1 | 邓帅, 李双俊, 宋春风, 等. 微藻光合固碳效能研究:进展、挑战和解决路径[J]. 化工进展, 2018, 37(3): 928-937. | 1 | DENG S,LI S J,SONG C F, et al. Energy-efficiency research on photochemical-based microalgae carbon capture: progress,challenge and developing pathway[J]. Chemical Industry and Engineering Progress, 2018, 37(3): 928-937. | 2 | 厉雄峰, 李清毅, 胡达清, 等. 微藻生物固碳法在煤电碳减排应用的研究进展[J]. 化工进展, 2016, 35(S2): 347-351. | 2 | LI X F, LI Q Y, HU D Q, et al. Research progress on application of microalgae decarburization technology in carbon emission reduction of coal-fired power[J]. Chemical Industry and Engineering Progress, 2016, 35(S2): 347-351. | 3 | YUE L H, CHEN W G. Isolation and determination of cultural characteristics of a new highly CO2 tolerant fresh water microalgae[J]. Energy Conversion and Management, 2005, 46(11/12): 1868-1876. | 4 | OTA M, TAKENAKA M, SATO Y, et al. Variation of photoautotrophic fatty acid production from a highly CO2 tolerant alga, Chlorococcum littorale, with inorganic carbon over narrow ranges of pH[J]. Biotechnology Progress, 2015, 31(4): 1053-1057. | 5 | WANG X, LIANG J, LUO C, et al. Biomass, total lipid production, and fatty acid composition of the marine diatom Chaetoceros muelleri in response to different CO2 levels[J]. Bioresource Technology, 2014, 161: 124-130. | 6 | 夏奡, 叶文帆, 富经纬, 等. 燃煤烟气微藻固碳减排技术现状与展望[J]. 煤炭科学技术, 2020, 48(1): 108-119. | 6 | XIA A,YE W F,FU J W,et al. Current status and prospect of carbon fixation and emission reduction technology for coal-fired flue gas by microalgae[J]. Coal Science and Technology,2020, 48(1): 108-119. | 7 | 周文广, 阮榕生. 微藻生物固碳技术进展和发展趋势[J]. 中国科学:化学, 2014, 44(1): 63-78. | 7 | ZHOU W G, RUAN Y S. Biological mitigation of carbon dioxide via microalgae: recent development and future direction[J]. Scientia Sinica Chimica, 2014, 44(1): 63-78. | 8 | WONDRACZEK L, BATENTSCHUK M, SCHMIDT M A, et al. Solar spectral conversion for improving the photosynthetic activity in algae reactors[J]. Nature Communications, 2013, 4(2047). | 9 | ORT D R, ZHU X, MELIS A. Optimizing antenna size to maximize photosynthetic efficiency[J]. Plant Physiology, 2011, 155(1): 79-85. | 10 | PERRINE Z, NEGI S, SAYRE R T. Optimization of photosynthetic light energy utilization by microalgae[J]. Algal Research-Biomass Biofuels and Bioproducts, 2012, 1(2): 134-142. | 11 | OOMS M D, CAO T D, SARGENT E H, et al. Photon management for augmented photosynthesis[J]. Nature Communications, 2016, 7: 12699. | 12 | RA C H, SIRISUK P, JUNG J, et al. Effects of light-emitting diode (LED) with a mixture of wavelengths on the growth and lipid content of microalgae[J]. Bioprocess and Biosystems Engineering, 2018, 41(4): 457-465. | 13 | YEH K, CHANG J. Nitrogen starvation strategies and photobioreactor design for enhancing lipid production of a newly isolated microalga Chlorella vulgaris ESP-31: implications for biofuels[J]. Biotechnology Journal, 2011, 6(11): 1358-1366. | 14 | IZADPANAH M, GHESHLAGHI R, MAHDAVI M A, et al. Effect of light spectrum on isolation of microalgae from urban wastewater and growth characteristics of subsequent cultivation of the isolated species[J]. Algal Research-Biomass Biofuels and Bioproducts, 2018, 29: 154-158. | 15 | KUMAR M S, HWANG J, ABOU-SHANAB R A I, et al. Influence of CO2 and light spectra on the enhancement of microalgal growth and lipid content[J]. Journal of Renewable and Sustainable Energy, 2014, 6: 063107. | 16 | TANG D, HAN W, LI P, et al. CO2 biofixation and fatty acid composition of Scenedesmus obliquus and Chlorella pyrenoidosa in response to different CO2 levels[J]. Bioresource Technology, 2011, 102(3): 3071-3076. | 17 | KUMAR A, YUAN X, SAHU A K, et al. A hollow fiber membrane photo-bioreactor for CO2 sequestration from combustion gas coupled with wastewater treatment: A process engineering approach[J]. Journal of Chemical Technology and Biotechnology, 2010, 85(3): 387-394. | 18 | SYDNEY E B, STURM W, DE CARVALHO J C, et al. Potential carbon dioxide fixation by industrially important microalgae[J]. Bioresource Technology, 2010, 101(15): 5892-5896. | 19 | HO S, CHEN C, YEH K, et al. Characterization of photosynthetic carbon dioxide fixation ability of indigenous Scenedesmus obliquus isolates[J]. Biochemical Engineering Journal, 2010, 53(1): 57-62. | 20 | FAN J, XU H, LUO Y, et al. Impacts of CO2 concentration on growth, lipid accumulation, and carbon-concentrating-mechanism-related gene expression in oleaginous Chlorella[J]. Applied Microbiology and Biotechnology, 2015, 99(5): 2451-2462. | 21 | ZHAO B, SU Y. Process effect of microalgal-carbon dioxide fixation and biomass production: A review[J]. Renewable & Sustainable Energy Reviews, 2014, 31: 121-132. | 22 | SOLOVCHENKO A, KHOZIN-GOLDBERG I. High-CO2 tolerance in microalgae: possible mechanisms and implications for biotechnology and bioremediation[J]. Biotechnology Letters, 2013, 35(11): 1745-1752. | 23 | MIYACHI S, IWASAKI I, SHIRAIWA Y. Historical perspective on microalgal and cyanobacterial acclimation to low-and extremely high-CO2 conditions[J]. Photosynthesis Research, 2003, 77(2/3): 139-153. | 24 | CHENG J, LI K, YANG Z, et al. Enhancing the growth rate and astaxanthin yield of Haematococcus pluvialis by nuclear irradiation and high concentration of carbon dioxide stress[J]. Bioresource Technology, 2016, 204: 49-54. | 25 | 徐敏, 刘国祥, 胡征宇. 耐受极高浓度CO2藻类的研究及其在固碳领域的应用[J]. 中国科学院研究生院学报, 2005(5): 529-535. | 25 | XU M, LIU G X, HU Z Y. Progress of the study on the high-CO2-tolerant algae and its application in carbon fixation technology[J]. Journal of the Graduate School of the Chinese Academy of Sciences, 2005(5): 529-535. | 26 | LAM M K, LEE K T, MOHAMED A R. Current status and challenges on microalgae-based carbon capture[J]. International Journal of Greenhouse Gas Control, 2012, 10: 456-469. | 27 | GROSS W. Ecophysiology of algae living in highly acidic environments[J]. Hydrobiologia, 2000, 433(1/2/3): 31-37. | 28 | GARDNER R D, LOHMAN E, GERLACH R, et al. Comparison of CO2 and bicarbonate as inorganic carbon sources for triacylglycerol and starch accumulation in Chlamydomonas reinhardtii[J]. Biotechnology and Bioengineering, 2013, 110(1): 87-96. | 29 | LEVITAN O, BROWN C M, SUDHAUS S, et al. Regulation of nitrogen metabolism in the marine diazotroph Trichodesmium IMS101 under varying temperatures and atmospheric CO2 concentrations[J]. Environmental Microbiology, 2010, 12(7): 1899-1912. | 30 | LEVITAN O, SUDHAUS S, LAROCHE J, et al. The influence of pCO2 and temperature on gene expression of carbon and nitrogen pathways in Trichodesmium IMS101[J]. Plos One, 2010, 5(12): e15104. | 31 | SHU S, CHEN L, LU W, et al. Effects of exogenous spermidine on photosynthetic capacity and expression of Calvin cycle genes in salt-stressed cucumber seedlings[J]. Journal of Plant Research, 2014, 127(6): 763-773. | 32 | LI K, CHENG J, LU H, et al. Transcriptome-based analysis on carbon metabolism of Haematococcus pluvialis mutant under 15% CO2[J]. Bioresource Technology, 2017, 233: 313-321. | 33 | BABA M, SUZUKI I, SHIRAIWA Y. Proteomic analysis of high-CO2-inducible extracellular proteins in the Unicellular green alga, Chlamydomonas reinhardtii[J]. Plant and Cell Physiology, 2011, 52(8): 1302-1314. | 34 | HANAWA Y, WATANABE M, KARATSU Y, et al. Induction of a high-CO2-inducible, periplasmic protein, H43 and its application as a high-CO2-responsive marker for study of the high-CO2-sensing mechanism in Chlamydomonas reinhardtii[J]. Plant and Cell Physiology, 2007, 48(2): 299-309. | 35 | TANADUL O, VANDERGHEYNST J S, BECKLES D M, et al. The impact of elevated CO2 concentration on the quality of algal starch as a potential biofuel feedstock[J]. Biotechnology and Bioengineering, 2014, 111(7): 1323-1331. | 36 | LI D, WANG L, ZHAO Q, et al. Improving high carbon dioxide tolerance and carbon dioxide fixation capability of Chlorella sp. by adaptive laboratory evolution[J]. Bioresource Technology, 2015, 185: 269-275. | 37 | CHENG Y, ZHENG Y, LABAVITCH J M, et al. Virus infection of Chlorella variabilis and enzymatic saccharification of algal biomass for bioethanol production[J]. Bioresource Technology, 2013, 137: 326-331. | 38 | KUCZYNSKA P, JEMIOLA-RZEMINSKA M, STRZALKA K. Photosynthetic pigments in diatoms[J]. Marine Drugs, 2015, 13(9): 5847-5881. | 39 | CHENG J, LI K, ZHU Y, et al. Transcriptome sequencing and metabolic pathways of astaxanthin accumulated in Haematococcus pluvialis mutant under 15% CO2[J]. Bioresource Technology, 2017, 228: 99-105. | 40 | LU H, CHENG J, ZHU Y, et al. Responses of Arthrospira ZJU9000 to high bicarbonate concentration (HCO3-: 171.2mM): how do biomass productivity and lipid content simultaneously increase?[J]. Algal Research-Biomass Biofuels and Bioproducts, 2019, 41: 101531. | 41 | NWOBA E G, PARLEYHET D A, LAIRD D W, et al. Light management technologies for increasing algal photobioreactor efficiency[J]. Algal Research: Biomass Biofuels and Bioproducts, 2019, 39: 101433. | 42 | BLANKENSHIP R E, TIEDE D M, BARBER J, et al. Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement[J]. Science, 2011, 332(6031): 805-809. | 43 | BOSMA R, DE VREE J H, SLEGERS P M, et al. Design and construction of the microalgal pilot facility AlgaePARC[J]. Algal Research: Biomass Biofuels and Bioproducts, 2014, 6: 160-169. | 44 | DE MOOIJ T, DE VRIES G, LATSOS C, et al. Impact of light color on photobioreactor productivity[J]. Algal Research-Biomass Biofuels and Bioproducts, 2016, 15: 32-42. | 45 | TEO C L, ATTA M, BUKHARI A, et al. Enhancing growth and lipid production of marine microalgae for biodiesel production via the use of different LED wavelengths[J]. Bioresource Technology, 2014, 162: 38-44. | 46 | SCHULZE P S C, BARREIRA L A, PEREIRA H G C, et al. Light emitting diodes (LEDs) applied to microalgal production[J]. Trends in Biotechnology, 2014, 32(8): 423-431. | 47 | BLANKEN W, CUARESMA M, WIJFFELS R H, et al. Cultivation of microalgae on artificial light comes at a cost[J]. Algal Research:Biomass Biofuels and Bioproducts, 2013, 2(4): 333-340. | 48 | ESTIME B, REN D, SURESHKUMAR R. Effects of plasmonic film filters on microalgal growth and biomass composition[J]. Algal Research: Biomass Biofuels and Bioproducts, 2015, 11: 85-89. | 49 | VEJRAZKA C, JANSSEN M, BENVENUTI G, et al. Photosynthetic efficiency and oxygen evolution of Chlamydomonas reinhardtii under continuous and flashing light[J]. Applied Microbiology and Biotechnology, 2013, 97(4): 1523-1532. | 50 | MASOJIDEK J, KOPECKY J, GIANNELLI L, et al. Productivity correlated to photobiochemical performance of Chlorella mass cultures grown outdoors in thin-layer cascades[J]. Journal of Industrial Microbiology & Biotechnology, 2011, 38(2): 307-317. | 51 | CARLOZZI P. Dilution of solar radiation through "culture" lamination in photobioreactor rows facing South-North: a way to improve the efficiency of light utilization by cyanobacteria (Arthrospira platensis)[J]. Biotechnology and Bioengineering, 2003, 81(3): 305-315. | 52 | TAN X, ZHANG D F, DUAN Z P, et al. Effects of light color on interspecific competition between Microcystis aeruginosa and Chlorella pyrenoidosa in batch experiment[J]. Environmental Science and Pollution Research, 2020, 27: 344-352. | 53 | HO S, CHAN M, LIU C, et al. Enhancing lutein productivity of an indigenous microalga Scenedesmus obliquus FSP-3 using light-related strategies[J]. Bioresource Technology, 2014, 152: 275-282. | 54 | MATTOS E R, SINGH M, CABRERA M L, et al. Enhancement of biomass production in Scenedesmus bijuga high-density culture using weakly absorbed green light[J]. Biomass & Bioenergy, 2015, 81: 473-478. | 55 | MOHSENPOUR S F, WILLOUGHBY N. Luminescent photobioreactor design for improved algal growth and photosynthetic pigment production through spectral conversion of light[J]. Bioresource Technology, 2013, 142: 147-153. | 56 | BIALON J, RATH T. Growth rates and photon efficiency of Chlorella vulgaris in relation to photon absorption rates under different LED-types[J]. Algal Research: Biomass Biofuels and Bioproducts, 2018, 31: 204-215. | 57 | KIM D G, LEE C, PARK S, et al. Manipulation of light wavelength at appropriate growth stage to enhance biomass productivity and fatty acid methyl ester yield using Chlorella vulgaris[J]. Bioresource Technology, 2014, 159: 240-248. | 58 | CHANGSU L, JOON-WOO A, JIN-BAEK K, et al. Comparative transcriptome analysis of Haematococcus pluvialis on astaxanthin biosynthesis in response to irradiation with red or blue LED wavelength.[J]. World Journal of Microbiology & Biotechnology, 2018, 34(7): 96. | 59 | RUIJUAN M, THOMAS-HALL S R, CHUA E T, et al. Gene expression profiling of astaxanthin and fatty acid pathways in Haematococcus pluvialis in response to different LED lighting conditions.[J]. Bioresource Technology, 2018, 250: 591-602. | 60 | RUIJUAN M, THOMAS-HALL S K, CHUA E T, et al. Blue light enhances astaxanthin biosynthesis metabolism and extraction efficiency in Haematococcus pluvialis by inducing haematocyst germination.[J]. Algal Research, 2018, 35: 215-222. | 61 | PANG N, FU X, FERNANDEZ J S M, et al. Multilevel heuristic LED regime for stimulating lipid and bioproducts biosynthesis in Haematococcus pluvialis under mixotrophic conditions[J]. Bioresource Technology, 2019, 288: 121525. |
|