化工进展 ›› 2019, Vol. 38 ›› Issue (07): 3097-3110.DOI: 10.16085/j.issn.1000-6613.2018-2347
石宁1(),唐文勇2,唐石云1,葛武杰1,刘云花1,黄伦昌1
收稿日期:
2018-12-03
出版日期:
2019-07-05
发布日期:
2019-07-05
作者简介:
信作者:石宁(1987—),男,博士,副教授,研究方向为生物质资源高值化利用。E-mail:<email>shining@git.edu.cn</email>。
基金资助:
Ning SHI1(),Wenyong TANG2,Shiyun TANG1,Wujie GE1,Yunhua LIU1,Lunchang HUANG1
Received:
2018-12-03
Online:
2019-07-05
Published:
2019-07-05
摘要:
液态烷烃C5+是汽油、柴油、航空燃油等当前社会的运输燃料的主要成分。本文综述了利用木质纤维素衍生平台化学品制备液体燃料的研究进展,着重总结了生物质衍生平台化学品通过碳链增长得到长链含氧化合物,然后经过加氢脱氧(HDO)得到C7+液体烷烃的技术研究进展。木质纤维素衍生平台化学品包括山梨醇、糠醛、5-羟甲基糠醛(HMF)、环戊酮、甲基呋喃、酚类、丙酮、丁醇、乙醇、乙酰丙酸、γ-戊内酯等。其中,糠醛、5-羟甲基糠醛和环戊酮在碱性催化剂作用下能与其他羰基化合物发生羟醛缩合反应实现碳链增长;甲基呋喃、苯类及苯酚类衍生物可以在强酸催化作用下通过烷基化/羟烷基化反应实现碳链增长;丙酮能与乙醇、丁醇发生α-烷基化反应实现碳链增长;乙酰丙酸可以转化为戊酸、丁烯或当归内酯,再分别通过酮基化反应、烯烃齐聚反应和加成反应实现碳链增长。诸多利用生物质衍生物化学品制备长链烷烃的路径中,利用5-羟甲基糠醛和甲基呋喃制备长链烷烃的技术路线存在路径过长、原料不易获取的问题;利用环戊酮和苯酚类物质能够得到高密度长链环烷烃,是一条有竞争力的路线;糠醛和乙酰丙酸易于从生物质中大规模制取,且利用糠醛和乙酰丙酸制备长链烷烃的反应路径短,较易实现工业应用。
中图分类号:
石宁, 唐文勇, 唐石云, 葛武杰, 刘云花, 黄伦昌. 木质纤维素衍生平台化学品制备液态烷烃的研究进展[J]. 化工进展, 2019, 38(07): 3097-3110.
Ning SHI, Wenyong TANG, Shiyun TANG, Wujie GE, Yunhua LIU, Lunchang HUANG. Advances in the catalytic conversion of lignocellulosic derived platform chemicals into liquid alkanes[J]. Chemical Industry and Engineering Progress, 2019, 38(07): 3097-3110.
