化工进展 ›› 2019, Vol. 38 ›› Issue (9): 3936-3946.DOI: 10.16085/j.issn.1000-6613.2019-0069
尹新旺1(),张继军1(),冯世超2(),苏仪2,万印华2,张少峰1,刘燕1
收稿日期:
2019-01-09
出版日期:
2019-09-05
发布日期:
2019-09-05
通讯作者:
张继军,冯世超
作者简介:
尹新旺(1993—),男,硕士研究生,研究方向为气体膜分离技术。E-mail:基金资助:
Xinwang YIN1(),Jijun ZHANG1(),Shichao FENG2(),Yi SU2,Yinhua WAN2,Shaofeng ZHANG1,Yan LIU1
Received:
2019-01-09
Online:
2019-09-05
Published:
2019-09-05
Contact:
Jijun ZHANG,Shichao FENG
摘要:
低碳烯烃/烷烃的高效分离是石油化工领域可持续发展的关键过程之一,传统的低温精馏过程选择性低、能耗大。离子液体作为一种结构可调的绿色溶剂为低碳烃的高效分离提供了新的思路。本文综述了近年来国内外离子液体在低碳烯烃/烷烃分离中的研究进展,总结了常规离子液体、功能化离子液体以及含过渡金属的离子液体在低碳烯烃/烷烃分离中的应用,阐明了离子液体中阴阳离子、功能化基团、过渡金属与低碳烯烃相互作用的机理,着重介绍了合成金属功能化离子液体、添加金属盐、添加金属纳米粒子3种向离子液体中引入过渡金属方式的特点以及过渡金属的种类、比例,有机配体的类型对离子液体烯烃/烷烃分离性能的影响,并探讨了该方向的研究和发展趋势。
中图分类号:
尹新旺,张继军,冯世超,苏仪,万印华,张少峰,刘燕. 离子液体在低碳烯烃/烷烃分离中的应用研究进展[J]. 化工进展, 2019, 38(9): 3936-3946.
Xinwang YIN,Jijun ZHANG,Shichao FENG,Yi SU,Yinhua WAN,Shaofeng ZHANG,Yan LIU. Application of ionic liquids in olefin/paraffin separation[J]. Chemical Industry and Engineering Progress, 2019, 38(9): 3936-3946.
离子液体种类 | 己烯渗透通量/GPU | 己烷渗透通量/GPU | 选择性 |
---|---|---|---|
[Ag(1-hexene)][NTf2] | 123.27 | 0.78 | 163 |
[Ag(DMBA)2][NTf2] | 97.17 | 0.18 | 531 |
[Ag(1-PrNH2)]2[NTf2] | 1.64 | 1.46 | 1.16 |
表1 3种银基配位离子液体对于1-己烯/己烷的分离性能[37]
离子液体种类 | 己烯渗透通量/GPU | 己烷渗透通量/GPU | 选择性 |
---|---|---|---|
[Ag(1-hexene)][NTf2] | 123.27 | 0.78 | 163 |
[Ag(DMBA)2][NTf2] | 97.17 | 0.18 | 531 |
[Ag(1-PrNH2)]2[NTf2] | 1.64 | 1.46 | 1.16 |
膜种类 | 金属纳米粒子/诱导剂(质量比) | 混合气体渗透通量/GPU | 丙烯/丙烷选择性 | 文献 |
---|---|---|---|---|
聚合物/离子液体共混膜 | Ag NP/p-BQ(0.8/1) | 0.45 | 11 | [ |
聚合物/离子液体共混膜 | Ag NP/TCNQ(5/1) | 5.5 | 50 | [ |
聚合物/离子液体共混膜 | Ag NP/TTF(1/1) | 2.5 | 145 | [ |
聚合物/离子液体共混膜 | Au NP/DMAP(0.3/1) | 1.2 | 22 | [ |
支撑液膜 | Ag NP/[BMIM][BF4](0.7/1) | 2.7 | 17 | [ |
支撑液膜 | Ag NP/[BMIM][CF3SO3](0.7/1) | 1.5 | 12 | [ |
支撑液膜 | Ag NP/[BMIM][NO3](0.7/1) | 1.2 | 10 | [ |
支撑液膜 | Ag-sugar/[BMIM][BF4](0.2/1) | 2.6 | 14.4 | [ |
支撑液膜 | Ag-sugar/[BMIM][BF4](0.05/1) | 3.1 | 12.9 | [ |
支撑液膜 | Cu NP/[BMIM][BF4](0.003/1) | 4 | 5.2 | [ |
支撑液膜 | Cu NP/[BMIM][PF6](0.003/1) | 3.58 | 3.55 | [ |
支撑液膜 | Cu NP/[EMIM][BF4](0.003/1) | 2.79 | 3.15 | [ |
支撑液膜 | Cu NP/[MOIM][BF4](0.002/1) | 12 | 2 | [ |
支撑液膜 | AgBr NP/[MOIM][NO3](0.7/1) | 5.7 | 6 | [ |
表2 金属纳米粒子被不同物质活化后对于丙烯/丙烷混合气的分离性能
膜种类 | 金属纳米粒子/诱导剂(质量比) | 混合气体渗透通量/GPU | 丙烯/丙烷选择性 | 文献 |
---|---|---|---|---|
聚合物/离子液体共混膜 | Ag NP/p-BQ(0.8/1) | 0.45 | 11 | [ |
聚合物/离子液体共混膜 | Ag NP/TCNQ(5/1) | 5.5 | 50 | [ |
聚合物/离子液体共混膜 | Ag NP/TTF(1/1) | 2.5 | 145 | [ |
聚合物/离子液体共混膜 | Au NP/DMAP(0.3/1) | 1.2 | 22 | [ |
支撑液膜 | Ag NP/[BMIM][BF4](0.7/1) | 2.7 | 17 | [ |
支撑液膜 | Ag NP/[BMIM][CF3SO3](0.7/1) | 1.5 | 12 | [ |
支撑液膜 | Ag NP/[BMIM][NO3](0.7/1) | 1.2 | 10 | [ |
支撑液膜 | Ag-sugar/[BMIM][BF4](0.2/1) | 2.6 | 14.4 | [ |
支撑液膜 | Ag-sugar/[BMIM][BF4](0.05/1) | 3.1 | 12.9 | [ |
支撑液膜 | Cu NP/[BMIM][BF4](0.003/1) | 4 | 5.2 | [ |
支撑液膜 | Cu NP/[BMIM][PF6](0.003/1) | 3.58 | 3.55 | [ |
支撑液膜 | Cu NP/[EMIM][BF4](0.003/1) | 2.79 | 3.15 | [ |
支撑液膜 | Cu NP/[MOIM][BF4](0.002/1) | 12 | 2 | [ |
支撑液膜 | AgBr NP/[MOIM][NO3](0.7/1) | 5.7 | 6 | [ |
1 | AMGHIZAR I , VANDEWALLE L A , GEEM K M VAN , et al . New trends in olefin production[J]. Engineering, 2017, 3(2): 171-178. |
2 | 崔希利, 邢华斌 . 金属有机框架材料分离低碳烃的研究进展[J]. 化工学报, 2018, 69(6): 2339-2352. |
CUI X L , XING H B . Separation of light hydrocarbons with metal-organic frameworks[J]. CIESC Journal, 2018, 69(6): 2339-2352. | |
3 | CHUAPET W , LIMPHITAKPHONG N , TANTISATTAYAKUL T , et al . A study of energy intensity and carbon intensity from olefin plants in thailand[J]. MATEC Web Conf., 2016, 68: 14002. |
4 | RAMDIN M , DE LOOS T W , VLUGT T J H . State-of-the-art of CO2 capture with ionic liquids[J]. Industrial & Engineering Chemistry Research, 2012, 51(24): 8149-8177. |
5 | 白璐, 张香平, 邓靓,等 .离子液体膜材料分离二氧化碳的研究进展[J]. 化工学报, 2016, 67(1): 248-257. |
BAI L , ZHANG X P , DENG L , et al . Ionic liquids based membranes for CO2 separation: a review[J]. CIESC Journal, 2016, 67(1): 248-257. | |
6 | 张香平, 白银鸽, 闫瑞一,等 .离子液体萃取分离有机物研究进展[J]. 化工进展, 2016, 35(6): 1587-1605. |
ZHANG X P , BAI Y G , YAN R Y , et al . Progress in ionic liquids for extraction of organic compounds[J]. Chemical Industry and Engineering Progress, 2016, 35(6): 1587-1605. | |
7 | 杨启炜, 鲍宗必, 邢华斌,等 .离子液体萃取分离结构相似化合物研究进展[J]. 化工进展, 2019, 38(1): 91-99. |
YANG Q W , BAO Z B , XING H B , et al . Research progress on the extractive separation of structurally-related compounds by ionic liquids[J]. Chemical Industry and Engineering Progress, 2019, 38(1): 91-99. | |
8 | HUANG Y Q , ZHANG Y B , XING H B . Separation of light hydrocarbons with ionic liquids: a review[J]. Chinese Journal of Chemical Engineering, 2019, 27(6):1374-1382. |
9 | ROEENTAN H , AZIZI S , BAKERI G , et al . Experimental measurement of propane and propylene absorption in NMP/AgNO3 solvent[J]. Chemical Engineering Research and Design, 2017, 117: 240-249. |
10 | AZIZI S , TAHMASEBI D H , KARGARI A , et al . Experimental measurement and thermodynamic modeling of propylene and propane solubility in N-methyl pyrrolidone (NMP)[J]. Fluid Phase Equilibria, 2015, 387:190-197. |
11 | CAMPER D , BECKER C , KOVAL C , et al . Low pressure hydrocarbon solubility in room temperature ionic liquids containing imidazolium rings interpreted using regular solution theory[J]. Industrial & Engineering Chemistry Research, 2005, 44(6): 1928-1933. |
12 | LEE J H, KANG S W , SONG D , et al . Facilitated olefin transport through room temperature ionic liquids for separation of olefin/paraffin mixtures[J]. Journal of Membrane Science, 2012, 423/424: 159-164. |
13 | FALLANZA M , GONZÁLEZ-MIQUEL M , RUIZ E , et al . Screening of RTILs for propane/propylene separation using COSMO-RS methodology[J]. Chemical Engineering Journal, 2013, 220: 284-293. |
