1 |
吴新雄. 解读“十三五”能源规划方向[J]. 风能, 2014(9): 8.
|
|
W X X. Interprets the energy planning direction of the “13th Five-Year Plan”[J]. Wind Energy, 2014(9): 8.
|
2 |
CRABTREE G W, LEWIS N S. Solar energy conversion[J]. Physics Today, 2007, 60(3): 37-42.
|
3 |
LU J, CHEN Y, DING J, et al. High temperature energy storage performances of methane reforming with carbon dioxide in a tubular packed reactor[J]. Energy Procedia, 2014, 61: 407-410.
|
4 |
王新赫, 杜轩成, 魏进家. 不同太阳能热化学储能体系的研究进展[J]. 科学通报, 2017, 62(31): 3631-3642.
|
|
WANG X H, DU X C, WEI J J. Research progress of different solar thermochemical energy storage systems[J]. Science Bulletin, 2017, 62(31): 3631-3642.
|
5 |
SAID S A M, WASEEEUDDIN M, SIMAKOV D S A. A review on solar reforming systems[J]. Renewable & Sustainable Energy Reviews, 2016, 59: 149-159.
|
6 |
Cinti GIOVANNI, Baldinelli ARIANNA, ALESSANDRO Di Michele, et al. Integration of solid oxide electrolyzer and Fischer-Tropsch: a sustainable pathway for synthetic fuel[J]. Applied Energy, 2016, 162: 308-320.
|
7 |
李文兵, 齐智平. 甲烷制氢技术研究进展[J]. 天然气工业, 2005, 25(2): 165-168.
|
|
LI W B, QI Z P. Research progress of methane hydrogen production technology[J]. Natural Gas Industry, 2005, 25(2): 165-168.
|
8 |
杨修春, 韦亚南. 甲烷重整制氢用催化剂的研究进展[J]. 材料导报, 2007, 21(5): 49-52, 64.
|
|
YANG X C, WEI Y N. Research progress of catalysts for hydrogen production from methane reforming[J]. Material Report, 2007, 21(5): 49-52, 64.
|
9 |
RAHEMI N, HAGHIGHI M, BABALUO A A, et al. Syngas production from reforming of greenhouse gases CH4/CO2 over Ni-Cu/Al2O3 nanocatalyst: impregnated vs.plasma-treated catalyst[J]. Energy Conversion and Management, 2014, 84: 50-59.
|
10 |
AXEL L, KANE T, JESÚS G C, et al. Chemical looping dry reforming of methane: toward shale-gas and biogas valorization[J]. Chemical Engineering & Processing Process Intensification, 2017, 122: 523-529.
|
11 |
PASHCHENKO D. Numerical study of steam methane reforming over a pre-heated Ni-based catalyst with detailed fluid dynamics[J]. Fuel, 2019, 236: 686-694.
|
12 |
JIN J, WEI X, LIU M, et al. A solar methane reforming reactor design with enhanced efficiency[J]. Reforming Reactions, 2018, 226: 797-807.
|
13 |
SHEU E J, MOKHEIMER E M A, GHONIEM A F. A review of solar methane reforming systems[J]. International Journal of Hydrogen Energy, 2015, 40(38): 12929-12955.
|
14 |
KHAN M N, SHAMIM T. Thermodynamic screening of suitable oxygen carriers for a three reactor chemical looping reforming system[J]. International Journal of Hydrogen Energy, 2017, 42(24): 15745-15760.
|
15 |
LUO S, ZENG L, XU D, et al. Shale gas-to-syngas chemical looping process for stable shale gas conversion to high purity syngas with a H2:CO ratio of 2∶1[J]. Energy and Environmental Science, 2014, 7: 4104-4117.
|
16 |
LIU Q, JIN H, HONG H, et al. Performance analysis of a mid- and low-temperature solar receiver/reactor for hydrogen production with methanol steam reforming[J]. International Journal of Energy Research, 2011, 35(1): 52-60.
|
17 |
谢涛, 杨伯伦. 基于太阳能蓄热过程的甲烷二氧化碳重整研究进展[J]. 化工进展, 2016, 35(6): 1723-1732.
|
|
XIE T, YANG B L. Progress in carbon dioxide reforming of methane based on solar thermal storage[J]. Chemical Industry and Engineering Progress, 2016, 35(6): 1723-1732.
|
18 |
BHATTA S, NAGASSOU D, TRELLES J P. Solar photo-thermochemical reactor design for carbon dioxide processing[J]. Solar Energy, 2017, 142: 253-266.
|
19 |
马婷婷, 朱跃钊, 陈海军, 等. 太阳能高温热化学反应器研究进展[J]. 化工进展, 2014, 33(5): 1134-1141.
|
|
MA T T, ZHU Y Z, CHEN H J, et al. Advances in solar high temperature thermochemical reactors[J]. Chemical Industry and Engineering Progress, 2014, 33(5): 1134-1141.
|
20 |
付晓娟, 曾尚红, 苏海全. 用于甲烷二氧化碳重整新型催化材料的研究进展[J]. 化工进展, 2012, 31(s1): 168-175.
|
|
FU X J, ZENG S H, SU H Q. Research progress of new catalytic materials for carbon dioxide reforming of methane[J]. Chemical Industry and Engineering Progress, 2012, 31(s1): 168-175.
|
21 |
FUQIANG W, LANXIN M, ZIMING C, et al. Radiative heat transfer in solar thermochemical particle reactor: a comprehensive review[J]. Renewable and Sustainable Energy Reviews, 2017, 73: 935-949.
|
22 |
LI D, QI H, WU G. Determined optical constants of liquid hydrocarbon fuel by a novel transmittance method[J]. Optik-International Journal for Light and Electron Optics, 2015, 126(7/8): 834-837.
|
23 |
TAMME R, BUCK R, Epstein M, et al. Solar upgrading of fuels for generation of electricity[J]. Journal of Solar Energy Engineering, 2001, 123(2): 160-163.
|
24 |
JIN J, WEI X, LIU M, et al. A solar methane reforming reactor design with enhanced efficiency[J]. Reforming Reactions, 2018, 226: 797-807.
|
25 |
SRIRAT C, STéPHANE ABANADES, SYLVAIN R. Syngas production via solar-driven chemical looping methane reforming from redox cycling of ceria porous foam in a volumetric solar reactor[J]. Chemical Engineering Journal, 2019, 356: 756-770.
|
26 |
GUENE L B, SHUAI Y, CHAFFA G, et al. Analysis of CO2, utilization into synthesis gas based on solar thermochemical CH4-reforming[J]. Journal of Energy Chemistry, 2019, 28: 61-72.
|
27 |
RUBIN R, KARNI J. Carbon dioxide reforming of methane indirectly irradiated solar reactor with porcupine absorber[J]. Journal of Solar Energy Engineering, 2011, 133(2): 021008.
|
28 |
TAMME R, BUCK R, EPSTEIN M, et al. Solar upgrading of fuels for generation of electricity[J]. Journal of Solar Energy Engineering, 2001, 123(2): 160-163.
|
29 |
DILLON A C, JONES K M, BEKKEDAHL T A, et al. Storage of hydrogen in single-walled carbon nanotubes[J]. Nature, 1997, 386(6623): 377-379.
|
30 |
PAGLIARO M, KONSTANDOPOULOSA G, CIRIMINNA R, et al. Solar hydrogen: fuel of the near future[J]. Energy & Environmental Science, 2010, 3(3): 279.
|
31 |
KORONEOS C, DOMPROS A, ROUMBAS G, et al. Life cycle assessment of hydrogen fuel production processes[J]. International Journal of Hydrogen Energy, 2004, 29(14): 1443-1450.
|
32 |
CHEN H L, LEE H M, CHEN S H, et al. Review of plasma catalysis on hydrocarbon reforming for hydrogen production-interaction, integration, and prospects[J]. Applied Catalysis B: Environmental, 2008, 85(1): 1-9.
|
33 |
SAAVEDRA J, WHITTAKER T, CHEN Z, et al. Controlling activity and selectivity using water in the Au-catalysed preferential oxidation of CO in H2[J]. Nature Chemistry, 2016, 8: 584-589.
|
34 |
NAITO H, ARASHI H. Hydrogen production from direct water splitting at high temperatures using a ZrO2-TiO2-Y2O3 membrane[J]. Solid State Ionics, Diffusion & Reactions, 1995, 79: 366-370.
|
35 |
JIANG H Q, WANG H H, WERTH S, et al. Simultaneous production of hydrogen and synthesis gas by combining water splitting with partial oxidation of methane in a hollow-fiber membrane reactor[J]. Angewandte Chemie International Edition, 2008, 120(48): 9481-9484.
|
36 |
王宏圣, 郝勇, 孔慧. 太阳能膜反应器燃料制取及联合循环效率分析[J]. 工程热物理学报, 2016, 37(11): 2269-2276.
|
|
WANG H S, HAO Y, KONG H. Fuel preparation and combined cycle efficiency analysis of solar membrane reactor[J]. Journal of Engineering Thermophysics, 2016, 37(11): 2269-2276.
|
37 |
WANG H S, HAO Y, KONG H. Thermodynamic study on solar thermochemical fuel production with oxygen permeation membrane reactors[J]. International Journal of Energy Research, 2015, 39(13): 1790-1799.
|
38 |
曾萍英. 锶钴基新钙钛矿型混合导体氧化物的开发与研究[D]. 南京: 南京工业大学, 2008.
|
|
ZENG P Y. Development and research of strontium-cobalt-based new perovskite mixed conductor oxides[D]. Nanjing: Nanjing University of Technology, 2008.
|
39 |
樊传刚. 致密透氧陶瓷膜材料及氧分离器的研究[D]. 合肥: 中国科学技术大学, 2003.
|
|
FAN C G. Study on dense oxygen permeable ceramic membrane materials and oxygen separator[D]. Hefei: China University of Science and Technology, 2003.
|
40 |
BALACHANDRAN U, DUSEK J T, MIEVILLE R L, et al. Dense ceramic membranes for partial oxidation of methane to syngas[J]. Applied Catalysis A: General, 1995, 133(1): 19-29.
|
41 |
WANG H S, LIU M, KONG H, et al. Thermodynamic analysis on mid/low temperature solar methane steam reforming with hydrogen permeation membrane reactors[J]. Applied Thermal Engineering, 2017, 152: 925-936.
|
42 |
UEMIYA S, SATO N, ANDO H, et al. Steam reforming of methane in a hydrogen-permeable membrane reactor[J]. Applied Catalysis, 1990, 67(1): 223-230.
|
43 |
BASILE A, PATURZO L. An experimental study of multilayered composite palladium membrane reactors for partial oxidation of methane to syngas[J]. Catalysis Today, 2001, 67(1): 55-64.
|
44 |
MALERD-FJELD H, CLARK D, YUSTE-TIRADOS I, et al. Thermo-electrochemical production of compressed hydrogen from methane with near-zero energy loss[J]. Nature Energy, 2017, 2: 923-931.
|
45 |
LI Y, ZHANG N, CAI R, et al. Low CO2 emissions hybrid solar combined-cycle power system with methane membrane reforming[J]. Energy, 2013, 58(3): 36-44.
|
46 |
DOLAN M D, BEATH A C, HLA S S, et al. An experimental and techno-economic assessment of solar reforming for H2 production[J]. International Journal of Hydrogen Energy, 2016, 41(33): 14583-14595.
|
47 |
SHEU E J, GHONIEM A F. Receiver reactor concept and model development for a solar steam redox reformer[J]. Solar Energy, 2016, 125: 339-359.
|
48 |
孔慧. 太阳能热化学循环及反应器设计研究[D]. 北京: 中国科学院大学, 2018.
|
|
KONG H. Solar thermochemical cycle and reactor design[D]. Beijing: University of Chinese Academy of Sciences, 2018.
|
49 |
ZHAO Z, CHEN T, GHONIEM A F. Rotary bed reactor for chemical-looping combustion with carbon capture. Part 1: reactor design and model development[J]. Energy & Fuels, 2013, 27(1): 327-343.
|
50 |
ZHAO Z, UDDI M, TSVETKOV N, et al. Redox kinetics study of fuel reduced ceria for chemical-looping water splitting[J]. The Journal of Physical Chemistry C, 2016, 120(30): 16271-16289.
|
51 |
KANEKO H, MIURA T, FUSE A, et al. Rotary-type solar reactor for solar hydrogen production with two-step water splitting process[J]. Energy & Fuels, 2007, 21(4): 2287-2293.
|
52 |
KODAMA T, BELLAN S, GOKON N, et al. Particle reactors for solar thermochemical processes[J]. Solar Energy, 2017, 156: 117-132.
|
53 |
GOKON N, OKU Y, KANEKO H, et al. Methane reforming with CO2 in molten salt using FeO catalyst[J]. Solar Energy, 2002, 72(3): 243-250.
|
54 |
BELLAN S, KODAMA T, MATSUBARA K, et al. Thermal performance of a 30 kW fluidized bed reactor for solar gasification: a CFD-DEM study[J]. Chemical Engineering Journal, 2018, 360: 1287-1300.
|
55 |
GOKON N, NAKAMURA S, HATAMACHI T, et al. Steam reforming of methane using double-walled reformer tubes containing high-temperature thermal storage Na2CO3/MgO composites for solar fuel production[J]. Energy, 2014, 68: 773-782.
|
56 |
桑丽霞, 刘晓倩, 黄莹, 等. 太阳能甲烷重整反应的研究进展[J]. 天然气化工, 2009, 34(3): 67-71.
|
|
SANG L X, LIU X Q, HUANG Y, et al. Progress in solar methane reforming[J]. Natural Gas Chemical Industry, 2009, 34(3): 67-71.
|
57 |
KLEIN H H, KARNI J, RUBIN R. Dry methane reforming without a metal catalyst in a directly irradiated solar particle reactor[J]. Journal of Solar Energy Engineering, 2009, 133(2): 189-200.
|
58 |
AGRAFIOTIS C, STORCH H VON, ROEB M, et al. Solar thermal reforming of methane feedstocks for hydrogen and syngas production-a review[J]. Renewable and Sustainable Energy Reviews, 2014, 29: 656-682.
|
59 |
DIVER R B, FISH J D, LEVITAN R, et al. Solar test of an integrated sodium reflux heat pipe receiver/reactor for thermochemical energy transport[J]. Solar Energy, 1992, 48(1): 21-30.
|
60 |
BENITO R, DUFFY G J. CSIRO’s advanced power generation technology using solar thermal-fossil energy hybrid systems[C]//Greenhouse Gas Control Technologies-6th International Conference, Kyoto, Japan, 2003.
|