1 | DE S, SAHAB, LUQUER. Hydrodeoxygenation processes: advances on catalytic transformations of biomass-derived platform chemicals into hydrocarbon fuels[J]. Bioresoure Technology, 2015, 178: 108-118. |
2 | BOHREA, DUTTAS, SAHAB, et al. Upgrading furfurals to drop-in biofuels: an overview[J]. ACS Sustainable Chemistry & Engineering, 2015, 3: 1263-1277. |
3 | HUBERG W, DUMESICJ A. An overview of aqueous-phase catalytic processes for production of hydrogen and alkanes in a biorefinery[J]. Catalysis Today, 2006, 111(1/2): 119-132. |
4 | CHHEDAJ N, HUBERG W, DUMESICJ A. Liquid-phase catalytic processing of biomass-derived oxygenated hydrocarbons to fuels and chemicals[J]. Angewandte Chemie: International Edition, 2007, 46(38): 7164-7183. |
5 | KUNKESE L, SIMONETTID A, WESTR M, et al. Catalytic conversion of biomass to monofunctional hydrocarbons and targeted liquid-fuel classes[J]. Science, 2008, 322(5900): 417-421. |
6 | HANJ, SEN S M, ALONSOD M, et al. A strategy for the simultaneous catalytic conversion of hemicellulose and cellulose from lignocellulosic biomass to liquid transportation fuels[J]. Green Chemistry, 2014, 16: 653-661. |
7 | BOZELLJ J. Connecting biomass and petroleum processing with a chemical bridge[J]. Science, 2010, 329(5991): 522-523. |
8 | DUMESICJ A, HUBERG W, CHHEDAJ N, et al. Production of liquid alkanes by aqueous-phase processing of biomass-derived carbohydrates[J]. Science, 2005, 308(5727): 1446-1450. |
9 | 石宁, 刘琪英, 王铁军, 等. 一步催化转化纤维素制备化学品的研究进展[J]. 新能源进展, 2014, 2(4): 245-253. |
SHIN, LIUQ Y, WANGT J, et al. Progress in one-pot catalytic transformation of cellulose into valuable chemicals[J]. Advances in New and Renewable Energy, 2014, 2(4): 245-253. | |
10 | YANK, WUG S, LAFLEURT, et al. Production, properties and catalytic hydrogenation of furfural to fuel additives and value-added chemicals[J]. Renewable & Sustainable Energy Reviews, 2014, 38: 663-676. |
11 | WESTR M, LIUZ Y, PETERM, et al. Carbon-carbon bond formation for biomass-derived furfurals and ketones by aldol condensation in a biphasic system[J]. Journal of Molecular Catalysis A: Chemical, 2008, 296(1/2): 18-27. |
12 | FUKUOKAA, DHEPEP L. Catalytic conversion of cellulose into sugar alcohols[J]. Angewandte Chemie: International Edition, 2006, 45(31): 5161-5163. |
13 | SHROTRIA, KOBAYASHIH, FUKUOKAA. Cellulose depolymerization over heterogeneous catalysts[J]. Accounts of Chemical Research, 2018, 51(3): 761-768. |
14 | ZHANGJ, LIJ B, WUS B, et al. Advances in the catalytic production and utilization of sorbitol[J]. Industrial & Engineering Chemistry Research, 2013, 52(34): 11799-11815. |
15 | BEECK B ODE, DUSSELIERM, GEBOERSJ, et al. Direct catalytic conversion of cellulose to liquid straight-chain alkanes[J]. Energy & Environmental Science, 2015, 8(1): 230-240. |
16 | 陈伦刚, 刘勇, 张兴华, 等. 纤维素催化转化制备C5/C6烷烃燃料的反应与催化体系的研究进展[J]. 林产化学与工业, 2017, 37(2): 22-34. |
CHENL G, LIUY, ZHANGX H, et al. Progress on reaction and catalyst for production of C5/C6 alkane fuels from cellulose by catalytic conversion[J]. Chemistry and Industry of Forest Products, 2017, 37(2): 22-34. | |
17 | HUBERG W, CORTRIGHTR D, DUMESICJ A. Renewable alkanes by aqueous-phase reforming of biomass-derived oxygenates[J]. Angewandte Chemie: International Edition, 2004, 43(12): 1549-1551. |
18 | WESTR M, TUCKERM H, BRADEND J, et al. Production of alkanes from biomass derived carbohydrates on bi-functional catalysts employing niobium-based supports[J]. Catalysis Communications, 2009, 10(13): 1743-1746. |
19 | LIN, TOMPSETTG A, HUBERG W. Renewable high-octane gasoline by aqueous-phase hydrodeoxygenation of C5 and C6 carbohydrates over Pt/zirconium phosphate catalysts[J]. ChemSusChem, 2010, 3(10): 1154-1157. |
20 | ZHANGQ, JIANGT, LIB, et al. Highly selective sorbitol hydrogenolysis to liquid alkanes over Ni/HZSM-5 catalysts modified with pure silica MCM-41[J]. ChemCatChem, 2012, 4(8): 1084-1087. |
21 | ZHANGQ, WANGT, XUY, et al. Production of liquid alkanes by controlling reactivity of sorbitol hydrogenation with a Ni/HZSM-5 catalyst in water[J]. Energy Conversion and Management, 2014, 77: 262-268. |
22 | VILCOCQL, CABIACA, ESPECELC, et al. New insights into the mechanism of sorbitol transformation over an original bifunctional catalytic system[J]. Journal of Catalysis, 2014, 320: 16-25. |
23 | LIN, HUBERG W. Aqueous-phase hydrodeoxygenation of sorbitol with Pt/SiO2-Al2O3: identification of reaction intermediates[J]. Journal of Catalysis, 2010, 270(1): 48-59. |
24 | CHENK, TAMURAM, YUANZ, et al. One-pot conversion of sugar and sugar polyols to n-alkanes without C-C Dissociation over the Ir-ReOx /SiO2 catalyst combined with H-ZSM-5[J]. ChemSusChem, 2013, 6(4): 613-621. |
25 | LIUS, TAMURAM, NAKAGAWAY, et al. One-pot conversion of cellulose into n-hexane over the Ir-ReOxSiO2 catalyst combined with HZSM-5[J]. ACS Sustainable Chemistry & Engineering, 2014, 2(7): 1819–1827. |
26 | MURATAK, LIUY, INABAM, et al. Hydrocracking of biomass-derived materials into alkanes in the presence of platinum-based catalyst and hydrogen[J]. Catalysis Letters, 2010, 140: 8-13. |
27 | CLIMENTM J, CORMAA, IBORRAS. Conversion of biomass platform molecules into fuel additives and liquid hydrocarbon fuels[J]. Green Chemistry, 2014, 16(2): 516-547. |
28 | NAKAGAWAY, LIUS, TAMURAM, et al. Catalytic total hydrodeoxygenation of biomass-derived polyfunctionalized substrates to alkanes[J]. ChemSusChem, 2015, 8(7): 1114-1132. |
29 | 谢嘉维, 张香文, 谢君健, 等. 由生物质合成高密度喷气燃料[J]. 化学进展, 2018, 30(9): 1424 -1433. |
XIEJ W, ZHANGX W, XIEJ J, et al. Synthesis of high-density jet fuels from biomass[J]. Progress in Chemistry, 2018, 30(9): 1424 -1433. | |
30 | 闫少康, 孙绍晖, 马春松, 等. 生物质基含氧化合物化学催化法制备长链烷烃的研究进展[J]. 化工进展, 2016, 35(5): 1377-1386. |
YANS K, SUNS H, MA C S, et al. Advances on chemocatalytic transformation of biomass-derived oxygenated compounds into long-chain hydrocarbons[J]. Chemical Industry and Engineering Progress, 2016, 35(5): 1377-1386. | |
31 | MAMMANA S, LEE J M, KIM Y C, et al. Furfural: Hemicellulose/xylosederived biochemical[J]. Biofuels Bioproducts & Biorefining, 2008, 2(5): 438-454. |
32 | ROSATELLAA A, SIMEONOVS P, FRADER F M, et al. 5-Hydroxymethylfurfural (HMF) as a building block platform: Biological properties, synthesis and synthetic applications[J]. Green Chemistry, 2011, 13(4): 754-793. |
33 | SAHAB, ABU-OMARM M. Advances in 5-hydroxymethylfurfural production from biomass in biphasic solvents[J]. Green Chemistry, 2014, 16(1): 24-38. |
34 | DUTTAS, PAL S. Promises in direct conversion of cellulose and lignocellulosic biomass to chemicals and fuels: combined solvent-nanocatalysis approach for biorefinary[J]. Biomass & Bioenergy, 2014, 62: 182-197. |
35 | KUCHEROVF A, ROMASHOVL V, GALKINK I, et al. Chemical transformations of biomass-derived C6-furanic platform chemicals for sustainable energy research, materials science, and synthetic building blocks[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(7): 8064-8092. |
36 | WESTR M, LIUZ Y, PETERM, et al. Liquid alkanes with targeted molecular weights from biomass-derived carbohydrates[J]. ChemSusChem, 2008, 1(5): 417-424. |
37 | XINGR, SUBRAHMANYAMA V, OLCAYH, et al. Production of jet and diesel fuel range alkanes from waste hemicellulose-derived aqueous solutions[J]. Green Chemistry, 2010, 12(11): 1933-1946. |
38 | FABAL, DÍAZE, ORDÓÑEZS. Aqueous-phase furfural-acetone aldol condensation over basic mixed oxides[J]. Applied Catalysis B: Environmental, 2012, 113/114: 201–211. |
39 | SADABAI, OJEDAM, MARISCALR, et al. Catalytic and structural properties of co-precipitated Mg-Zr mixed oxides for furfural valorization via aqueous aldol condensation with acetone[J]. Applied Catalysis B: Environmental, 2011, 101(3/4): 638-648. |
40 | FABAL, DÍAZE, ORDÓÑEZS. Performance of bifunctional Pd/MxNyO (M= Mg, Ca; N= Zr, Al) catalysts for aldolization–hydrogenation of furfural–acetone mixtures[J]. Catalysis Today, 2011, 164(1): 451–456. |
41 | FABAL, DIAZE, ORDÓÑEZS. One-pot aldol condensation and hydrodeoxygenation of biomass-derived carbonyl compounds for biodiesel synthesis[J]. ChemSusChem, 2014, 7(10): 2816-2820. |
42 | FABAL, DIAZE, ORDÓÑEZS. Improvement on the catalytic performance of Mg-Zr mixed oxides for furfural-acetone aldol condensation by supporting on mesoporous carbons[J]. ChemSusChem, 2013, 6(3): 463-473. |
43 | BARRETTC J, CHHEDAJ N, HUBERG W, et al. Single-reactor process for sequential aldol-condensation and hydrogenation of biomass-derived compounds in water[J]. Applied Catalysis B: Environmental, 2006, 66(1/2): 111-118. |
44 | XUW J, LIUX H, RENJ W, et al. A novel mesoporous Pd/cobalt aluminate bifunctional catalyst for aldol condensation and following hydrogenation[J]. Catalysis Communications, 2010, 11(8): 721-726. |
45 | XIAQ N, CUANQ, LIUX H, et al. Pd/NbOPO4 multifunctional catalyst for the direct production of liquid alkanes from aldol adducts of furans[J]. Angewandte Chemie: International Edition, 2014, 53(37): 9755-9760. |
46 | YANGJ F, LIN, LIS S, et al. Synthesis of diesel and jet fuel range alkanes with furfural and ketones from lignocellulose under solvent free conditions[J]. Green Chemistry, 2014, 16(12): 4879-4884. |
47 | YANGJ F, LIN, LIG Y, et al. Solvent-free synthesis of C10 and C11 branched alkanes from furfural and methyl isobutyl ketone[J]. ChemSusChem, 2013, 6(7): 1149-1152. |
48 | PHOLJAROENB, LIN, YANGJ F, et al. Production of renewable jet fuel range branched alkanes with xylose and methyl isobutyl ketone[J]. Industrial & Engineering Chemistry Research, 2014, 53(35): 13618-13625. |
49 | LIANGG, WANGA, ZHAOX, et al. Selective aldol condensation of biomass-derived levulinic acid and furfural in aqueous-phase over MgO and ZnO[J]. Green Chemistry, 2016, 18: 3430-3438. |
50 | XUJ L, LIL, LIG Y, et al. Synthesis of renewable C8–C10 alkanes with angelica lactone and furfural from carbohydrates[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(5): 6126-6134. |
51 | 马隆龙, 石宁, 王铁军, 等. 一种利用糠醛类化合物与环酮制备C10~C18长链环烷烃的方法: CN201410226059.2[P]. 2014-09-17. |
MA L L, SHIN, WANGT J, et al. One method for preparing C10-C18 long-chain cycloalkanes from furfural compounds and cycloketones: CN201410226059.2[P]. 2014-09-17. | |
52 | LIUQ, ZHANGC, SHIN, et al. Production of renewable long-chained cycloalkanes from biomass-derived furfurals and cyclic ketones[J]. RSC Advances, 2018, 8(25): 13686-13696. |
53 | HRONECM, FULAJTAROVAK. Selective transformation of furfural to cyclopentanone[J]. Catalysis Communications, 2012, 24: 100-104. |
54 | HRONECM, FULAJTAROVAK, LIPTAJT. Effect of catalyst and solvent on the furan ring rearrangement to cyclopentanone[J]. Applied Catalysis A: General, 2012, 437: 104-111. |
55 | HRONECM, FULAJTAROVAK, MICUSIKM. Influence of furanic polymers on selectivity of furfural rearrangement to cyclopentanone[J]. Applied Catalysis A: General, 2013, 468: 426-431. |
56 | YANGJ F, LIN, LIG Y, et al. Synthesis of renewable high-density fuels using cyclopentanone derived from lignocellulose[J]. Chemical Communications, 2014, 50(20): 2572-2574. |
57 | YANGJ, LIS, LIN, et al. Synthesis of jet-fuel range cycloalkanes from the mixtures of cyclopentanone and butanal[J]. Industrial & Engineering Chemistry Research, 2015, 54(47): 11825-11837. |
58 | WANGW, LIN, LIG, et al. Synthesis of renewable high-density fuel with cyclopentanone derived from hemicellulose[J]. ACS Sustainable Chemistry & Engineering, 2017, 5: 1812-1817. |
59 | CORMAA, TORRE ODE LA, RENZM. High-quality diesel from hexose- and pentose-derived biomass platform molecules[J]. ChemSusChem, 2011, 4(11): 1574-1577. |
60 | CORMAA, TORRE ODE LA, RENZM, et al. Production of high-quality diesel from biomass waste products[J]. Angewandte Chemie:International Edition, 2011, 50(10): 2375-2378. |
61 | CORMAA, TORRE ODE LA, RENZM. Production of high quality diesel from cellulose and hemicellulose by the Sylvan process: catalysts and process variables[J]. Energy & Environmental Science, 2012, 5(4): 6328-6344. |
62 | LIS S, LIN, LIG Y, et al. Synthesis of diesel range alkanes with 2-methylfuran and mesityl oxide from lignocellulose[J]. Catalysis Today, 2014, 234: 91-99. |
63 | LIG Y, LIN, WANGX K, et al. Synthesis of diesel or jet fuel range cycloalkanes with 2-methylfuran and cyclopentanone from lignocellulose[J]. Energy & Fuels, 2014, 28(8): 5112-5118. |
64 | LIG Y, LIN, LIS S, et al. Synthesis of renewable diesel with hydroxyacetone and 2-methyl-furan[J]. Chemical Communications, 2013, 49(51): 5727-5729. |
65 | LIG Y, LIN, WANGZ Q, et al. Synthesis of high-quality diesel with furfural and 2-methylfuran from hemicellulose[J]. ChemSusChem, 2012, 5(10): 1958-1966. |
66 | LIG Y, LIN, YANGJ F, et al. Synthesis of renewable diesel with the 2-methylfuran, butanal and acetone derived from lignocellulose[J]. Bioresource Technology, 2013, 134: 66-72. |
67 | WANGW, LIN, LIS S, et al. Synthesis of renewable diesel with 2-methylfuran and angelica lactone derived from carbohydrates[J]. Green Chem., 2016, 18: 1218-1223. |
68 | LIG Y, LIN, YANGJ F, et al. Synthesis of renewable diesel range alkanes by hydrodeoxygenation of furans over Ni/Hβ under mild conditions[J]. Green Chemistry, 2014, 16(2): 594-599. |
69 | DENGQ, HANP, XUJ, et al. Highly controllable and selective hydroxyalkylation alkylation of 2-methylfuran with cyclohexanone for synthesis of high-density biofuel[J]. Chemical Engineering Science, 2015, 138: 239-243. |
70 | LIS S, LIN, LIG Y, et al. Protonated titanate nanotubes as a highly active catalyst for the synthesis of renewable diesel and jet fuel range alkanes[J]. Applied Catalysis B: Environmental, 2015, 170-171: 124–134. |
71 | ZHANGX, DENGQ, HANP, et al. Hydrophobic mesoporous acidic resin for hydroxyalkylation/alkylation of 2‐methylfuran and ketone to high‐density biofuel[J]. AIChE Journal, 2017, 63(2): 680-688. |
72 | ZHAOC, CAMAIONID M, LERCHERJ A. Selective catalytic hydroalkylation and deoxygenation of substituted phenols to bicycloalkanes[J]. Journal of Catalysis, 2012, 288 92-103. |
73 | LIC, ZHAOX, WANGA, et al. Catalytic transformation of lignin for the production of chemicals and fuels[J]. Chemical Reviews, 2015, 115(21): 11559-11624. |
74 | CHENGF, BREWERC E. Producing jet fuel from biomass lignin: Potential pathways to alkyl-benzenes and cycloalkanes[J]. Renewable and Sustainable Energy Reviews, 2017, 72: 673-722. |
75 | ZHOUX Y, RAUCHFUSST B. Production of hybrid diesel fuel precursors from carbohydrates and petrochemicals using formic acid as a reactive solvent[J]. ChemSusChem, 2013, 6(2): 383-388. |
76 | ARIASK S, CLIMENTM J, CORMAA, et al. Synthesis of high quality alkyl naphthenic kerosene by reacting oil refinery with biomass refinery stream[J]. Energy & Environmental Science, 2015, 8: 317-331. |
77 | NIEG K, ZHANGX W, HANP J, et al. Lignin-derived multi-cyclic high density biofuel by alkylation and hydrogenated intramolecular cyclization[J]. Chemical Engineering Science, 2017, 158: 64–69. |
78 | ANBARASANP, BAERZ C, SREEKUMARS, et al. Integration of chemical catalysis with extractive fermentation to produce fuels[J]. Nature, 2012, 491(7423): 235-239. |
79 | XUG, LIQ, FENGJ, et al. Direct alpha-alkylation of ketones with alcohols in water[J]. ChemSusChem, 2014, 7(1): 105-109. |
80 | WANGY, PENGM, ZHANGJ, et al. Selective production of phase-separable product from a mixture of biomass-derived aqueous oxygenates[J]. Nature Communications, 2018, 9(1): 5183. |
81 | KANGS, FUJ, ZHANGG. From lignocellulosic biomass to levulinic acid: a review on acid-catalyzed hydrolysis[J]. Renewable and Sustainable Energy Reviews, 2018, 94: 340-362. |
82 | 丁爽, 葛庆峰, 祝新利. 金属氧化物催化生物质衍生羧酸酮基化研究进展[J]. 化学学报, 2017, 75: 439-447. |
DINGS, GEQ F, ZHUX L. Research progress in ketonization of biomass-derived carboxylic acids over metal oxides[J]. Acta Chimica Sinica, 2017, 75: 439-447. | |
83 | GAERTNERC A,SERRANO-RUIZJ C, BRADEND J, et al. Catalytic coupling of carboxylic acids by ketonization as a processing step in biomass conversion[J]. Journal of Catalysis, 2009, 266(1): 71-78. |
84 | SERRANO-RUIZJ C, WANGD, DUMESICJ A. Catalytic upgrading of levulinic acid to 5-nonanone[J]. Green Chemistry, 2010, 12(4): 574-577. |
85 | SERRANO-RUIZJ C, BRADEND J, WESTR M, et al. Conversion of cellulose to hydrocarbon fuels by progressive removal of oxygen[J]. Applied Catalysis B: Environmental, 2010, 100(1/2): 184-189. |
86 | ALONSOD M, BONDJ Q, SERRANO-RUIZJ C, et al. Production of liquid hydrocarbon transportation fuels by oligomerization of biomass-derived C9 alkenes[J]. Green Chem., 2010, 12: 992-999. |
87 | BONDJ Q, ALONSOD M, WANGD, et al. Integrated catalytic conversion of γ-valerolactone to liquid alkenes for transportation fuels[J]. Science, 2010, 327(5969): 1110-1114. |
88 | HARVEYB G, QUINTANAR L. Synthesis of renewable jet and diesel fuels from 2-ethyl-1-hexene[J]. Energy & Environmental Science, 2010, 3: 352-357. |
89 | LIMAC G S, MONTEIROJ L, MELO LIMA TDE, et al. Angelica lactones: from biomass-derived platform chemicals to value-added products[J]. ChemSusChem, 2018, 11(1): 25-47. |
90 | MASCALM, DUTTAS, GANDARIASI. Hydrodeoxygenation of the angelica lactone dimer, a cellulose-based feedstock: simple, high-yield synthesis of branched C7-C10 gasoline-like hydrocarbons[J]. Angewandte Chemie: International Edition, 2014, 53(7): 1854-1857. |
91 | XINJ, ZHANGS, YAND, et al. Formation of C-C bonds for the production of bio-alkanes under mild conditions[J]. Green Chemistry, 2014, 16: 3589-3595. |
92 | AYODELEO O, DAWODUF A, YAND, et al. Catalytic synthesis of renewable hydrocarbons via hydrodeoxygenation of angelica lactone ditrimers[J]. Fuel, 2018, 221: 311-319. |
93 | AYODELEO O, DAWODUF A, YAND, et al. Hydrodeoxygenation of angelica lactone dimers and trimers over silica-alumina supported nickel catalyst[J]. Renewable Energy, 2016, 86: 943-948. |
[1] | 王帅晴, 杨思文, 李娜, 孙占英, 安浩然. 元素掺杂生物质炭材料在电化学储能中的研究进展[J]. 化工进展, 2023, 42(8): 4296-4306. |
[2] | 吴亚, 赵丹, 方荣苗, 李婧瑶, 常娜娜, 杜春保, 王文珍, 史俊. 用于复杂原油乳液的高效破乳剂开发及应用研究进展[J]. 化工进展, 2023, 42(8): 4398-4413. |
[3] | 郑梦启, 王成业, 汪炎, 王伟, 袁守军, 胡真虎, 何春华, 王杰, 梅红. 菌藻共生技术在工业废水零排放中的应用与展望[J]. 化工进展, 2023, 42(8): 4424-4431. |
[4] | 关红玲, 杨辉, 井红权, 刘玉琼, 谷守玉, 王好斌, 侯翠红. 木质素基控释材料及其在药物输送和肥料控释中的应用[J]. 化工进展, 2023, 42(7): 3695-3707. |
[5] | 于丁一, 李圆圆, 王晨钰, 纪永升. pH响应性木质素水凝胶的制备及药物控释[J]. 化工进展, 2023, 42(6): 3138-3146. |
[6] | 吴锋振, 刘志炜, 谢文杰, 游雅婷, 赖柔琼, 陈燕丹, 林冠烽, 卢贝丽. 生物质基铁/氮共掺杂多孔炭的制备及其活化过一硫酸盐催化降解罗丹明B[J]. 化工进展, 2023, 42(6): 3292-3301. |
[7] | 吴和平, 曹宁, 徐圆圆, 曹云波, 李裕东, 杨强, 卢浩. 氢氟酸与烷基化油快速分离[J]. 化工进展, 2023, 42(6): 2845-2853. |
[8] | 王雪, 徐期勇, 张超. 木质纤维素类生物质水热炭化机理及水热炭应用进展[J]. 化工进展, 2023, 42(5): 2536-2545. |
[9] | 王志伟, 郭帅华, 吴梦鸽, 陈颜, 赵俊廷, 李辉, 雷廷宙. 生物质与塑料催化共热解技术研究进展[J]. 化工进展, 2023, 42(5): 2655-2665. |
[10] | 刘静, 林琳, 张健, 赵峰. 生物质基炭材料孔径调控及电化学性能研究进展[J]. 化工进展, 2023, 42(4): 1907-1916. |
[11] | 万茂华, 张小红, 安兴业, 龙垠荧, 刘利琴, 管敏, 程正柏, 曹海兵, 刘洪斌. MXene在生物质基储能纳米材料领域中的应用研究进展[J]. 化工进展, 2023, 42(4): 1944-1960. |
[12] | 杨自强, 李风海, 郭卫杰, 马名杰, 赵薇. 市政污泥热处理过程中磷迁移转化的研究进展[J]. 化工进展, 2023, 42(4): 2081-2090. |
[13] | 邢献军, 罗甜, 卜玉蒸, 马培勇. H3PO4活化核桃壳制备活性炭及在Cr(Ⅵ)吸附中的应用[J]. 化工进展, 2023, 42(3): 1527-1539. |
[14] | 郑云武, 裴涛, 李冬华, 王继大, 李继容, 郑志锋. 金属氧化物活化P/HZSM-5催化生物质热解气重整制备富烃生物油[J]. 化工进展, 2023, 42(3): 1353-1364. |
[15] | 宋叶, 陈玉卓, 宋云彩, 冯杰. 有机固废合成气原位净化催化剂设计及反应器分析[J]. 化工进展, 2023, 42(3): 1383-1396. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |