化工进展 ›› 2019, Vol. 38 ›› Issue (12): 5339-5350.DOI: 10.16085/j.issn.1000-6613.2019-0524
收稿日期:
2019-04-04
出版日期:
2019-12-05
发布日期:
2019-12-05
通讯作者:
魏进家
作者简介:
刘彦铄(1996—),男,硕士研究生,研究方向为太阳能热化学利用。E-mail: 基金资助:
Yanshuo LIU1(),Xinhe WANG2,Junshe ZHANG1,Jinjia WEI1,2(
)
Received:
2019-04-04
Online:
2019-12-05
Published:
2019-12-05
Contact:
Jinjia WEI
摘要:
太阳能是世界上最丰富的清洁能源,被看作是解决化石能源短缺问题的关键。但是太阳能的间歇性很大程度上制约了其使用场景,太阳能热化学过程可以有效缓解太阳能间歇性带来的影响。在太阳能热化学过程中,反应器的性能直接影响了反应的效果。本文以太阳能甲烷重整过程为例,首先介绍了3种甲烷重整类型,分别介绍了其优缺点和工程应用。然后从结构、工作原理以及研究进展等方面简述了几种目前常见的太阳能甲烷重整反应器。包括对目前最常见的腔式反应器、膜反应器、旋转式反应器、流化床反应器和其他新颖反应器的介绍。最后,提出下一阶段太阳能甲烷重整反应器的研究重心应放在设计多功能于一体的反应器和促进多学科交叉研究上。
中图分类号:
刘彦铄,王新赫,张军社,魏进家. 太阳能甲烷重整反应器研究进展[J]. 化工进展, 2019, 38(12): 5339-5350.
Yanshuo LIU,Xinhe WANG,Junshe ZHANG,Jinjia WEI. Progress in solar methane reforming reactors[J]. Chemical Industry and Engineering Progress, 2019, 38(12): 5339-5350.
1 | 吴新雄. 解读“十三五”能源规划方向[J]. 风能, 2014(9): 8. |
W X X. Interprets the energy planning direction of the “13th Five-Year Plan”[J]. Wind Energy, 2014(9): 8. | |
2 | CRABTREE G W, LEWIS N S. Solar energy conversion[J]. Physics Today, 2007, 60(3): 37-42. |
3 | LU J, CHEN Y, DING J, et al. High temperature energy storage performances of methane reforming with carbon dioxide in a tubular packed reactor[J]. Energy Procedia, 2014, 61: 407-410. |
4 | 王新赫, 杜轩成, 魏进家. 不同太阳能热化学储能体系的研究进展[J]. 科学通报, 2017, 62(31): 3631-3642. |
WANG X H, DU X C, WEI J J. Research progress of different solar thermochemical energy storage systems[J]. Science Bulletin, 2017, 62(31): 3631-3642. | |
5 | SAID S A M, WASEEEUDDIN M, SIMAKOV D S A. A review on solar reforming systems[J]. Renewable & Sustainable Energy Reviews, 2016, 59: 149-159. |
6 | Cinti GIOVANNI, Baldinelli ARIANNA, ALESSANDRO Di Michele, et al. Integration of solid oxide electrolyzer and Fischer-Tropsch: a sustainable pathway for synthetic fuel[J]. Applied Energy, 2016, 162: 308-320. |
7 | 李文兵, 齐智平. 甲烷制氢技术研究进展[J]. 天然气工业, 2005, 25(2): 165-168. |
LI W B, QI Z P. Research progress of methane hydrogen production technology[J]. Natural Gas Industry, 2005, 25(2): 165-168. | |
8 | 杨修春, 韦亚南. 甲烷重整制氢用催化剂的研究进展[J]. 材料导报, 2007, 21(5): 49-52, 64. |
YANG X C, WEI Y N. Research progress of catalysts for hydrogen production from methane reforming[J]. Material Report, 2007, 21(5): 49-52, 64. | |
9 | RAHEMI N, HAGHIGHI M, BABALUO A A, et al. Syngas production from reforming of greenhouse gases CH4/CO2 over Ni-Cu/Al2O3 nanocatalyst: impregnated vs.plasma-treated catalyst[J]. Energy Conversion and Management, 2014, 84: 50-59. |
10 | AXEL L, KANE T, JESÚS G C, et al. Chemical looping dry reforming of methane: toward shale-gas and biogas valorization[J]. Chemical Engineering & Processing Process Intensification, 2017, 122: 523-529. |
11 | PASHCHENKO D. Numerical study of steam methane reforming over a pre-heated Ni-based catalyst with detailed fluid dynamics[J]. Fuel, 2019, 236: 686-694. |
12 | JIN J, WEI X, LIU M, et al. A solar methane reforming reactor design with enhanced efficiency[J]. Reforming Reactions, 2018, 226: 797-807. |
13 | SHEU E J, MOKHEIMER E M A, GHONIEM A F. A review of solar methane reforming systems[J]. International Journal of Hydrogen Energy, 2015, 40(38): 12929-12955. |
14 | KHAN M N, SHAMIM T. Thermodynamic screening of suitable oxygen carriers for a three reactor chemical looping reforming system[J]. International Journal of Hydrogen Energy, 2017, 42(24): 15745-15760. |
15 | LUO S, ZENG L, XU D, et al. Shale gas-to-syngas chemical looping process for stable shale gas conversion to high purity syngas with a H2:CO ratio of 2∶1[J]. Energy and Environmental Science, 2014, 7: 4104-4117. |
16 | LIU Q, JIN H, HONG H, et al. Performance analysis of a mid- and low-temperature solar receiver/reactor for hydrogen production with methanol steam reforming[J]. International Journal of Energy Research, 2011, 35(1): 52-60. |
17 | 谢涛, 杨伯伦. 基于太阳能蓄热过程的甲烷二氧化碳重整研究进展[J]. 化工进展, 2016, 35(6): 1723-1732. |
XIE T, YANG B L. Progress in carbon dioxide reforming of methane based on solar thermal storage[J]. Chemical Industry and Engineering Progress, 2016, 35(6): 1723-1732. | |
18 | BHATTA S, NAGASSOU D, TRELLES J P. Solar photo-thermochemical reactor design for carbon dioxide processing[J]. Solar Energy, 2017, 142: 253-266. |
19 | 马婷婷, 朱跃钊, 陈海军, 等. 太阳能高温热化学反应器研究进展[J]. 化工进展, 2014, 33(5): 1134-1141. |
MA T T, ZHU Y Z, CHEN H J, et al. Advances in solar high temperature thermochemical reactors[J]. Chemical Industry and Engineering Progress, 2014, 33(5): 1134-1141. | |
20 | 付晓娟, 曾尚红, 苏海全. 用于甲烷二氧化碳重整新型催化材料的研究进展[J]. 化工进展, 2012, 31(s1): 168-175. |
FU X J, ZENG S H, SU H Q. Research progress of new catalytic materials for carbon dioxide reforming of methane[J]. Chemical Industry and Engineering Progress, 2012, 31(s1): 168-175. | |
21 | FUQIANG W, LANXIN M, ZIMING C, et al. Radiative heat transfer in solar thermochemical particle reactor: a comprehensive review[J]. Renewable and Sustainable Energy Reviews, 2017, 73: 935-949. |
22 | LI D, QI H, WU G. Determined optical constants of liquid hydrocarbon fuel by a novel transmittance method[J]. Optik-International Journal for Light and Electron Optics, 2015, 126(7/8): 834-837. |
23 | TAMME R, BUCK R, Epstein M, et al. Solar upgrading of fuels for generation of electricity[J]. Journal of Solar Energy Engineering, 2001, 123(2): 160-163. |
24 | JIN J, WEI X, LIU M, et al. A solar methane reforming reactor design with enhanced efficiency[J]. Reforming Reactions, 2018, 226: 797-807. |
25 | SRIRAT C, STéPHANE ABANADES, SYLVAIN R. Syngas production via solar-driven chemical looping methane reforming from redox cycling of ceria porous foam in a volumetric solar reactor[J]. Chemical Engineering Journal, 2019, 356: 756-770. |
26 | GUENE L B, SHUAI Y, CHAFFA G, et al. Analysis of CO2, utilization into synthesis gas based on solar thermochemical CH4-reforming[J]. Journal of Energy Chemistry, 2019, 28: 61-72. |
27 | RUBIN R, KARNI J. Carbon dioxide reforming of methane indirectly irradiated solar reactor with porcupine absorber[J]. Journal of Solar Energy Engineering, 2011, 133(2): 021008. |
28 | TAMME R, BUCK R, EPSTEIN M, et al. Solar upgrading of fuels for generation of electricity[J]. Journal of Solar Energy Engineering, 2001, 123(2): 160-163. |
29 | DILLON A C, JONES K M, BEKKEDAHL T A, et al. Storage of hydrogen in single-walled carbon nanotubes[J]. Nature, 1997, 386(6623): 377-379. |
30 | PAGLIARO M, KONSTANDOPOULOSA G, CIRIMINNA R, et al. Solar hydrogen: fuel of the near future[J]. Energy & Environmental Science, 2010, 3(3): 279. |
31 | KORONEOS C, DOMPROS A, ROUMBAS G, et al. Life cycle assessment of hydrogen fuel production processes[J]. International Journal of Hydrogen Energy, 2004, 29(14): 1443-1450. |
32 | CHEN H L, LEE H M, CHEN S H, et al. Review of plasma catalysis on hydrocarbon reforming for hydrogen production-interaction, integration, and prospects[J]. Applied Catalysis B: Environmental, 2008, 85(1): 1-9. |
33 | SAAVEDRA J, WHITTAKER T, CHEN Z, et al. Controlling activity and selectivity using water in the Au-catalysed preferential oxidation of CO in H2[J]. Nature Chemistry, 2016, 8: 584-589. |
34 | NAITO H, ARASHI H. Hydrogen production from direct water splitting at high temperatures using a ZrO2-TiO2-Y2O3 membrane[J]. Solid State Ionics, Diffusion & Reactions, 1995, 79: 366-370. |
35 | JIANG H Q, WANG H H, WERTH S, et al. Simultaneous production of hydrogen and synthesis gas by combining water splitting with partial oxidation of methane in a hollow-fiber membrane reactor[J]. Angewandte Chemie International Edition, 2008, 120(48): 9481-9484. |
36 | 王宏圣, 郝勇, 孔慧. 太阳能膜反应器燃料制取及联合循环效率分析[J]. 工程热物理学报, 2016, 37(11): 2269-2276. |
WANG H S, HAO Y, KONG H. Fuel preparation and combined cycle efficiency analysis of solar membrane reactor[J]. Journal of Engineering Thermophysics, 2016, 37(11): 2269-2276. | |
37 | WANG H S, HAO Y, KONG H. Thermodynamic study on solar thermochemical fuel production with oxygen permeation membrane reactors[J]. International Journal of Energy Research, 2015, 39(13): 1790-1799. |
38 | 曾萍英. 锶钴基新钙钛矿型混合导体氧化物的开发与研究[D]. 南京: 南京工业大学, 2008. |
ZENG P Y. Development and research of strontium-cobalt-based new perovskite mixed conductor oxides[D]. Nanjing: Nanjing University of Technology, 2008. | |
39 | 樊传刚. 致密透氧陶瓷膜材料及氧分离器的研究[D]. 合肥: 中国科学技术大学, 2003. |
FAN C G. Study on dense oxygen permeable ceramic membrane materials and oxygen separator[D]. Hefei: China University of Science and Technology, 2003. | |
40 | BALACHANDRAN U, DUSEK J T, MIEVILLE R L, et al. Dense ceramic membranes for partial oxidation of methane to syngas[J]. Applied Catalysis A: General, 1995, 133(1): 19-29. |
41 | WANG H S, LIU M, KONG H, et al. Thermodynamic analysis on mid/low temperature solar methane steam reforming with hydrogen permeation membrane reactors[J]. Applied Thermal Engineering, 2017, 152: 925-936. |
42 | UEMIYA S, SATO N, ANDO H, et al. Steam reforming of methane in a hydrogen-permeable membrane reactor[J]. Applied Catalysis, 1990, 67(1): 223-230. |
43 | BASILE A, PATURZO L. An experimental study of multilayered composite palladium membrane reactors for partial oxidation of methane to syngas[J]. Catalysis Today, 2001, 67(1): 55-64. |
44 | MALERD-FJELD H, CLARK D, YUSTE-TIRADOS I, et al. Thermo-electrochemical production of compressed hydrogen from methane with near-zero energy loss[J]. Nature Energy, 2017, 2: 923-931. |
45 | LI Y, ZHANG N, CAI R, et al. Low CO2 emissions hybrid solar combined-cycle power system with methane membrane reforming[J]. Energy, 2013, 58(3): 36-44. |
46 | DOLAN M D, BEATH A C, HLA S S, et al. An experimental and techno-economic assessment of solar reforming for H2 production[J]. International Journal of Hydrogen Energy, 2016, 41(33): 14583-14595. |
47 | SHEU E J, GHONIEM A F. Receiver reactor concept and model development for a solar steam redox reformer[J]. Solar Energy, 2016, 125: 339-359. |
48 | 孔慧. 太阳能热化学循环及反应器设计研究[D]. 北京: 中国科学院大学, 2018. |
KONG H. Solar thermochemical cycle and reactor design[D]. Beijing: University of Chinese Academy of Sciences, 2018. | |
49 | ZHAO Z, CHEN T, GHONIEM A F. Rotary bed reactor for chemical-looping combustion with carbon capture. Part 1: reactor design and model development[J]. Energy & Fuels, 2013, 27(1): 327-343. |
50 | ZHAO Z, UDDI M, TSVETKOV N, et al. Redox kinetics study of fuel reduced ceria for chemical-looping water splitting[J]. The Journal of Physical Chemistry C, 2016, 120(30): 16271-16289. |
51 | KANEKO H, MIURA T, FUSE A, et al. Rotary-type solar reactor for solar hydrogen production with two-step water splitting process[J]. Energy & Fuels, 2007, 21(4): 2287-2293. |
52 | KODAMA T, BELLAN S, GOKON N, et al. Particle reactors for solar thermochemical processes[J]. Solar Energy, 2017, 156: 117-132. |
53 | GOKON N, OKU Y, KANEKO H, et al. Methane reforming with CO2 in molten salt using FeO catalyst[J]. Solar Energy, 2002, 72(3): 243-250. |
54 | BELLAN S, KODAMA T, MATSUBARA K, et al. Thermal performance of a 30 kW fluidized bed reactor for solar gasification: a CFD-DEM study[J]. Chemical Engineering Journal, 2018, 360: 1287-1300. |
55 | GOKON N, NAKAMURA S, HATAMACHI T, et al. Steam reforming of methane using double-walled reformer tubes containing high-temperature thermal storage Na2CO3/MgO composites for solar fuel production[J]. Energy, 2014, 68: 773-782. |
56 | 桑丽霞, 刘晓倩, 黄莹, 等. 太阳能甲烷重整反应的研究进展[J]. 天然气化工, 2009, 34(3): 67-71. |
SANG L X, LIU X Q, HUANG Y, et al. Progress in solar methane reforming[J]. Natural Gas Chemical Industry, 2009, 34(3): 67-71. | |
57 | KLEIN H H, KARNI J, RUBIN R. Dry methane reforming without a metal catalyst in a directly irradiated solar particle reactor[J]. Journal of Solar Energy Engineering, 2009, 133(2): 189-200. |
58 | AGRAFIOTIS C, STORCH H VON, ROEB M, et al. Solar thermal reforming of methane feedstocks for hydrogen and syngas production-a review[J]. Renewable and Sustainable Energy Reviews, 2014, 29: 656-682. |
59 | DIVER R B, FISH J D, LEVITAN R, et al. Solar test of an integrated sodium reflux heat pipe receiver/reactor for thermochemical energy transport[J]. Solar Energy, 1992, 48(1): 21-30. |
60 | BENITO R, DUFFY G J. CSIRO’s advanced power generation technology using solar thermal-fossil energy hybrid systems[C]//Greenhouse Gas Control Technologies-6th International Conference, Kyoto, Japan, 2003. |
[1] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[2] | 赖诗妮, 江丽霞, 李军, 黄宏宇, 小林敬幸. 含碳掺氨燃料的研究进展[J]. 化工进展, 2023, 42(9): 4603-4615. |
[3] | 黄玉飞, 李子怡, 黄杨强, 金波, 罗潇, 梁志武. 光催化CO2和CH4重整催化剂研究进展[J]. 化工进展, 2023, 42(8): 4247-4263. |
[4] | 叶振东, 刘涵, 吕静, 张亚宁, 刘洪芝. 基于钙镁二元盐的热化学储能反应器的性能优化[J]. 化工进展, 2023, 42(8): 4307-4314. |
[5] | 奚永兰, 王成成, 叶小梅, 刘洋, 贾昭炎, 曹春晖, 韩挺, 张应鹏, 田雨. 微纳米气泡在厌氧消化中的应用研究进展[J]. 化工进展, 2023, 42(8): 4414-4423. |
[6] | 刘洋, 叶小梅, 苗晓, 王成成, 贾昭炎, 曹春晖, 奚永兰. 农村有机生活垃圾干发酵氨胁迫下中试工艺[J]. 化工进展, 2023, 42(7): 3847-3854. |
[7] | 张凯, 吕秋楠, 李刚, 李小森, 莫家媚. 南海海泥中甲烷水合物的形貌及赋存特性[J]. 化工进展, 2023, 42(7): 3865-3874. |
[8] | 陆洋, 周劲松, 周启昕, 王瑭, 刘壮, 李博昊, 周灵涛. CeO2/TiO2吸附剂煤气脱汞产物的浸出规律[J]. 化工进展, 2023, 42(7): 3875-3883. |
[9] | 李吉焱, 景艳菊, 邢郭宇, 刘美辰, 龙永, 朱照琪. 耐盐型太阳能驱动界面光热材料及蒸发器的研究进展[J]. 化工进展, 2023, 42(7): 3611-3622. |
[10] | 符淑瑢, 王丽娜, 王东伟, 刘蕊, 张晓慧, 马占伟. 析氧助催化剂增强光阳极光电催化分解水性能研究进展[J]. 化工进展, 2023, 42(5): 2353-2370. |
[11] | 马源, 肖晴月, 岳君容, 崔彦斌, 刘姣, 许光文. CeO2-Al2O3复合载体负载Ni基催化剂催化CO x 共甲烷化性能[J]. 化工进展, 2023, 42(5): 2421-2428. |
[12] | 阮鹏, 杨润农, 林梓荣, 孙永明. 甲烷催化部分氧化制合成气催化剂的研究进展[J]. 化工进展, 2023, 42(4): 1832-1846. |
[13] | 田园, 娄舒洁, 孟闪茹, 闫敬如, 肖海成. 合成气制高碳醇钴基催化剂研究进展[J]. 化工进展, 2023, 42(4): 1869-1876. |
[14] | 张巍, 王锐, 缪平, 田戈. 全球可再生能源电转甲烷的应用[J]. 化工进展, 2023, 42(3): 1257-1269. |
[15] | 何阳东, 常宏岗, 王丹, 陈昌介, 李雅欣. 熔融金属法甲烷裂解制氢和碳材料研究进展[J]. 化工进展, 2023, 42(3): 1270-1280. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |