化工进展 ›› 2019, Vol. 38 ›› Issue (12): 5330-5338.DOI: 10.16085/j.issn.1000-6613.2019-0482
收稿日期:
2019-04-01
出版日期:
2019-12-05
发布日期:
2019-12-05
通讯作者:
黎四芳
作者简介:
李燕(1993—),女,硕士研究生,研究方向为能源化工。E-mail:Yan LI(),Yuzhen DENG,Jingling YU,Sifang LI()
Received:
2019-04-01
Online:
2019-12-05
Published:
2019-12-05
Contact:
Sifang LI
摘要:
氨硼烷具有储氢密度高(152.9g/L)、放氢条件温和、无毒以及常温下为稳定的固体而易于储运等特点而成为最有前景的储氢材料之一。本文综述了近年来氨硼烷在不同催化剂作用下,通过热解、醇解和水解这3种方式制氢以及分解后的副产物循环再生氨硼烷的研究进展。分析讨论了氨硼烷的热解制氢研究主要集中在降低温度和抑制气态副产物的生成这两方面,而水解或醇解制氢的研究热点是二元或三元非贵金属纳米核壳或负载型催化剂。与氨硼烷的热解相比,水解或醇解由于条件温和、制氢速度快而更具实用性。指出氨硼烷作为储氢材料最大的挑战是其再生问题,氨硼烷分解脱氢后的副产物不能直接氢化而再生氨硼烷,需要通过一系列反应来进行间接的离线再生,因此氨硼烷的再生将是今后的重点研究方向。
中图分类号:
李燕,邓雨真,俞晶铃,黎四芳. 氨硼烷分解制氢及其再生的研究进展[J]. 化工进展, 2019, 38(12): 5330-5338.
Yan LI,Yuzhen DENG,Jingling YU,Sifang LI. Research progress in hydrogen production from decomposition of ammonia borane and its regeneration[J]. Chemical Industry and Engineering Progress, 2019, 38(12): 5330-5338.
催化剂 | n(Catalyst)/n(AB) | T/K | 氢气产生速率/mL·min-1·gcatalyst -1 | TOF/molH2·min-1·molcatalyst -1 | Ea /kJ·mol-1 | 参考文献 |
---|---|---|---|---|---|---|
Ni5P4 | 0.02 | 298 | — | 22.0 | 39.00 | [ |
CuO-1 | 0.06 | 318 | 294 | — | 49.20 | [ |
Co/石墨烯 | 0.05 | 298 | — | 13.8 | 32.75 | [ |
3% Ni/ZIF-8 | 0.03 | 298 | — | 85.7 | 42.70 | [ |
Co/MIL-101-1-U | 0.02 | 298 | — | 51.4 | 31.30 | [ |
表1 单组分金属催化剂催化氨硼烷水解制氢
催化剂 | n(Catalyst)/n(AB) | T/K | 氢气产生速率/mL·min-1·gcatalyst -1 | TOF/molH2·min-1·molcatalyst -1 | Ea /kJ·mol-1 | 参考文献 |
---|---|---|---|---|---|---|
Ni5P4 | 0.02 | 298 | — | 22.0 | 39.00 | [ |
CuO-1 | 0.06 | 318 | 294 | — | 49.20 | [ |
Co/石墨烯 | 0.05 | 298 | — | 13.8 | 32.75 | [ |
3% Ni/ZIF-8 | 0.03 | 298 | — | 85.7 | 42.70 | [ |
Co/MIL-101-1-U | 0.02 | 298 | — | 51.4 | 31.30 | [ |
催化剂 | n(catalyst)/n(AB) | 温度T/K | 氢气产生速率/mL·min-1·gcatalyst -1 | TOF/molH2·min-1·molcatalyst -1 | E a/kJ·mol-1 | 参考文献 |
---|---|---|---|---|---|---|
Fe0.3Co0.7 | 0.120 | 293 | 8945.50 | — | 16.30 | [ |
Co0.50Cu0.50/NPs | 0.083 | 333 | 10000.56 | — | 38.12 | [ |
Co0.52Cu0.48 | — | 298 | 2179.00 | 3.40 | 33.70 | [ |
Cu0.2@Co0.8 | — | 298 | 1364.00 | — | 59.10 | [ |
Co0.9Mo0.1 | 0.060 | 298 | — | 14.90min-1 | 51.00 | [ |
Co@SiO2/Ag | 0.020 | 298 | — | 10.10min-1 | 25.60 | [ |
Ni0.19Cu0.81 | — | 298 | 2066.00 | 2.70 | 33.30 | [ |
AuCo@MIL-101 | 0.017 | 298 | — | 23.50 | — | [ |
Pd@Co@MIL-101 | 0.011 | 303 | — | 51.00 | 22.00 | [ |
CuCo/MIL-101-1-U | 0.020 | 298 | — | 51.70 | 30.50 | [ |
Cu@Co/rGO | 0.100 | 298 | — | 8.36 | 51.30 | [ |
Cu0.49Co0.51/C | 0.033 | 298 | — | 45.00 | 51.90 | [ |
Co0.9Ni0.1/石墨烯 | 0.050 | 298 | — | 16.40 | 13.49 | [ |
Ru@Co/CCF | — | 303 | — | 139.59molH2·min-1·molRu -1 | 57.02 | [ |
表2 双组分金属催化剂催化氨硼烷水解产氢
催化剂 | n(catalyst)/n(AB) | 温度T/K | 氢气产生速率/mL·min-1·gcatalyst -1 | TOF/molH2·min-1·molcatalyst -1 | E a/kJ·mol-1 | 参考文献 |
---|---|---|---|---|---|---|
Fe0.3Co0.7 | 0.120 | 293 | 8945.50 | — | 16.30 | [ |
Co0.50Cu0.50/NPs | 0.083 | 333 | 10000.56 | — | 38.12 | [ |
Co0.52Cu0.48 | — | 298 | 2179.00 | 3.40 | 33.70 | [ |
Cu0.2@Co0.8 | — | 298 | 1364.00 | — | 59.10 | [ |
Co0.9Mo0.1 | 0.060 | 298 | — | 14.90min-1 | 51.00 | [ |
Co@SiO2/Ag | 0.020 | 298 | — | 10.10min-1 | 25.60 | [ |
Ni0.19Cu0.81 | — | 298 | 2066.00 | 2.70 | 33.30 | [ |
AuCo@MIL-101 | 0.017 | 298 | — | 23.50 | — | [ |
Pd@Co@MIL-101 | 0.011 | 303 | — | 51.00 | 22.00 | [ |
CuCo/MIL-101-1-U | 0.020 | 298 | — | 51.70 | 30.50 | [ |
Cu@Co/rGO | 0.100 | 298 | — | 8.36 | 51.30 | [ |
Cu0.49Co0.51/C | 0.033 | 298 | — | 45.00 | 51.90 | [ |
Co0.9Ni0.1/石墨烯 | 0.050 | 298 | — | 16.40 | 13.49 | [ |
Ru@Co/CCF | — | 303 | — | 139.59molH2·min-1·molRu -1 | 57.02 | [ |
催化剂 | n(catalyst)/n(AB) | T/K | 氢气产生速率/mL·min-1·gcatalyst -1 | TOF/ molH2·min-1·molcatalyst -1 | E a/kJ·mol-1 | 参考文献 |
---|---|---|---|---|---|---|
Cu0.4@Co0.5Ni0.1 | 0.040 | 298 | 7340.8 | — | 36.08 | [ |
Cu0.3@Fe0.1Co0.6 | — | 298 | 6674.2 | 10.50 | 38.75 | [ |
Cu0.81@Mo0.09Co0.10 | 0.040 | 298 | — | 49.60 | 22.20 | [ |
Cu@FeCoNi/石墨烯 | 0.040 | 298 | --- | 20.93 | 31.82 | [ |
Cu0.8Ni0.1Co0.1@MIL-101 | 0.027 | 298 | --- | 70.10 | 29.10 | [ |
表3 三组分及以上金属催化剂催化氨硼烷水解产氢
催化剂 | n(catalyst)/n(AB) | T/K | 氢气产生速率/mL·min-1·gcatalyst -1 | TOF/ molH2·min-1·molcatalyst -1 | E a/kJ·mol-1 | 参考文献 |
---|---|---|---|---|---|---|
Cu0.4@Co0.5Ni0.1 | 0.040 | 298 | 7340.8 | — | 36.08 | [ |
Cu0.3@Fe0.1Co0.6 | — | 298 | 6674.2 | 10.50 | 38.75 | [ |
Cu0.81@Mo0.09Co0.10 | 0.040 | 298 | — | 49.60 | 22.20 | [ |
Cu@FeCoNi/石墨烯 | 0.040 | 298 | --- | 20.93 | 31.82 | [ |
Cu0.8Ni0.1Co0.1@MIL-101 | 0.027 | 298 | --- | 70.10 | 29.10 | [ |
1 | 赵永志, 蒙波, 陈霖新, 等 . 氢能源的利用现状分析[J]. 化工进展, 2015, 34(9): 3248-3255. |
ZHAO Y Z , MENG B , CHEN L X , et al . Utilization status of hydrogen energy[J]. Chemical Industry and Engineering Progess, 2015, 34(9): 3248-3255. | |
2 | SPECHT M , STAISS F , BANDI A , et al . Comparison of the renewable transportation fuels, liquid hydrogen and methanol, with gasoline-energetic and economic aspects[J]. International Journal of Hydrogen Energy, 1998, 23(5): 387-396. |
3 | YANG Z X , SUN H R , LI H , et al . Enhancing the thermal dehydrogenation properties of ammonia borane (AB) by using monodisperse MnO2 hollow spheres (MHS)[J]. Journal of Alloys and Compounds, 2019, 781: 111-117. |
4 | ÖZHAVA D , KILIÇASLAN N Z , ÖZKAR S . PVP-stabilized nickel(0) nanoparticles as catalyst in hydrogen generation from the methanolysis of hydrazine borane or ammonia borane[J]. Applied Catalysis B: Environmental, 2015, 162: 573-582. |
5 | FENG X G , CHEN X M , QIU P T , et al . Copper oxide hollow spheres: synthesis and catalytic application in hydrolytic dehydrogenation of ammonia borane[J]. International Journal of Hydrogen Energy, 2018, 43(45): 20875-20881. |