14 | ZHAO X , XING H , YANG Q , et al . Differential solubility of ethylene and acetylene in room-temperature ionic liquids: a theoretical study[J]. The Journal of Physical Chemistry B, 2012, 116(13): 3944-3953. |
15 | LI R , XING H , YANG Q , et al . Selective extraction of 1-hexene against n-hexane in ionic liquids with or without silver salt[J]. Industrial & Engineering Chemistry Research, 2012, 51(25): 8588-8597. |
16 | MOURA L , DARWICH W , SANTINI C C , et al . Imidazolium-based ionic liquids with cyano groups for the selective absorption of ethane and ethylene[J]. Chemical Engineering Journal, 2015, 280: 755-762. |
17 | WLAZŁO M , GAWKOWSKA J , DOMAŃSKA U . Separation based on limiting activity coefficients of various solutes in 1-allyl-3-methylimidazolium dicyanamide ionic liquid[J]. Industrial & Engineering Chemistry Research, 2016, 55(17): 5054-5062. |
18 | DELGADO-MELLADO N , OVEJERO-PEREZ A , NAVARRO P , et al . Imidazolium and pyridinium-based ionic liquids for the cyclohexane/cyclohexene separation by liquid-liquid extraction[J]. The Journal of Chemical Thermodynamics, 2019, 131: 340-346. |
19 | FERGUSON L , SCOVAZZO P . Solubility, diffusivity, and permeability of gases in phosphonium-based room temperature ionic liquids: data and correlations[J]. Industrial & Engineering Chemistry Research, 2007, 46(4): 1369-1374. |
20 | CONDEMARIN R , SCOVAZZO P . Gas permeabilities, solubilities, diffusivities, and diffusivity correlations for ammonium-based room temperature ionic liquids with comparison to imidazolium and phosphonium RTIL data[J]. Chemical Engineering Journal, 2009, 147(1): 51-57. |
21 | KILARU P K , CONDEMARIN R A , SCOVAZZO P . Correlations of low-pressure carbon dioxide and hydrocarbon solubilities in imidazolium-, phosphonium-, and ammonium-based room-temperature ionic liquids. Part 1. Using surface tension[J]. Industrial & Engineering Chemistry Research, 2008, 47(3): 900-909. |
22 | LIU X , LIU S , BAI L , et al . Absorption and separation of CO2/C3H8 and C3H6/C3H8 by ionic liquid: effect of molar volume[J]. Journal of Natural Gas Science and Engineering, 2018, 58: 266-274. |
23 | LIU X , AFZAL W , YU G , et al . High solubilities of small hydrocarbons in trihexyl tetradecylphosphonium bis(2,4,4-trimethylpentyl) phosphinate[J]. The Journal of Physical Chemistry B, 2013, 117(36): 10534-10539. |
24 | GREEN B D , O’BRIEN R A , DAVIS J H , et al . Ethane and ethylene solubility in an imidazolium-based lipidic ionic liquid[J]. Industrial & Engineering Chemistry Research, 2015, 54(18): 5165-5171. |
25 | MOKRUSHIN V , ASSENBAUM D , PAAPE N , et al . Ionic liquids for propene-propane separation[J]. Chemical Engineering & Technology, 2010, 33(1): 63-73. |
26 | 李如龙 .离子液体在乙烯/乙烷、1-己烯/正己烷分离中的应用基础研究[D]. 杭州: 浙江大学, 2012. |
LI R L . Applied fundamental research on the separations of ethylene/ethane and 1-hexene/n-hexane by ionic liquid[D]. Hangzhou: Zhejiang University, 2012. | |
27 | KARPIŃSKA M , WLAZŁO M , ZAWADZKI M , et al . Separation of binary mixtures hexane/hex-1-ene, cyclohexane/cyclohexene and ethylbenzene/styrene based on gamma infinity data measurements[J]. The Journal of Chemical Thermodynamics, 2018, 118: 244-254. |
28 | DOMAŃSKA U , KARPIŃSKA M , WLAZŁO M , et al . Ternary LLE measurements for the separation of hex-1-ene/hexane and cyclohexene/cyclohexane compounds with [DCA]-based ionic liquids[J]. Fluid Phase Equilibria, 2018, 462: 65-72. |
29 | XING H , ZHAO X , LI R , et al . Improved efficiency of ethylene/ethane separation using a symmetrical dual nitrile-functionalized ionic liquid[J]. ACS Sustainable Chemistry & Engineering, 2013, 1(11): 1357-1363. |
30 | CAMPOS A C C , REIS R A DOS , ORTIZ A , et al . A perspective of solutions for membrane instabilities in olefin/paraffin separations: a review[J]. Industrial & Engineering Chemistry Research, 2018, 57(31): 10071-10085. |
31 | 许峥, 周荣琪, 段占庭 . 络合吸收法分离烯烃/烷烃[J]. 化工进展, 2000, 19(3): 14-17. |
XU Z , ZHOU R Q , DUAN Z T . Separation olefin/paraffin by complexation absorption method[J]. Chemical Industry and Engineering Progress, 2000, 19(3): 14-17. | |
32 | SONG D , KANG Y S , KANG S W . Highly permeable and stabilized olefin transport membranes based on a poly(ethylene oxide) matrix and Al(NO3)3 [J]. Journal of Membrane Science, 2015, 474: 273-276. |
33 | KANG S W , KIM J H , WON J, et al . Suppression of silver ion reduction by Al(NO3)3 complex and its application to highly stabilized olefin transport membranes[J]. Journal of Membrane Science, 2013, 445: 156-159. |
34 | SUNG PARK Y , KANG Y SOO , WOOK KANG S . Cost-effective facilitated olefin transport membranes consisting of polymer/AgCF3SO3/Al(NO3)3 with long-term stability[J]. Journal of Membrane Science, 2015, 495: 61-64. |
35 | JEONG S , SOHN H , KANG S W . Highly permeable PEBAX-1657 membranes to have long-term stability for facilitated olefin transport[J]. Chemical Engineering Journal, 2018, 333: 276-279. |
36 | PARK Y S , CHUN S , KANG Y S , et al . Durable poly(vinyl alcohol)/AgBF4/Al(NO3)3 complex membrane with high permeance for propylene/propane separation[J]. Separation and Purification Technology, 2017, 174: 39-43. |
37 | HUANG J-F , LUO H , LIANG C , et al . Advanced liquid membranes based on novel ionic liquids for selective separation of olefin/paraffin via olefin-facilitated transport[J]. Industrial & Engineering Chemistry Research, 2008, 47(3): 881-888. |
38 | NAN H, ZHANG C , VENKATESH A , et al . Argentation gas chromatography revisited: separation of light olefin/paraffin mixtures using silver-based ionic liquid stationary phases[J]. Journal of Chromatography A, 2017, 1523: 316-320. |
39 | BELLUOMINI G J , PENDERGAST J G , DOMKE C H , et al . Performance of several ionic liquids for the separation of 1-octene from n-octane[J]. Industrial & Engineering Chemistry Research, 2009, 48(24): 11168-11174. |
40 | WANG Y , HAO W , JACQUEMIN J , et al . Enhancing liquid-phase olefin-paraffin separations using novel silver-based ionic liquids[J]. Journal of Chemical & Engineering Data, 2015, 60(1): 28-36. |
41 | LEE H, KIM D B , KIM S-H , et al . Zwitterionic silver complexes as carriers for facilitated-transport composite membranes[J]. Angewandte Chemie: International Edition, 2004, 43(23): 3053-3056. |
42 | WON J, KIM D B , KANG Y S , et al . An AB initio study of ionic liquid silver complexes as carriers in facilitated olefin transport membranes[J]. Journal of Membrane Science, 2005, 260(1): 37-44. |
43 | JIANG B , DOU H , WANG B , et al . Silver-based deep eutectic solvents as separation media: supported liquid membranes for facilitated olefin transport[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(8): 6873-6882. |
44 | FALLANZA M , ORTIZ A , GORRI D , et al . Experimental study of the separation of propane/propylene mixtures by supported ionic liquid membranes containing Ag+–RTILs as carrier[J]. Separation and Purification Technology, 2012, 97: 83-89. |
45 | DOU H , JIANG B , XIAO X , et al . Novel protic ionic liquid composite membranes with fast and selective gas transport nanochannels for ethylene/ethane separation[J]. ACS Applied Materials & Interfaces, 2018, 10(16): 13963-13974. |
46 | DOU H , JIANG B , XU M , et al . Supported ionic liquid membranes with high carrier efficiency via strong hydrogen-bond basicity for the sustainable and effective olefin/paraffin separation[J]. Chemical Engineering Science, 2019, 193: 27-37. |
47 | KASAHARA S , KAMIO E , MINAMI R , et al . A facilitated transport ion-gel membrane for propylene/propane separation using silver ion as a carrier[J]. Journal of Membrane Science, 2013, 431: 121-130. |
48 | FALLANZA M , ORTIZ A , GORRI D , et al . Polymer-ionic liquid composite membranes for propane/propylene separation by facilitated transport[J]. Journal of Membrane Science, 2013, 444: 164-172. |
49 | ZARCA R , ORTIZ A , GORRI D , et al . Generalized predictive modeling for facilitated transport membranes accounting for fixed and mobile carriers[J]. Journal of Membrane Science, 2017, 542: 168-176. |
50 | ZARCA R , CAMPOS A C C , ORTIZ A , et al . Comprehensive study on PVDF-HFP/BMImBF4/AgBF4 membranes for propylene purification[J]. Journal of Membrane Science, 2019, 572: 255-261. |
51 | ZARCA R , ORTIZ A , GORRI D , et al . Optimization of multistage olefin/paraffin membrane separation processes through rigorous modeling[J]. AIChE Journal, 2019, 65(6):e16588. |
52 | TOMÉ L C , MECERREYES D , FREIRE C S R , et al . Polymeric ionic liquid membranes containing IL–Ag+ for ethylene/ethane separation via olefin-facilitated transport[J]. Journal of Materials Chemistry A, 2014, 2(16): 5631-5639. |
53 | SUN Y , BI H , DOU H , et al . A novel copper(Ⅰ)-based supported ionic liquid membrane with high permeability for ethylene/ethane separation[J]. Industrial & Engineering Chemistry Research, 2017, 56(3): 741-749. |
54 | YU G , DENG L , ABDELTAWAB A A , et al . Functional solution composed of Cu(Ⅰ) salt and ionic liquids to separate propylene from propane[J]. Industrial & Engineering Chemistry Research, 2014, 53(34): 13430-13435. |
55 | JIANG B , TAO W , DOU H , et al . A novel supported liquid membrane based on binary metal chloride deep eutectic solvents for ethylene/ethane separation[J]. Industrial & Engineering Chemistry Research, 2017, 56(51): 15153-15162. |
56 | SHEN X , ABRO R , ALHUMAYDHI I A , et al . Separation of propylene and propane by functional mixture of imidazolintum chloride ionic liquid-organic solvent-cuprous salt[J]. Separation and Purification Technology, 2017, 175: 177-184. |
57 | JIANG B , DOU H , ZHANG L , et al . Novel supported liquid membranes based on deep eutectic solvents for olefin-paraffin separation via facilitated transport[J]. Journal of Membrane Science, 2017, 536:123-132. |
58 | DENG R , SUN Y , BI H , et al . Deep eutectic solvents as tuning media dissolving Cu+ used in facilitated transport supported liquid membrane for ethylene/ethane separation[J]. Energy & Fuels, 2017, 31(10): 11146-11155. |
59 | KANG S W , KIM J H , OH K S, et al . Highly stabilized silver polymer electrolytes and their application to facilitated olefin transport membranes[J]. Journal of Membrane Science, 2004, 236(1): 163-169. |
60 | KANG Y S , KANG S W , KIM H , et al . Interaction with olefins of the partially polarized surface of silver nanoparticles activated by p-benzoquinone and its implications for facilitated olefin transport[J]. Advanced Materials, 2007, 19(3): 475-479. |
61 | HAN K I , KANG S W , KIM J , et al . Effect of ionic liquids on dissociation of copper flake into copper nanoparticles and its application to facilitated olefin transport membranes[J]. Journal of Membrane Science, 2011, 374(1): 43-48. |
62 | KANG S W , LEE D H, PARK J H , et al . Effect of the polarity of silver nanoparticles induced by ionic liquids on facilitated transport for the separation of propylene/propane mixtures[J]. Journal of Membrane Science, 2008, 322(2): 281-285. |
63 | JEON H , KANG S W . Hybrid effect of Ag ions and polarized Ag nanoparticles in poly(ethylene oxide)/AgBF4/ionic liquid composites for long-term stable membranes[J]. Polymer Composites,2019,40(7):2745-2750. |
64 | JEON H , KANG S W . Poly (ethylene oxide)/Ag ions and nanoparticles/1-hexyl-3-methylimidazolium tetrafluoroborate composite membranes with long-term stability for olefin/paraffin separation[J]. RSC Advances, 2019, 9(9): 4771-4775. |
65 | KIM Y R , LEE J H, CHOI H , et al . Chemical stability of olefin carrier based on silver cations and metallic silver nanoparticles against the formation of silver acetylide for facilitated transport membranes[J]. Journal of Membrane Science, 2014, 463: 11-16. |
66 | CHOI H , LEE J H, KIM Y R , et al . Tetrathiafulvalene as an electron acceptor for positive charge induction on the surface of silver nanoparticles for facilitated olefin transport[J]. Chemical Communications, 2014, 50(24): 3194-3196. |
67 | KANG S W , HONG J , PARK J H , et al . Nanocomposite membranes containing positively polarized gold nanoparticles for facilitated olefin transport[J]. Journal of Membrane Science, 2008, 321(1): 90-93. |
68 | MUN S H, KANG S W , J-S CHO , et al . Enhanced olefin carrier activity of clean surface silver nanoparticles for facilitated transport membranes[J]. Journal of Membrane Science, 2009, 332(1): 1-5. |
69 | KIM J , KANG S W , MUN S H, et al . Facile synthesis of copper nanoparticles by ionic liquids and its application to facilitated olefin transport membranes[J]. Industrial & Engineering Chemistry Research, 2009, 48(15): 7437-7441. |
70 | HONG G H , JI D , KANG S W . Highly permeable ionic liquid/Cu composite membrane for olefin/paraffin separation[J]. Chemical Engineering Journal, 2013, 230:111-114. |
71 | KOH J H, KANG S W , PARK J T , et al . Synthesis of silver halide nanocomposites templated by amphiphilic graft copolymer and their use as olefin carrier for facilitated transport membranes[J]. Journal of Membrane Science, 2009, 339(1): 49-56. |
72 | LEE J H, SUDHAGER P , CHO Y, et al . Effect of temperature on separation performance in ionic liquid/Ag nanocomposite membranes for olefin/paraffin mixtures[J]. Journal of Industrial and Engineering Chemistry, 2019, 74: 103-107. |
[1] | 贺美晋. 分子管理在炼油领域分离技术中的应用和发展趋势[J]. 化工进展, 2023, 42(S1): 260-266. |
[2] | 崔守成, 徐洪波, 彭楠. 两种MOFs材料用于O2/He吸附分离的模拟分析[J]. 化工进展, 2023, 42(S1): 382-390. |
[3] | 李世霖, 胡景泽, 王毅霖, 王庆吉, 邵磊. 电渗析分离提取高值组分的研究进展[J]. 化工进展, 2023, 42(S1): 420-429. |
[4] | 郭强, 赵文凯, 肖永厚. 增强流体扰动强化变压吸附甲硫醚/氮气分离的数值模拟[J]. 化工进展, 2023, 42(S1): 64-72. |
[5] | 许友好, 王维, 鲁波娜, 徐惠, 何鸣元. 中国炼油创新技术MIP的开发策略及启示[J]. 化工进展, 2023, 42(9): 4465-4470. |
[6] | 廖志新, 罗涛, 王红, 孔佳骏, 申海平, 管翠诗, 王翠红, 佘玉成. 溶剂脱沥青技术应用与进展[J]. 化工进展, 2023, 42(9): 4573-4586. |
[7] | 常印龙, 周启民, 王青月, 王文俊, 李伯耿, 刘平伟. 废弃聚烯烃的高值化学回收研究进展[J]. 化工进展, 2023, 42(8): 3965-3978. |
[8] | 潘宜昌, 周荣飞, 邢卫红. 高效分离同碳数烃的先进微孔膜:现状与挑战[J]. 化工进展, 2023, 42(8): 3926-3942. |
[9] | 吴亚, 赵丹, 方荣苗, 李婧瑶, 常娜娜, 杜春保, 王文珍, 史俊. 用于复杂原油乳液的高效破乳剂开发及应用研究进展[J]. 化工进展, 2023, 42(8): 4398-4413. |
[10] | 娄宝辉, 吴贤豪, 张驰, 陈臻, 冯向东. 纳米流体用于二氧化碳吸收分离研究进展[J]. 化工进展, 2023, 42(7): 3802-3815. |
[11] | 周龙大, 赵立新, 徐保蕊, 张爽, 刘琳. 电场-旋流耦合强化多相介质分离研究进展[J]. 化工进展, 2023, 42(7): 3443-3456. |
[12] | 韩恒文, 韩伟, 李明丰. 烯烃水合反应工艺与催化剂研究进展[J]. 化工进展, 2023, 42(7): 3489-3500. |
[13] | 陈香李, 李倩倩, 张甜, 李彪, 李康康. 自愈合油水分离膜的研究进展[J]. 化工进展, 2023, 42(7): 3600-3610. |
[14] | 杨许召, 李庆, 袁康康, 张盈盈, 韩敬莉, 吴诗德. 含Gemini离子液体低共熔溶剂热力学性质[J]. 化工进展, 2023, 42(6): 3123-3129. |
[15] | 吕超, 张习文, 金理健, 杨林军. 新型两相吸收剂-离子液体系统高效捕获CO2[J]. 化工进展, 2023, 42(6): 3226-3232. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |