化工进展 ›› 2019, Vol. 38 ›› Issue (11): 4901-4910.DOI: 10.16085/j.issn.1000-6613.2019-0383
李冰玉1(),毛庆1(),赵健1,杜兆龙2,刘松3,黄延强3
收稿日期:
2019-03-13
出版日期:
2019-11-05
发布日期:
2019-11-05
通讯作者:
毛庆
作者简介:
李冰玉(1995—),女,硕士研究生,研究方向为电催化二氧化碳还原。E-mail:基金资助:
Bingyu LI1(),Qing MAO1(),Jian ZHAO1,Zhaolong DU2,Song LIU3,Yanqiang HUANG3
Received:
2019-03-13
Online:
2019-11-05
Published:
2019-11-05
Contact:
Qing MAO
摘要:
电化学还原二氧化碳(CO2)可实现CO2的资源化转化,是实现自然界“碳循环”、缓解因CO2过度排放所引起诸多环境问题的关键技术。本文综述了CO2电还原反应器的研究发展现状,并依据电解质的不同对比分析了各反应器的结构、传质特征及与之匹配阴极的CO2转化活性与选择性。研究指出膜电极构型反应器是当前CO2电还原反应器发展的主要方向,其电解质材料的优选不仅决定于其离子选择性与电导率,还需考虑电催化材料的性质与膜电极效率。最后,提出膜电极构型反应器内的过程强化技术与自支撑结构的阴极设计将成为CO2还原研究发展的新方向。
中图分类号:
李冰玉,毛庆,赵健,杜兆龙,刘松,黄延强. 二氧化碳电化学还原反应器的研究进展[J]. 化工进展, 2019, 38(11): 4901-4910.
Bingyu LI,Qing MAO,Jian ZHAO,Zhaolong DU,Song LIU,Yanqiang HUANG. Research progress in CO2 electroreduction reactor[J]. Chemical Industry and Engineering Progress, 2019, 38(11): 4901-4910.
1 | IPCC . Climate change 2014: mitigation of climate change[M].United Kingdom and New York, NY, USA: Cambridge University Press, 2014:1-1454. |
2 | 景维云, 毛庆, 石越, 等 . CO2电催化还原制烃类产物的研究进展[J]. 化工进展, 2017, 36(6): 2150-2157. |
JING W Y , MAO Q , SHI Y , et al . Research progress of electro-catalytic reduction of CO2 to hydrocarbons[J]. Chemical Industry and Engineering Progress, 2017, 36(6): 2150-2157. | |
3 | 王付燕, 孙洪志, 宋名秀, 等 . 二氧化碳的氨化反应研究进展[J]. 化工进展, 2014, 33(1):209-212. |
WANG F Y , SUN H Z , SONG M X , et al . Research progress on ammoniation reaction of carbon dioxide[J]. Chemical Industry and Engineering Progress, 2014, 33(1): 209-212. | |
4 | 赵丹, 王文珍, 贾新刚, 等 . 二氧化碳合成有机碳酸酯和聚碳酸丙烯酯的研究进展[J]. 现代化工, 2015, 35(7): 32-36. |
ZHAO D , WANG W Z , JIA X G , et al . Research progress in synthesis of organic carbonates and polypropylene carbonates from carbon dioxide[J]. Modern Chemical Industry, 2015, 35(7): 32-36. | |
5 | SHIRONITAA S , KARASUDAA K , SATOA K , et al . Methanol generation by CO2 reduction at a Pt-Ru/C electrocatalyst using a membrane electrode assembly[J]. Journal of Power Sources, 2013, 240(10): 404-410. |
6 | 牛量, 于涛, 张晓, 等 . 甲烷二氧化碳重整制合成气催化剂的研究进展[J]. 吉林化工学院学报, 2018, 35(11): 8-13. |
NIU L , YU T , ZHANG X , et al . Research progress in catalysts for methane carbon dioxide reforming to syngas[J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(11): 8-13. | |
7 | LIU R , TIAN H , YANG A , et al . Preparation of HZSM-5 membrane packed CuO-ZnO-Al2O3 nanoparticles for catalysing carbon dioxide hydrogenation to dimethyl ether[J]. Applied Surface Science, 2015, 345: 1-9. |
8 | LINGAMPALLI S R , MONIS AYYUB M , MAGESH G , et al . Photocatalytic reduction of CO2 by employing ZnO/Ag1- x Cu x /CdS and related heterostructures[J]. Chemical Physics Letters, 2018, 691(1): 28-32. |
9 | LI B , NIU W , CHENG Y , et al . Preparation of Cu2O modified TiO2 nanopowder and its application to the visible light photoelectrocatalytic reduction of CO2 to CH3OH[J]. Chemical Physics Letters, 2018, 700: 57-63. |
10 | WEEKES D M , SALVATORE D A , REYES A , et al . Electrolytic CO2 reduction in a flow cell[J]. Accounts of Chemical Research, 2018, 51(4): 910-918. |
11 | CENTI G , PERATHONER S , WINE G , et al . Electrocatalytic conversion of CO2 to long carbon-chain hydrocarbons[J]. Green Chemistry, 2007, 9(6): 671. |
12 | YOO J S, CHRISTENSEN R , VEGGE T , et al . Theoretical insight into the trends that guide the electrochemical reduction of carbon dioxide to formic acid[J]. ChemSusChem, 2016, 9(4): 358-363. |
13 | ROSEN J , HUTCHINGS G S , LU Q , et al . Mechanistic insights into the electrochemical reduction of CO2 to CO on nanostructured Ag surfaces[J]. ACS Catalysis, 2015, 5(7): 4293-4299. |
14 | MISTRY H , VARELA A S , BONIFACIO C S , et al . Highly selective plasma-activated copper catalysts for carbon dioxide reduction to ethylene[J]. Nature Communications, 2016, 7: 12123. |
15 | HE J , JOHNSON N J J , HUANG A . Electrocatalytic alloys for CO2 reduction[J]. ChemSusChem, 2017, 11(1):48-57. |
16 | YANG H B , HUNG S F , LIU S , et al . Atomically dispersed Ni(i) as the active site for electrochemical CO2 reduction[J]. Naure Energy, 2018, 3(2): 140-147. |
17 | ZHENG X L , JI Y F , TANG J , et al . Theory-guided Sn/Cu alloying for efficient CO2 electroreduction at low overpotentials[J]. Nature Catalysis, 2019(2): 55-61. |
18 | CAO-THANG D , THOMAS B , MD G K, et al . CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface[J]. Science, 2018, 360: 783-787. |
19 | WHIPPLE D T , FINKE E C , KENIS P J A . Microfluidic reactor for the electrochemical reduction of carbon dioxide: the effect of pH[J]. Electrochemical and Solid-State Letters, 2010, 13(9): B109-B111. |
20 | XIE Y M , JIE X, LIU D D , et al . Electrolysis of carbon dioxide in a solid oxide electrolyzer with silver-gadolinium-doped ceria cathode[J]. Journal of the Electrochemical Society, 2015, 162(4): F397-F402. |
21 | LAGUNA-BERCERO M A . Recent advances in high temperature electrolysis using solid oxide fuel cells: a review[J]. Journal of Power Sources, 2012, 203: 4-16. |
22 | HORI Y , ITO H, OKANO K , et al . Silver-coated ion exchange membrane electrode applied to electrochemical reduction of carbon dioxide[J]. Electrochimica Acta, 2003, 48(18): 2651-2657. |
23 | HSU C Y, KUO M H, KUO P L . Preparation, characterization, and properties of poly(styrene-b-sulfonated isoprene)s membranes for proton exchange membrane fuel cells (PEMFCs)[J]. Journal of Membrane Science, 2015, 484: 146-153. |
24 | BEVILACQUA M , FILIPPI J , MILLER H A , et al . Recent technological progress in CO2 electroreduction to fuels and energy carriers in aqueous environments[J]. Energy Technology, 2015, 3(3): 197-210. |
25 | HERNÁNDEZ S , FARKHONDEHFAL M , SASTRE F , et al . Syngas production from electrochemical reduction of CO2: current status and prospective implementation[J]. Green Chemistry, 2017, 19(10): 2326-2346. |
26 | ENDRŐDI B , BENCSIK G , DARVAS F , et al . Continuous-flow electroreduction of carbon dioxide[J]. Progress in Energy and Combustion Science, 2017, 62: 133-154. |
27 | DELACOURT C , RIDGWAY P L , KERR J B , et al . Design of an electrochemical cell making syngas (CO+H2) from CO2 and H2O reduction at room temperature[J]. Journal of the Electrochemical Society, 2008, 155(1): B42-B49. |
28 | DELACOURT C , RIDGWAY P L , NEWMAN J . Mathematical modeling of CO2 reduction to CO in aqueous electrolytes Ⅰ. Kinetic study on planar silver and gold electrodes[J]. Journal of The Electrochemical Society, 2010, 157(12): B1902-B1910. |
29 | JIANG K , SIAHROSTAMI S , ZHENG T , et al . Isolated Ni single atoms in graphene nanosheets for high-performance CO2 reduction[J]. Energy & Environmental Science, 2018, 11(4): 893-903. |
30 | SMITHA B , SRIDHAR S , KHAN A A . Solid polymer electrolyte membranes for fuel cell applications—A review[J]. Journal of Membrane Science, 2005, 259(1/2): 10-26. |
31 | VARGAS-BARBOSA N M , GEISE G M , HICKNER M A , et al . Assessing the utility of bipolar membranes for use in photoelectrochemical water-splitting cells[J]. ChemSusChem, 2014, 7(11): 3017-3020. |
32 | OENER S Z , ARDO S , BOETTCHER S W . Ionic processes in water electrolysis: the role of ion-selective membranes[J]. ACS Energy Letters, 2017, 2(11): 2625-2634. |
33 | LUO J , VERMAAS D A , BI D , et al . Bipolar membrane-assisted solar water splitting in optimal pH[J]. Advanced Energy Materials, 2016, 6(13): 1600100. |
34 | LI Y C , ZHOU D , YAN Z , et al . Electrolysis of CO2 to syngas in bipolar membrane-based electrochemical cells[J]. ACS Energy Letters, 2016, 1: 1149-1153. |
35 | ZHOU X , LIU R , SUN K , et al . Solar-driven reduction of 1 atm of CO2 to formate at 10% energy-conversion efficiency by use of a TiO2-protected Ⅲ-Ⅴ tandem photoanode in conjunction with a bipolar membrane and a Pd/C cathode[J]. ACS Energy Letters, 2016, 1(4): 764-770. |
36 | VEMAAS D A , SMITH W A . Synergistic electrochemical CO2 reduction and water oxidation with a bipolar membrane[J]. ACS Energy Letters, 2016, 1(6): 1143-1148. |
37 | 景维云 . CO2电还原催化剂的筛选及反应器的设计[D].大连: 大连理工大学, 2018. |
JING W Y . Screening of CO2 electrocatalysts and design of reactors[D].Dalian: Dalian University of Technology, 2018. | |
38 | WU J , RISALVATO F G , SHARMA P P , et al . Electrochemical reduction of carbon dioxide Ⅱ. Design, assembly, and performance of low temperature full electrochemical cells[J]. Journal of the Electrochemical Society, 2013, 160(9): F953-F957. |
39 | SUBRAMANIAN K , ASOKAN K , JEEVARATHINAM D , et al . Electrochemical membrane reactor for the reduction of carbondioxide to formate[J]. Journal of Applied Electrochemistry, 2007, 37(2): 255-260. |
40 | INNOCENT B , LIAIGRE D , PASQUIER D , et al . Electro-reduction of carbon dioxide to formate on lead electrode in aqueous medium[J]. Journal of Applied Electrochemistry, 2009, 39(2): 227-232. |
41 | WU J , RISALVATO F G , KE F , et al . Electrochemical reduction of carbon dioxide Ⅰ. Effects of the electrolyte on the horiivity and activity with Sn electrode[J]. Journal of the Electrochemical Society, 2012, 159(7): F353-F359. |
42 | WU J , RISALVATO F G , MA S , et al . Electrochemical reduction of carbon dioxide Ⅲ. The role of oxide layer thickness on the performance of Sn electrode in a full electrochemical cell[J]. Journal of Materials Chemistry A, 2014, 2(6): 1647-1651. |
43 | YANG H , KACZUR J J , SAJJAD S D , et al . Electrochemical conversion of CO2 to formic acid utilizing Sustainion™ membranes[J]. Journal of CO2 Utilization, 2017, 20: 208-217. |
44 | KÖLELI F , ATILAN T , PALAMUT N , et al . Electrochemical reduction of CO2 at Pb- and Sn-electrodes in a fixed-bed reactor in aqueous K2CO3, and KHCO3 media[J]. Journal of Applied Electrochemistry, 2003, 33(5): 447-450. |
45 | KÖLELI F , BALUN D . Reduction of CO2 under high pressure and high temperature on Pb-granule electrodes in a fixed-bed reactor in aqueous medium[J]. Applied Catalysis A: General, 2004, 274(1/2): 237-242. |
46 | MERINO-GARCIA I , ALVAREZ-GUERRA E , ALBO J , et al . Electrochemical membrane reactors for the utilisation of carbon dioxide[J]. Chemical Engineering Journal, 2016, 305: 104-120. |
47 | HARA K , KUDO A , SAKATA T . Electrochemical reduction of high pressure carbon dioxide on Fe electrodes at large current density[J]. Journal of Electroanalytical Chemistry, 1995, 386(1): 257-260. |
48 | LIU Z C , MASEL R I , CHEN Q M , et al . Electrochemical generation of syngas from water and carbon dioxide at industrially important rates[J]. Journal of CO2 Utilization, 2016, 15(9): 50-56. |
49 | AZUMA M , HASHIMOTO K , HIRAMOTO M , et al . Electrochemical reduction of carbon dioxide on various metal electrodes in low-temperature aqueous KHCO3 media[J]. Journal of Electrochemical Society, 1990, 137(6): 1772-1778. |
50 | DUFEK E J , LISTER T E , STONE S G , et al . Operation of a pressurized system for continuous reduction of CO2 [J]. Journal of the Electrochemical Society, 2012, 159(9): F514-F517. |
51 | GABARDO C M , SEIFITOKALDANI A , EDWARDS J P , et al . Combined high alkalinity and pressurization enable efficient CO2 electroreduction to CO[J]. Energy & Environmental Science, 2018, 11: 2531-3539. |
52 | GUNATHUNGE C M , OVALLE V J , WAEGELE M M . Probing promoting effects of alkali cations on the reduction of CO at the aqueous electrolyte/copper interface[J]. Physical Chemistry Chemical Physics, 2017, 19(44): 30166. |
53 | SALVATORE D A , WEEKS D M , HE J , et al . Electrolysis of gaseous CO2 to CO in a flow cell with a bipolar membrane[J]. ACS Energy Letters, 2017, 3(1): 149-154. |
54 | OGURA K , WATANABE H . Reduction of carbon monoxide on a mediated and partially immersed electrode[J]. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 1985, 81: 1569-1576. |
55 | LI J , CHEN G , ZHU Y , et al . Efficient electrocatalytic CO2 reduction on a three-phase interface[J]. Nature Catalysis, 2018, 1: 592-600. |
56 | WENG L C , BELL A T , WEBER A Z . Modeling gas-diffusion electrodes for CO2 reduction[J]. Physical Chemistry Chemical Physics, 2018, 20: 16973-16984. |
57 | COOK R L , MACDUFF R C , SAMMELLS A F . High-rate gas-phase CO2 reduction to ethylene and methane using gas-diffusion electrodes[J]. Journal of the Electrochemical Society, 1990, 137(2): 607-608. |
58 | KIM B , HILLMAN F , ARIYOSHI M , et al . Effects of composition of the micro porous layer and the substrate on performance in the electrochemical reduction of CO2 to CO[J]. Journal of Power Sources, 2016, 312: 192-198. |
59 | BITAR Z , FECANT A , TRELA-BAUDOT E , et al . Electrocatalytic reduction of carbon dioxide on indium coated gas diffusion electrodes-comparison with indium foil[J]. Applied Catalysis B: Environmental, 2016, 189: 172-180. |
60 | HORI Y . Electrochemical CO2 reduction on metal electrodes[J]. Modern Aspects of Electrochemistry, 2008, 42: 89-189 |
61 | JHONG H , BRUSHETT F R , KENIS P J A . The effects of catalyst layer deposition methodology on electrode performance[J]. Advanced Energy Materials, 2013, 3(5): 589-599. |
62 | YU S H , CHOE S , KIM M J , et al . Electrodeposited Ag catalysts for the electrochemical reduction of CO2 to CO[J]. Applied Catalysis B: Environmental, 2017, 208: 35-43. |
63 | YU S H , MYUNG J K , TAEHO L , et al . Direct formation of dendritic Ag catalyst on a gas diffusion layer for electrochemical CO2 reduction to CO and H2 [J]. Hydrogen Energy, 2018, 43: 11315-11325. |
64 | ZHAO C M , WANG Y , LI Z J , et al . Solid-diffusion synthesis of single-atom catalysts directly from bulk metal for efficient CO2 reduction[J]. Joule, 2018, 3: 1-11. |
[1] | 盛维武, 程永攀, 陈强, 李小婷, 魏嘉, 李琳鸽, 陈险峰. 微气泡和微液滴双强化脱硫反应器操作分析[J]. 化工进展, 2023, 42(S1): 142-147. |
[2] | 黄益平, 李婷, 郑龙云, 戚傲, 陈政霖, 史天昊, 张新宇, 郭凯, 胡猛, 倪泽雨, 刘辉, 夏苗, 主凯, 刘春江. 三级环流反应器中气液流动与传质规律[J]. 化工进展, 2023, 42(S1): 175-188. |
[3] | 杨寒月, 孔令真, 陈家庆, 孙欢, 宋家恺, 王思诚, 孔标. 微气泡型下向流管式气液接触器脱碳性能[J]. 化工进展, 2023, 42(S1): 197-204. |
[4] | 王胜岩, 邓帅, 赵睿恺. 变电吸附二氧化碳捕集技术研究进展[J]. 化工进展, 2023, 42(S1): 233-245. |
[5] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[6] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[7] | 郑谦, 官修帅, 靳山彪, 张长明, 张小超. 铈锆固溶体Ce0.25Zr0.75O2光热协同催化CO2与甲醇合成DMC[J]. 化工进展, 2023, 42(S1): 319-327. |
[8] | 胡喜, 王明珊, 李恩智, 黄思鸣, 陈俊臣, 郭秉淑, 于博, 马志远, 李星. 二硫化钨复合材料制备与储钠性能研究进展[J]. 化工进展, 2023, 42(S1): 344-355. |
[9] | 戴欢涛, 曹苓玉, 游新秀, 徐浩亮, 汪涛, 项玮, 张学杨. 木质素浸渍柚子皮生物炭吸附CO2特性[J]. 化工进展, 2023, 42(S1): 356-363. |
[10] | 张杰, 白忠波, 冯宝鑫, 彭肖林, 任伟伟, 张菁丽, 刘二勇. PEG及其复合添加剂对电解铜箔后处理的影响[J]. 化工进展, 2023, 42(S1): 374-381. |
[11] | 许家珩, 李永胜, 罗春欢, 苏庆泉. 甲醇水蒸气重整工艺的优化[J]. 化工进展, 2023, 42(S1): 41-46. |
[12] | 孙玉玉, 蔡鑫磊, 汤吉海, 黄晶晶, 黄益平, 刘杰. 反应精馏合成甲基丙烯酸甲酯工艺优化及节能[J]. 化工进展, 2023, 42(S1): 56-63. |
[13] | 刘炫麟, 王驿凯, 戴苏洲, 殷勇高. 热泵中氨基甲酸铵分解反应特性及反应器结构优化[J]. 化工进展, 2023, 42(9): 4522-4530. |
[14] | 罗成, 范晓勇, 朱永红, 田丰, 崔楼伟, 杜崇鹏, 王飞利, 李冬, 郑化安. 中低温煤焦油加氢反应器不同分配器中液体分布的CFD模拟[J]. 化工进展, 2023, 42(9): 4538-4549. |
[15] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |