria to achieve energy-efficient denitrifying phosphorus removal via nitrite pathway from sewage[J]. Enzyme and Microbial Technology, 2017, 105: 1-8. | 25 | SAAD S A, WELLES L, ABBAS B, et al. Denitrification of nitrate and nitrite by Candidatus accumulibacter phosphati' clade IC[J]. Water Research, 2016, 105: 97-109. | 26 | ZENG R J, YUAN Z, KELLER J. Effects of solids concentration, pH and carbon addition on the production rate and composition of volatile fatty acids in prefermenters using primary sewage sludge[J]. Water Science and Technology, 2006, 53(8): 263-269. | 27 | ZHANG S H, HUANG Y, HUA Y M. Denitrifying dephosphatation over nitrite: Effects of nitrite concentration, organic carbon and pH[J]. Bioresource Technology, 2010, 101(11): 3870-3875. | 28 | 吴昌永, 彭永臻, 彭轶, 等. 碳源类型对A2O系统脱氮除磷的影响[J].环境科学, 2009, 30(3): 798-802. | 28 | WU C Y, PENG Y Z, PENG Y, et al. Influence of carbon source on biological nutrient removal in A2O process[J]. Environmental Science, 2009, 30(3): 798-802. | 29 | YUN G, LEE H, HONG Y, et al. The difference of morphological characteristics and population structure in PAO and DPAO granular sludges[J]. Journal of Environmental Sciences, 2019, 76: 388-402. | 30 | PIJUAN M, SAUNDERS A M, GUISASOLA A, et al. Enhanced biological phosphorus removal in a sequencing batch reactor using propionate as the sole carbon source[J]. Biotechnology and Bioengineering, 2004, 85(1): 56-67. | 31 | MEYER R L, SAUNDERS A M, BLACKALL L L. Putative glycogen-accumulating organisms belonging to the Alphaproteobacteria identified through rRNA-based stable isotope probing[J]. Microbiology, 2006, 152(2): 419-429. | 32 | OEHMEN A, YUAN Z, BLACKALL L L, et al. Comparison of acetate and propionate uptake by polyphosphate accumulating organisms and glycogen accumulating organisms[J]. Biotechnology and Bioengineering, 2005, 91(2): 162-168. | 33 | TAYA C, GARLAPATI V K, GUISASOLA A, et al. The selective role of nitrite in the PAO/GAO competition[J]. Chemosphere, 2013, 93(4): 612-618. | 34 | LU H, OEHMEN A, VIRDIS B, et al. Obtaining highly enriched cultures of Candidatus accumulibacter phosphatis through alternating carbon sources[J].Water Research, 2007, 40(20): 3838-3848. | 35 | LOPEZ-VAZQUEZ C M, OEHMEN A, HOOIJMANS C M, et al. Modeling the PAO–GAO competition: effects of carbon source, pH and temperature[J]. Water Research, 2009, 43(2): 450-462. | 36 | WANG Y, PENG Y, STEPHENSON T. Effect of influent nutrient ratios and hydraulic retention time (HRT) on simultaneous phosphorus and nitrogen removal in a two-sludge sequencing batch reactor process[J]. Bioresour Technology, 2009, 100(14): 3506-3512. | 37 | 彭永臻. SBR 法污水生物脱氮除磷及过程控制[M]. 北京: 科学出版社, 2011: 188-190. | 37 | PENG Y Z. The biological removal of nitrogen and phosphorus in wastewater by SBR[M]. Beijing: Science Press, 2011: 188-190. | 38 | 胡筱敏, 李微, 刘金亮, 等. pH对以亚硝酸盐为电子受体反硝化除磷的影响[J]. 中南大学学报(自然科学版), 2013, 44(5): 2144-2149. | 38 | HU X M, LI W, LIU J L, et al.Influence of pH on denitrifying phosphorus removal using nitrite as electron acceptor [J].Journal of Central South University (Science and Technology), 2013, 44(5): 2144-2149. | 39 | LI W, ZHANG H Y, SUN H Z, et al. Influence of pH on short-cut denitrifying phosphorus removal[J]. Water Science and Engineering, 2018, 11(1): 17-22. | 40 | 韦佳敏, 黄慧敏, 程诚, 等. 污泥龄及pH值对反硝化除磷工艺效能的影响[J]. 环境科学, 2019, 40(4): 382-387. | 40 | WEI J M, HUANG H M, CHENG C, et al. Effect of sludge retention time and pH on denitrifying phosphorus removal process[J]. Environmental Science, 2019, 40(4): 382-387. | 41 | FILIPE C, DAIGGER G T, GRADY L. pH as a key factor in the competition between glycogen-accumulating organisms and phosphorus-accumulating organisms[J]. Water Environment Research, 2001, 73(2): 223-232. | 42 | OEHMEN A, VIVES M T, LU H, et al. The effect of pH on the competition between polyphosphate -accumulating organisms and glycogen-accumulating organisms[J].Water Research, 2005, 39(15): 3727- 3737. | 43 | MEINHOLD J, ARNOLD E, ISAACS S. Effect of nitrite on anoxic phosphate uptake in biological phosphorus removal activated sludge[J]. Water Research, 1999, 33(8): 1871-1883. | 44 | AHN J, DAIDOU T, TSUNEDA S, et al. Metabolic behavior of denitrifying phosphate-accumulating organisms under nitrate and nitrite electron acceptor conditions[J]. Journal of Bioscience and Bioengineering, 2001, 92(5): 442-446. | 45 | 王爱杰, 吴丽红, 任南琪, 等. 亚硝酸盐为电子受体反硝化除磷工艺的可行性[J]. 中国环境科学, 2005, 25(5): 515-518. | 45 | WANG A J,WU L H,REN N Q, et al. Feasibility of denitrifying phosphorus removal technique using nitrite as electron acceptor[J].China Environmental Science, 2005, 25(5): 515-518. | 46 | ZHOU S, ZHANG X, FENG L. Effect of different types of electron acceptors on the anoxic phosphorus uptake activity of denitrifying phosphorus removing bacteria[J]. Bioresource Technology, 2010, 101(6): 1603-1610. | 47 | DUAN H, GAO S, LI X, et al.Improving wastewater management using free nitrous acid (FNA)[J]. Water Research, 2020, 171: 115382. | 48 | ZHOU Y, PIJUAN M, YUAN Z. Free nitrous acid inhibition on anoxic phosphorus uptake and denitrification by poly-phosphate accumulating organisms[J]. Biotechnology and Bioengineering, 2007, 98(4): 903-912. | 49 | ZHOU Y, OEHMEN A, LIM M, et al. The role of nitrite and free nitrous acid (FNA) in wastewater treatment plants[J]. Water Research, 2011, 45(15): 4672-4682. | 50 | ZHOU Y, GANDA L, LIM M, et al. Free nitrous acid (FNA) inhibition on denitrifying poly-phosphate accumulating organisms (DPAOs)[J]. Applied Microbiology and Biotechnology, 2010, 88(1): 359-369. | 51 | WANG Y, GENG J, REN Z, et al. Effect of anaerobic reaction time on denitrifying phosphorus removal and N2O production[J]. Bioresource Technology, 2011, 102(10): 5674-5684. | 52 | ZENG W, WANG A, ZHANG J, et al. Enhanced biological phosphate removal from wastewater and clade-level population dynamics of “Candidatus accumulibacter phosphatis” under free nitrous acid inhibition: linked with detoxication[J]. Chemical Engineering Journal, 2016, 296: 234-242. | 53 | PIJUAN M, YE L, YUAN Z. Free nitrous acid inhibition on the aerobic metabolism of poly-phosphate accumulating organisms[J]. Water Research, 2010, 44(20): 6063-6072. | 54 | ZHOU Y, GANDA L, LIM M, et al. Response of poly-phosphate accumulating organisms to free nitrous acid inhibition under anoxic and aerobic conditions[J]. Bioresource Technology, 2012, 116: 340-347. | 55 | BELLI T J, BEMARDELLI J K, COSTA R E, et al. Effect of solids retention time on nitrogen and phosphorus removal from municipal wastewater in a sequencing batch membrane bioreactor[J]. Environmental Technology, 2016, 38(7): 806-815. | 56 | ERSU C B, ONG S K, ARSLANKAYA E, et al. Impact of solids residence time on biological nutrient removal performance of membrane bioreactor[J]. Water Research, 2010, 44(10): 3192-3202. | 57 | ZHENG X, SUN P, HAN J, et al. Inhibitory factors affecting the process of enhanced biological phosphorus removal (EBPR): a mini-review[J]. Process Biochemistry, 2014, 49(12): 2207-2213. | 58 | MERZOUKI M, BERNET N, DELGENES J P, et al. Biological denitrifying phosphorus removal in SBR: effect of added nitrate concentration and sludge retention time[J]. Water Science and Technology, 2001, 43(3): 191-194. | 59 | 王朝朝, 闫立娜, 李思敏, 等. SRT对UCT-MBR反硝化除磷性能与膜污染行为的影响[J].中国环境科学, 2016, 36(6): 1715-1723. | 59 | WANG Z Z, YAN L N, LI S M, et al. Influence of sludge retention time on denitrifying dephosphatation propensity and membrane fouling behavior in a UCT-MBR process[J]. China Environmental Science,2016,36(6): 1715-1723. | 60 | MINO T, LOOSDRECHT M C M V, HEIJNEN J J. Microbiology and biochemistry of the enhanced biological phosphate removal process[J]. Water Research, 1998, 32(11): 3193-3207. | 61 | WANG Y, GENG J, REN Z, et al. Effect of COD/N and COD/P ratios on the PHA transformation and dynamics of microbial community structure in a denitrifying phosphorus removal process[J]. Journal of Chemical Technology and Biotechnology, 2013, 88(7): 1228-1236. | 62 | WANG Y, PENG Y, PENG C, et al. Influence of ORP variation, carbon source and nitrate concentration on denitrifying phosphorus removal by DPB sludge from dephanox process[J]. Water Science and Technology, 2004, 50(10): 153-161. | 63 | 张建华, 彭永臻, 张淼, 等. 不同电子受体配比对反硝化除磷特性及内碳源转化利用的影响[J]. 化工学报, 2015, 66(12): 5045-5053. | 63 | ZHANG J H, PENG Y Z, ZHANG M, et al.Effect of different electron acceptor ratios on removal of nitrogen and phosphorus and conversion and utilization of internal carbon source[J]. CIESC Journal, 2015, 66(12): 5045-5053. | 64 | 张建华,王淑莹,张淼,等. 不同反应时间内碳源转化对反硝化除磷的影响[J]. 中国环境科学, 2017,37(3): 989-997. | 64 | ZHANG J H, WANG S Y, ZHANG M, et al.Effect of conversion of internal carbon source on denitrifying phosphorus removal under different reaction time[J]. China Environmental Science,2017,37(3): 989-997. | 65 | ZHANG M, PENG Y, WANG C, et al. Optimization denitrifying phosphorus removal at different hydraulic retention times in a novel anaerobic anoxic oxic-biological contact oxidation process[J]. Biochemical Engineering Journal, 2016,106: 26-36. | 66 | COMA M, PUIG S, BALAGUER M D, et al. The role of nitrate and nitrite in a granular sludge process treating low-strength wastewater[J]. Chemical Engineering Journal, 2010, 164(1): 208-213. | 67 | LYU X, SHAO M, LI C, et al. Operation performance and microbial community dynamics of phosphorus removal sludge with different electron acceptors[J]. Journal of Industrial Microbiology and Biotechnology, 2014, 41(7): 1099-1108. | 68 | RIBERA-GUARDIA A, MARQUES R, ARANGIO C, et al. Distinctive denitrifying capabilities lead to differences in N2O production by denitrifying polyphosphate accumulating organisms and denitrifying glycogen accumulating organisms[J]. Bioresource Technology, 2016, 219: 106-113. | 69 | WANG X, WANG S, XUE T, et al. Treating low carbon/nitrogen (C/N) wastewater in simultaneous nitrification-endogenous denitrification and phosphorous removal (SNDPR) systems by strengthening anaerobic intracellular carbon storage[J]. Water Research, 2015, 77: 191-200. | 70 | WANG X, WANG S, ZHAO J, et al. Combining simultaneous nitrification-endogenous denitrification and phosphorus removal with post-denitrification for low carbon/nitrogen wastewater treatment[J]. Bioresource Technology, 2016, 220: 17-25. | 71 | WANG X, WANG S, ZHAO J, et al. A novel stoichiometries methodology to quantify functional microorganisms in simultaneous (partial) nitrification-endogenous denitrification and phosphorus removal (SNEDPR)[J]. Water Research, 2016, 95: 319-329. | 72 | WANG X, ZHAO J, YU D, et al. Stable nitrite accumulation and phosphorous removal from nitrate and municipal wastewaters in a combined process of endogenous partial denitrification and denitrifying phosphorus removal (EPDPR)[J]. Chemical Engineering Journal, 2019,355: 560-571. | 73 | FAN Z, ZENG W, WANG B, et al. Microbial community at transcription level in the synergy of GAOs and Candidatus accumulibacter for saving carbon source in wastewater treatment[J]. Bioresource Technology, 2020, 297: 122454. | 74 | JI J, PENG Y, WANG B, et al.A novel SNPR process for advanced nitrogen and phosphorus removal from mainstream wastewater based on anammox, endogenous partial-denitrification and denitrifying dephosphatation[J]. Water Research, 2020, 170: 115363. | 75 | WANG X, ZHAO J, YU D, et al. Evaluating the potential for sustaining mainstream anammox by endogenous partial denitrification and phosphorus removal for energy-efficient wastewater treatment[J]. Bioresource Technology, 2019, 284: 302-314. | 76 | XU X, QIU L, WANG C, et al. Achieving mainstream nitrogen and phosphorus removal through simultaneous partial nitrification, anammox, denitrification, and denitrifying phosphorus removal (SNADPR) process in a single-tank integrative reactor[J]. Bioresource Technology, 2019, 284: 80-89. | 77 | WEN X, ZHOU J, LI Y, et al. A novel process combining simultaneous partial nitrification, anammox and denitrification (SNAD) with denitrifying phosphorus removal (DPR) to treat sewage[J]. Bioresource Technology, 2016, 222: 309-316. | 78 | ZHAO J, WANG X, LI X, et al. Advanced nutrient removal from ammonia and domestic wastewaters by a novel process based on simultaneous partial nitrification-anammox and modified denitrifying phosphorus removal[J]. Chemical Engineering Journal, 2018, 354: 589-598. | 79 | STROUS M, HEIJNEN J J, KUENEN J G, et al. The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms[J]. Applied Microbiology and Biotechnology, 1998, 50(5): 589-596. | 80 | LOTTI T, KLEEREBEZEM R, HU Z, et al. Simultaneous partial nitritation and anammox at low temperature with granular sludge[J]. Water Research, 2014, 66: 111-121. | 81 | CHEN H, LIU S, YANG F, et al. The development of simultaneous partial nitrification, anammox and denitrification (SNAD) process in a single reactor for nitrogen removal[J]. Bioresource Technology, 2009, 100(4): 1548-1554. | 82 | WANG C, LIU S, XU X, et al. Achieving mainstream nitrogen removal through simultaneous partial nitrification, anammox and denitrification process in an integrated fixed film activated sludge reactor[J]. Chemosphere, 2018, 203: 457-466. | 83 | MIAO Y, ZHANG L, LI B, et al. Enhancing ammonium oxidizing bacteria activity was key to single-stage partial nitrification-anammox system treating low-strength sewage under intermittent aeration condition[J]. Bioresource Technology, 2017, 231: 36-44. | 84 | JI J, PENG Y, MAI W,et al. Achieving advanced nitrogen removal from low C/N wastewater by combining endogenous partial denitrification with anammox in mainstream treatment[J]. Bioresource Technology, 2018, 270: 570-579. | 85 | JI J, PENG Y, WANG B, et al. Achievement of high nitrite accumulation via endogenous partial denitrification (EPD)[J]. Bioresource Technology, 2017, 224: 140-146. | 86 | 张立成. 亚硝化反硝化除磷工艺及分子微生物学研究[D].北京:北京工业大学, 2011. | 86 | ZHANG L C.Study on the nitrosation denitrifying phosphorus removal process and molecular microbiology[D].Beijing: Beijing University of Technology, 2011. | 87 | 於蒙, 潘婷, 张淼, 等. 乙酸钠丙酸钠配比对A2/O-BCO反硝化除磷及菌群结构的影响[J]. 中国环境科学, 2019, 39(10): 4178-4185. | 87 | YU M, PAN T, ZHANG M, et al.Effect of the ratios of sodium acetate to sodium propionate on denitrifying phosphorus removal characteristics in theA2/O-BCO process[J].China Environmental Science, 2019, 39(10): 4178-4185. |
|