6 | HU M G , GEANANGEL R A , WENDLANDT W W . The thermal decomposition of ammonia borane[J]. Thermochimica Acta, 1978, 23(2): 249-255. |
7 | STAUBITZ A , ROBERTSON A P M , MANNERS I . Ammonia-borane and related compounds as dihydrogen sources[J]. Chemical Reviews, 2010, 110(7): 4079-4124. |
8 | NAKAGAWA Y , IKARASHI Y , ISOBE S , et al . Ammonia borane-metal alanate composites: hydrogen desorption properties and decomposition processes[J]. RSC Advances, 2014, 4(40): 20626-20631. |
9 | NAKAGAWA Y , ZHANG T , KITAMURA M , et al . A systematic study of the effects of metal chloride additives on H2 desorption properties of ammonia borane[J]. Journal of Chemical & Engineering Data, 2016, 61(5): 1924-1929. |
10 | YU C , FU J J , MUZZIO M , et al . CuNi nanoparticles assembled on graphene for catalytic methanolysis of ammonia borane and hydrogenation of nitro/nitrile compounds[J]. Chemistry of Materials, 2017, 29(3): 1413-1418. |
11 | LIU J Q , CUI L , CAO X Y , et al . Bunch-like copper oxide nanowire array as an efficient, durable and economical catalyst for methanolysis of ammonia borane[J]. ChemCatChem, 2018, 10: 710-715. |
12 | ÖZHAVA D , ÖZKAR S . Nanoceria supported rhodium(0) nanoparticles as catalyst for hydrogen generation from methanolysis of ammonia borane[J]. Applied Catalysis B: Environmental, 2018, 237: 1012-1020. |
13 | 张磊, 涂倩, 陈学年, 等 . 氨硼烷释氢纳米金属催化剂的研究[J]. 化学进展, 2014, 26(5): 749-755. |
ZHANG L , TU Q , CHEN X N , et al . Nano metal catalyis in dehydrogenation of ammonia borane[J]. Progess in Chemistry, 2014, 26(5): 749-755. | |
14 | WEI W Y , WANG Z M , XU J , et al . Cobalt hollow nanospheres: controlled synthesis, modification and highly catalytic performance for hydrolysis of ammonia borane[J]. Science Bulletin, 2017, 62(5): 326-331. |
15 | FENG X , ZHAO Y H , LIU D K , et al . Towards high activity of hydrogen production from ammonia borane over efficient non-noble Ni5P4 catalyst[J]. International Journal of Hydrogen Energy, 2018, 43(36): 17112-17120. |
16 | YANG L , CAO N , DU C , et al . Graphene supported cobalt(0) nanoparticles for hydrolysis of ammonia borane[J]. Materials Letters, 2014, 115: 113-116. |
17 | WANG C L , TUNINETTI J , WANG Z , et al . Hydrolysis of ammonia-borane over Ni/ZIF-8 nanocatalyst: high efficiency, mechanism, and controlled hydrogen release[J]. Journal of the American Chemical Society, 2017, 139(33): 11610-11615. |
18 | LIU P L , GU X J , KANG K , et al . Highly efficient catalytic hydrogen evolution from ammonia borane using the synergistic effect of crystallinity and size of noble-metal-free nanoparticles supported by porous metal-organic frameworks[J]. ACS Applied Materials & Interfaces, 2017, 9(12): 10759-10767. |
19 | LIU X W , WANG D S , LI Y D . Synthesis and catalytic properties of bimetallic nanomaterials with various architectures[J]. Nano Today, 2012, 7(5): 448-466. |
20 | QIU F Y , WANG Y J , WANG Y P , et al . Dehydrogenation of ammonia borane catalyzed by in situ synthesized Fe-Co nano-alloy in aqueous solution[J]. Catalysis Today, 2011, 170(1): 64-68. |
21 | COŞKUNER FILIZ B , KANTÜRK FIGEN A , SABRIYE P . Dual combining transition metal hybrid nanoparticles for ammonia borane hydrolytic dehydrogenation[J]. Applied Catalysis A: General, 2018, 550: 320-330. |
22 | LI J , ZHU Q L , XU Q . Highly active AuCo alloy nanoparticles encapsulated in the pores of metal-organic frameworks for hydrolytic dehydrogenation of ammonia borane[J]. Chemical Communications, 2014, 50(44): 5899-5901. |
23 | 杨昆, 姚淇露, 卢章辉, 等 . 快速合成廉价CuMo 纳米粒子高效催化氨硼烷水解产氢[J]. 物理化学学报, 2017, 33(5): 993-1000. |
YANG K , YAO Q L , LU Z H , et al . Facile synthesis of CuMo nanoparticles as highly active and cost-effective catalysts for the hydrolysis of ammonia borane[J]. Acta Physico-Chimica Sinica, 2017, 33(5): 993-1000. | |
24 | SANG W L , WANG C Y , ZHANG X H , et al . Dendritic Co0.52Cu0.48 and Ni0.19Cu0.81 alloys as hydrogen generation catalysts via hydrolysis of ammonia borane[J]. International Journal of Hydrogen Energy, 2017, 42(52): 30691-30703. |
25 | 李雷, 李彦兴, 姚瑶, 等 . 核壳结构纳米材料的创制及在催化化学中的应用[J]. 化学进展, 2013, 25(10): 1681-1690. |
LI L , LI Y X , YAO Y , et al . Progess and prospective in fabrication and application of core-shell structure nnaomaterials in catalytic chemistry[J]. Progess in Chemistry, 2013, 25(10): 1681-1690. | |
26 | 王海霞, 周丽敏, 陶占良, 等 . Cu@Co纳米颗粒合成及催化氨硼烷水解放氢性能[J]. 功能材料与器件学报, 2015, 21(4): 7-12. |
WANG H X , ZHOU L M , TAO Z L , et al .Synthesis of Cu@Co core-shell nanoparticles for the catalytic hydrolysis of ammonia borane[J]. Journal of Functional Materials and Devices, 2015, 21(4): 7-12. | |
27 | CHEN Y Z , XU Q , YU S H , et al . Tiny Pd@Co core-shell nanoparticles confined inside a metal-organic framework for highly efficient catalysis[J]. Small, 2015, 11(1): 71-76. |
28 | DU Y S , CAO N , YANG L , et al . One-step synthesis of magnetically recyclable rGO supported Cu@Co core-shell nanoparticles: highly efficient catalysts for hydrolytic dehydrogenation of ammonia borane and methylamine borane[J]. New Journal of Chemistry, 2013, 37(10): 3035-3042. |
29 | YANG J , CUI Z K , MA J T , et al . Ru coated Co nanoparticles decorated on cotton derived carbon fibers as a highly efficient and magnetically recyclable catalyst for hydrogen generation from ammonia borane[J]. International Journal of Hydrogen Energy, 2018, 43(3): 1355-1364. |
30 | YAO Q L , LU Z H , HU Y J , et al . Core-shell Co@SiO2 nanosphere immobilized Ag nanoparticles for hydrogen evolution from ammonia borane[J]. RSC Advances, 2016, 6(92): 89450-89456. |
31 | 张以敏, 姜浩锡 . 超临界流体沉积技术制备负载型金属催化剂的研究进展[J]. 化工进展, 2013, 32(8): 1825-1831. |
ZHANG Y M , JIANG H X . Preparation of supported metal catalyst via supercritical fluid deposition[J]. Chemical Industry and Engineering Progess, 2013, 32(8): 1825-1831. | |
32 | 杨晓丽, 苏雄, 杨小峰, 等 . 负载型金属催化剂的热稳定机制[J]. 化工学报, 2016, 67(1): 73-82. |
YANG X L , SU X , YANG X F , et al . Stabilization mechanism of supported metal catalyst[J]. CIESC Journal, 2016, 67(1): 73-82. | |
33 | 关尹双, 赵炜, 刘开帅, 等 . 石墨烯基催化剂的研究进展[J]. 化工进展, 2017, 36(s1): 221-227. |
GUAN Y S , ZHAO W , LIU K S , et al . Research progess on graphene-based catalyst[J]. Chemical Industry and Engineering Progess, 2017, 36(s1): 221-227. | |
34 | 桑琬璐, 李兰兰, 高若源, 等 . 氨硼烷水解制氢催化剂载体的研究进展[J]. 材料导报, 2017, 31(17): 27-33. |
SANG W L , LI L L , GAO R Y , et al . Progess in catalyst support for hydrogen generation of ammonia borane[J]. Materials Review, 2017, 31(17): 27-33. | |
35 | BULUT A , YURDERI M , ERTAS İ E , et al . Carbon dispersed copper-cobalt alloy nanoparticles: a cost-effective heterogeneous catalyst with exceptional performance in the hydrolytic dehydrogenation of ammonia-borane[J]. Applied Catalysis B: Environmental, 2016, 180: 121-129. |
36 | FENG W Q , YANG L , CAO N , et al . In situ facile synthesis of bimetallic CoNi catalyst supported on graphene for hydrolytic dehydrogenation of amine borane[J]. International Journal of Hydrogen Energy, 2014, 39(7): 3371-3380. |
37 | 陈丹, 杨蓉, 张卫华, 等 . 有机金属骨架材料在电化学储能领域中的研究进展[J]. 化工进展, 2018, 37(2): 628-636. |
CHEN D , YANG R , ZHANG W H , et al . Research progess of MOFs-based materials in electrochemical energy storage[J]. Chemical Industry and Engineering Progess, 2018, 37(2): 628-636. | |
38 | AKDIM O , DEMIRCI U B , MIELE P . A bottom-up approach to prepare cobalt-based bimetallic supported catalysts for hydrolysis of ammonia borane[J]. International Journal of Hydrogen Energy, 2013, 38(14): 5627-5637. |
39 | KITCHIN J R , NØRSKOV J K , BARTEAU M A , et al . Role of strain and ligand effects in the modification of the electronic and chemical properties of bimetallic surfaces[J]. Physical Review Letters, 2004, 93(15): 156801(1)-156801(4). |
40 | QIU F Y , DAI Y L , LI L , et al . Synthesis of Cu@FeCo core-shell nanoparticles for the catalytic hydrolysis of ammonia borane[J]. International Journal of Hydrogen Energy, 2014, 39(1): 436-441. |
41 | ZHANG H , WANG X F , CHEN C C , et al . Facile synthesis of Cu@CoNi core-shell nanoparticles composites for the catalytic hydrolysis of ammonia borane[J]. International Journal of Hydrogen Energy, 2015, 40(36): 12253-12261. |
42 | WANG C , WANG H L , WANG Z L , et al . Mo remarkably enhances catalytic activity of Cu@MoCo core-shell nanoparticles for hydrolytic dehydrogenation of ammonia borane[J]. International Journal of Hydrogen Energy, 2018, 43(15): 7347-7355. |
43 | MENG X Y , LI S S , XIA B Q , et al . Decoration of graphene with tetrametallic Cu@FeCoNi core-shell nanoparticles for catalytic hydrolysis of amine boranes[J]. RSC Advances, 2014, 4(62): 32817-32825. |
44 | LIANG Z J , XIAO X Z , YU X Y , et al . Non-noble trimetallic Cu-Ni-Co nanoparticles supported on metal-organic frameworks as highly efficient catalysts for hydrolysis of ammonia borane[J]. Journal of Alloys and Compounds, 2018, 741: 501-508. |
45 | RELLER C , MERTENS F O R L . A self-contained regeneration scheme for spent ammonia borane based on the catalytic hydrodechlorination of BCl3 [J]. Angewandte Chemie International Edition, 2012, 51(47): 11731-11735. |
46 | RELLER C , MERTENS F . The recycling of spent ammonia borane with HBr/AlBr3 and other HX/AlX3-based schemes[J]. ChemPlusChem, 2018, 83(11): 1013-1020. |
47 | TAN Y B , ZHANG L J , CHEN X W , et al . Reductive dechlorination of BCl3 for efficient ammonia borane regeneration[J]. Dalton Transactions, 2015, 44(2): 753-757. |
48 | RAMACHANDRAN P V , GAGARE P D . Preparation of ammonia borane in high yield and purity, methanolysis and regeneration[J]. Inorganic Chemistry, 2007, 46(19): 7810-7817. |
49 | RAMACHANDRAN P V , RAJU B C , GAGARE P D . One-pot synthesis of ammonia borane and trialkylamine boranes from trimethyl borate[J]. Organic Letters, 2012, 14(24): 6119-6121. |
50 | 张军, 李华博, 姚海瑞, 等 . 循环利用硼氧酸铵电化学还原制备氨硼烷的工艺方法: CN104630819 [P]. 2015-05-20. |
ZHANG J , LI H B , YAO H R , et al . Process for recycling ammonia borane by electrochemical reduction of ammonium borohydride: CN104630819 [P]. 2015-05-20. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[3] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[4] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[5] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[6] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[7] | 杨建平. 降低HPPO装置反应系统原料消耗的PSE[J]. 化工进展, 2023, 42(S1): 21-32. |
[8] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[9] | 王鹏, 史会兵, 赵德明, 冯保林, 陈倩, 杨妲. 过渡金属催化氯代物的羰基化反应研究进展[J]. 化工进展, 2023, 42(9): 4649-4666. |
[10] | 张启, 赵红, 荣峻峰. 质子交换膜燃料电池中氧还原反应抗毒性电催化剂研究进展[J]. 化工进展, 2023, 42(9): 4677-4691. |
[11] | 葛全倩, 徐迈, 梁铣, 王凤武. MOFs材料在光电催化领域应用的研究进展[J]. 化工进展, 2023, 42(9): 4692-4705. |
[12] | 王伟涛, 鲍婷玉, 姜旭禄, 何珍红, 王宽, 杨阳, 刘昭铁. 醛酮树脂基非金属催化剂催化氧气氧化苯制备苯酚[J]. 化工进展, 2023, 42(9): 4706-4715. |
[13] | 葛亚粉, 孙宇, 肖鹏, 刘琦, 刘波, 孙成蓥, 巩雁军. 分子筛去除VOCs的研究进展[J]. 化工进展, 2023, 42(9): 4716-4730. |
[14] | 史柯柯, 刘木子, 赵强, 李晋平, 刘光. 镁基储氢材料的性能及研究进展[J]. 化工进展, 2023, 42(9): 4731-4745. |
[15] | 刘木子, 史柯柯, 赵强, 李晋平, 刘光. 固体储氢材料的研究进展[J]. 化工进展, 2023, 42(9): 4746-4769. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |