化工进展 ›› 2019, Vol. 38 ›› Issue (07): 3088-3096.DOI: 10.16085/j.issn.1000-6613.2018-1983
王海英1,2(),韩洪晶1,2,宋华1,2,孙恩浩3,张亚男1,2,陈彦广1,2(),赵宏志1,2,李金鑫1,2,康越1,2
收稿日期:
2018-10-08
出版日期:
2019-07-05
发布日期:
2019-07-05
通讯作者:
陈彦广
作者简介:
王海英(1990—),女,博士研究生,研究方向为催化材料合成及生物质资源化利用。E-mail:<email>wanghaiying1990@126.com</email>。
基金资助:
Haiying WANG1,2(),Hongjing HAN1,2,Hua SONG1,2,Enhao SUN3,Yanan ZHANG1,2,Yanguang CHEN1,2(),Hongzhi ZHAO1,2,Jinxin LI1,2,Yue KANG1,2
Received:
2018-10-08
Online:
2019-07-05
Published:
2019-07-05
Contact:
Yanguang CHEN
摘要:
木质素是世界第二大可再生生物质资源,实现木质素的资源化、高值化利用对国民经济发展具有重要意义。木质素热解因具有成本低廉、操作简单、可获得高附加值产品等优点受到了学者的广泛关注。本文综述了β-O-4、α-O-4、β-5等木质素模型化合物的热解机理,比较了模型化合物中不同种类连接键断裂的难易程度及生成产物的区别;概述了木质素热解过程的特性、影响因素及产物分布规律,阐述了催化剂对热解过程的影响,尤其是金属盐类和分子筛对热解产物组成的影响规律和催化作用机制,详细介绍了木质素热解制备酚类化学品和生物油的关键控制因素及产品特点;针对现有木质素热解技术存在的机理不明确、目标产物选择性低、产物提纯困难等问题,对探索热解机理、开发新型催化剂及生产工艺、提高经济效益等发展方向进行了展望,为木质素资源化利用提供了理论基础。
中图分类号:
王海英, 韩洪晶, 宋华, 孙恩浩, 张亚男, 陈彦广, 赵宏志, 李金鑫, 康越. 木质素及其模型化合物热解研究进展[J]. 化工进展, 2019, 38(07): 3088-3096.
Haiying WANG, Hongjing HAN, Hua SONG, Enhao SUN, Yanan ZHANG, Yanguang CHEN, Hongzhi ZHAO, Jinxin LI, Yue KANG. Progress in pyrolysis of lignin and its model compounds[J]. Chemical Industry and Engineering Progress, 2019, 38(07): 3088-3096.
模型化合物 | 化学键 变化 | ΔE /kJ·mol-1 | 主要产物 | 参考文献 |
---|---|---|---|---|
| Cβ―O 均裂 | 221.4 | , | [ |
Cα―Cβ 均裂 | 259.3 | ,,含羰基类物质 | ||
Cβ―O 协同反应 | 264.4 | ,,小分子产物 | ||
| Cβ―O 均裂 | 245.3 | ,,,, | [ |
Cα―Cβ 均裂 | 259.2 | ,,,,, | ||
协同反应 | >300 | ,,,CH2O,CH4 | ||
| Cβ―O 裂解 | 228.0 | ,,,CH3CH2OH | [ |
Cα―Cβ 裂解 | 241.1 | ,,CH3CH2OH | ||
| Cβ―O 均裂 | 230.6 | ,,,,,C2H2 | [ |
Cα―Cβ 均裂 | 292.5 | — | ||
协同反应 1 | 247.6 | ,, | ||
协同反应 2 | 274.8 | ,,,,H2C=CHOH |
表1 常见β-O-4型模型化合物初次裂解的化学键变化、ΔE和主要产物
模型化合物 | 化学键 变化 | ΔE /kJ·mol-1 | 主要产物 | 参考文献 |
---|---|---|---|---|
| Cβ―O 均裂 | 221.4 | , | [ |
Cα―Cβ 均裂 | 259.3 | ,,含羰基类物质 | ||
Cβ―O 协同反应 | 264.4 | ,,小分子产物 | ||
| Cβ―O 均裂 | 245.3 | ,,,, | [ |
Cα―Cβ 均裂 | 259.2 | ,,,,, | ||
协同反应 | >300 | ,,,CH2O,CH4 | ||
| Cβ―O 裂解 | 228.0 | ,,,CH3CH2OH | [ |
Cα―Cβ 裂解 | 241.1 | ,,CH3CH2OH | ||
| Cβ―O 均裂 | 230.6 | ,,,,,C2H2 | [ |
Cα―Cβ 均裂 | 292.5 | — | ||
协同反应 1 | 247.6 | ,, | ||
协同反应 2 | 274.8 | ,,,,H2C=CHOH |
相同点 | 不同点 |
---|---|
①在初次裂解时,侧链的烷基醚键最先断裂,然后是Cα―Cβ键的断裂,而其他链接键的断裂则相对较难 ②可能的最终产物都是苯酚及其取代物,且都伴随有小分子生成 | ①生成的小分子物质的种类往往有很大差别 ②β-O-4型模型化合物的热解产物中可出现对位取代基中含有不饱和羰基的物质,在α-O-4型模型化合物的热解产物中很少出现 |
表2 α-O-4与β-O-4型模型化合物在热解过程中的异同点[21]
相同点 | 不同点 |
---|---|
①在初次裂解时,侧链的烷基醚键最先断裂,然后是Cα―Cβ键的断裂,而其他链接键的断裂则相对较难 ②可能的最终产物都是苯酚及其取代物,且都伴随有小分子生成 | ①生成的小分子物质的种类往往有很大差别 ②β-O-4型模型化合物的热解产物中可出现对位取代基中含有不饱和羰基的物质,在α-O-4型模型化合物的热解产物中很少出现 |
1 | JIANG W , WU S , LUCIA L A , et al . Effect of side-chain structure on hydrothermolysis of lignin model compounds[J]. Fuel Processing Technology, 2017, 166: 124-130. |
2 | XI Y , YANG D , QIU X , et al . Renewable lignin-based carbon with a remarkable electrochemical performance from potassium compound activation[J]. Industrial Crops & Products, 2018, 124: 747-754. |
3 | 樊荻, 解新安, 李璐, 等 . β-O-4型木质素二聚体模型化合物热解机理及产物选择性理论[J]. 化工进展, 2017, 36(12): 4436-4444. |
FAN Di , XIE Xin’an , LI Lu , et al . Theoretical study on pyrolysis and product selectivity of β-O-4 type lignin dimer model[J]. Chemical Industry and Engineering Progress, 2017, 36(12): 4436-4444. | |
4 | 陈磊, 陈汉平, 陆强, 等 . 木质素结构及热解特性[J]. 化工学报, 2014, 65(9): 3626-3633. |
CHEN Lei , CHEN Hanping , LU Qiang , et al . Characterization of structure and pyrolysis behavior of lignin[J]. CIESC Journal, 2014, 65(9): 3626-3633. | |
5 | ZAKZESKI J , BRUIJNINCX P C A , JONGERIUS A L , et al . The catalytic valorization of lignin for the production of renewable chemicals[J]. Chemical Reviews, 2010, 110: 3552-3599. |
6 | RÍO J C D , LINO A G , COLODETTE J L , et al . Differences in the chemical structure of the lignins from sugarcane bagasse and straw[J]. Biomass and Bioenergy, 2015, 81: 322-338. |
7 | 刘玉环, 涂春明, 王允圃, 等 . 木质素模型化合物的裂解工艺及机理的研究进展[J]. 高分子通报, 2016, 6: 78-83. |
LIU Y H , TU C M , WANG Y P , et al . Progress of research on the pyrolysis process and mechanism of lignin model compounds[J]. Polymer Bulletin, 2016, 6: 78-83. | |
8 | MONEDERO B G , RUIZ M P , BIMBELA F , et al . Selective hydrogenolysis of α-O-4, β-O-4, 4-O-5 C-O bonds of ligninmodel compounds and lignin-containing stillage derived from cellulosic bioethanol processing[J]. Applied Catalysis A: General, 2017, 541: 60-76. |
9 | 曹双瑜, 胡文冉, 范玲 . 木质素结构及分析方法的研究进展[J]. 高分子通报, 2012, 3: 8-13. |
CAO S Y , HU W R , FAN L . Progress in the structure of lignin and its analyzing methods[J]. Polymer Bulletin, 2012, 3: 8-13. | |
10 | HUANG X , LIU C , HUANG J , et al . Theory studies on pyrolysis mechanism of phenethyl phenyl ether[J]. Computational and Theoretical Chemistry, 2011, 976: 51-59. |
11 | CHEN L , YE X , LUO F , et al . Pyrolysis mechanism of β-O-4 type lignin model dimer[J]. Journal of Analytical and Applied Pyrolysis, 2015, 115: 103-111. |
12 | HUANG J , LIU C , WU D , et al . Density functional theory studies on pyrolysis mechanism of β-O-4 type lignin dimer model compound[J]. Journal of Analytical and Applied Pyrolysis, 2014, 109: 98-108. |
13 | 黄金保, 武书彬, 雷鸣, 等 . 木质素二聚体模型化合物热解机理的量子化学研究[J]. 燃料化学学报, 2015, 43(11): 1334-1343. |
HUANG Jinbao , WU Shubin , LEI Ming , et al . Quantum chemistry study on pyrolysis mechanism of lignin dimer model compound[J]. Journal of Fuel Chemistry and Technology, 2015, 43(11): 1334-1343. | |
14 | JIANG W , WU S , LUCIA L A , et al . A comparison of the pyrolysis behavior of selected β-O-4 type lignin model compounds[J]. Journal of Analytical and Applied Pyrolysis, 2017, 125: 185-192. |
15 | JIANG W , CHU J , WU S , et al . Modeling pyrolytic behavior of pre-oxidized lignin using four representative β-ether-type lignin-like model polymers[J]. Fuel Processing Technology, 2018, 176: 221-229. |
16 | 蒋晓燕, 陆强, 胡斌, 等 . 碱金属对木质素二聚体热解机理的影响[J]. 工程热物理学报, 2017, 38(5): 1117-1121. |
JIANG Xiaoyan , LU Qiang , HU Bin , et al . Effects of alkali metals on pyrolysis mechanism of lignindimer[J]. Journal of Engineering Thermophysics, 2017, 38(5): 1117-1121. | |
17 | 王华静, 赵岩, 王晨, 等 . 木质素二聚体模型物裂解历程的理论研究[J]. 化学学报, 2009,67(9): 893-900. |
WANG Huajing , ZHAO Yan , WANG Chen , et al . Theoretical study on the pyrolysis process of lignin dimer model compounds[J]. Acta Chimica Sinica, 2009,67(9): 893-900. | |
18 | 张阳, 蒋晓燕, 王贤华, 等 . β-O-4型木质素二聚体模型化合物热解机理研究[J]. 太阳能学报, 2015,36(2): 265-273. |
19 | ZHANG Yang , JIANG Xiaoyan , WANG Xianhua , et al . Study on pyrolysis mechanism of lignin dimer model with β-O-4 linkage[J]. Acta Energiae Solaris Sinica, 2015, 36(2): 265-273. |
20 | KIM K H, BAI X , BROWN R C . Pyrolysis mechanisms of methoxy substituted α-O-4 lignin demeric model compounds and detection of free radicals using electron paramagnetic resonance analysis[J]. Journal of Analytical and Applied Pyrolysis, 2014, 110: 254-263. |
21 | HUANG J , HE C . Pyrolysis mechanism of α-O-4 linkage lignin dimer: a theoretical study[J]. Journal of Analytical and Applied Pyrolysis, 2015, 113: 655-664. |
22 | 武书彬, 刘超, 邓裕斌 . α-O-4型木质素二聚体热解行为的理论研究[J]. 华南理工大学学报(自然科学版), 2015, 43(6): 22-29. |
WU Shubin , LIU Chao , DENG Yubin . Theoretical investigation into pyrolysis behaviors of α-O-4 lignin dimer[J]. Journal of South China University of Technology (Natural Science Edition), 2015, 43(6): 22-29. | |
23 | 蒋晓燕, 陈晨, 董晓晨, 等 . α,β-双醚型木质素三聚体模化物热解机理模拟计算[J]. 农业工程学报, 2015, 31(16): 229-234. |
JIANG Xiaoyan , CHEN Chen , DONG Xiaochen , et al . Computational study on pyrolysis mechanism of an α, β-diether-type lignin trimer model compound[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(16): 229-234. | |
24 | YOUNKER J M , BESTE A , BUCHANAN A C . Computational study of bond dissociation enthalpies for lignin model compounds: β-5 arylcoumaran[J]. Chemical Physics Letters, 2012, 545: 100-106. |
25 | KURODA K I , IZUMI A N , DIMMEL D R . Pyrolysis of lignin in the presence of tetramethylammonium hydroxide (TMAH): products stemming from β-5 substructures[J]. Journal of Agricultural and Food Chemistry, 2002, 50: 3396-3400. |
26 | QU Y , WANG Z , LU Q , et al . Selective production of 4-vinylphenol by fast pyrolysis of herbaceous biomass[J]. Industrial & Engineering Chemistry Research, 2013, 52: 12771-12776. |
27 | HUANG J , HE C , LIU C , et al . A computational study on thermal decomposition mechanism of β-1 linkage lignin dimer[J]. Computational and Theoretical Chemistry, 2015, 1054: 80-87. |
28 | LIU C , ZHANG Y , HUANG X . Study of guaiacol pyrolysis mechanism based on density function theory[J]. Fuel Processing Technology, 2014, 123: 159-165. |
29 | 黄金保, 刘朝, 任丽蓉, 等 . 木质素模化物紫丁香酚热解机理的量子化学研究[J]. 燃料化学学报, 2013, 41(6): 657-666. |
HUANG Jinbao , LIU Chao , REN Lirong , et al .. Studies on pyrolysis mechanism of syringol as lignin model compound by quantum chemistry[J]. Journal of Fuel Chemistry and Technology, 2013, 41(6): 657-666. | |
30 | LIU C , DENG Y , WU S , et al . Study on the pyrolysis mechanism of three guaiacyl-type lignin monomeric model compounds[J]. Journal of Analytical and Applied Pyrolysis, 2016, 118: 123-129. |
31 | 武书彬, 邓裕斌, 刘超 . 木质素单体模化物热解过程的理论分析[J]. 华南理工大学学报, 2014, 41(10): 70-74,89. |
WU Shubin , DENG Yubin , LIU Chao . Theoretical analysis on pyrolysis processes of monomeric model compounds of lignin[J]. Journal of South China University of Technology (Natural Science Edition), 2014, 41(10): 70-74,89. | |
32 | JIANG W , CHU J , WU S , et al . Secondary pyrolysis pathway of monomeric aromatics resulting from oxidized β-O-4 lignin dimeric model compounds[J]. Fuel Processing Technology, 2017, 168: 11-19. |
33 | KIBET J , KHACHATRYAN L , DELLINGER B . Molecular products and radicals from pyrolysis of lignin[J]. Environmental Science and Technology, 2012, 46: 12994-13001. |
34 | 樊永胜, 蔡忆昔, 李小华, 等 . 基于SLMD的生物质热解动力学预测模型[J]. 农业机械学报, 2015, 46(5): 179-184. |
FAN Yongsheng , CAI Yixi , LI Xiaohua , et al . Prediction model of biomass pyrolysis kinetic based on SLMD[J]. Transactions of The Chinese Society of Agricultural Machinery, 2015, 46(5): 179-184. | |
35 | GUO D , WU S , LYU G, et al . Effect of molecular weight on the pyrolysis characteristics of alkali lignin[J]. Fuel, 2017, 193: 45-53. |
36 | 程辉, 余剑, 姚梅琴, 等 . 木质素慢速热解机理[J]. 化工学报, 2013, 64(5): 1757-1765. |
CHENG Hui , YU Jian , YAO Haibin , et al . Mechanism analysis of lignin slow pyrolysis[J]. CIESC Journal, 2013, 64(5): 1757-1765. | |
37 | 岳金方, 应浩 . 工业木质素的热裂解试验研究[J]. 农业工程学报, 2006, 22: 125-128. |
YUE Jinfang , YING Hao . Experimental study on industrial lignin pyrolysis[J]. Transactions of the CSAE, 2006, 22: 125-128. | |
38 | CHUA Y W , YU Y , WU H . Thermal decomposition of pyrolytic lignin under inert conditions at low temperatures[J]. Fuel, 2017, 200: 70-75. |
39 | 邱泽晶, 阴秀丽, 马隆龙, 等 . 玉米芯水解残渣木质素的热解特性实验[J]. 农业机械学报, 2010, 41(12): 111-115. |
QIU Zejing , YIN Xiuli , Longlong MA , et al . Pyrolytic characteristics of lignin derived from corncob hydrolysis residues[J]. Transactions of the Chinese Society of Agricultural Machinery, 2010, 41(12): 111-115. | |
40 | ZHOU H , WU C , ONWUDILI J A , et al . Polycyclic aromatic hydrocarbon formation from the pyrolysis/gasification of lignin at different reaction conditions[J]. Energy and Fuels, 2014, 28: 6371-6379. |
41 | BU Q , LEI H , WANG L , et al . Bio-based phenols and fuel production from catalytic microwave pyrolysis of lignin by activated carbons[J]. Bioresource Technology, 2014, 162: 142-147. |
42 | 朱玲莉, 仲兆平, 王佳, 等 . 基于PY-GC/MS的生物质组分间相互作用的热解实验[J]. 化工进展, 2016, 35(12): 3879-3884. |
ZHU Lingli , ZHONG Zhaoping , WANG Jia , et al . The interactions among the pyrolysis of biomass components based on the PY-GC/MS[J]. Chemical Industry and Engineering Progress, 2016, 35(12): 3879-3884. | |
43 | CHENG H , WU S . Effect of copper oxide on fast pyrolysis of enzymatic/mild acidolysis lignin[J]. Energy Procedia, 2017, 105: 1015-1021. |
44 | PENG C , ZHANG G , YUE J , et al . Pyrolysis of lignin for phenols with alkaline additive[J]. Fuel Processing Technology, 2014, 124: 212-221. |
45 | RUTKOWSKI P . Chemical composition of bio-oil produced by co-pyrolysis of biopolymer/polypropylene mixtures with K2CO3 and ZnCl2 addition[J]. Journal of Analytical and Applied Pyrolysis, 2012, 95: 38-47. |
46 | WANG W , REN X , LI L , et al . Catalytic effect of metal chlorides on analytical pyrolysis of alkali lignin[J]. Fuel Processing Technology, 2015, 134: 345-351. |
47 | WANG W , REN X , CHANG J , et al . Characterization of bio-oils and bio-chars obtained from the catalytic pyrolysis of alkali lignin with metal chlorides[J]. Fuel Processing Technology, 2015,138: 605-611. |
48 | MALDHURE A V , EKHE J D . Pyrolysis of purified kraft lignin in the presence of AlCl3 and ZnCl2 [J]. Journal of Environmental Chemical Engineering, 2013, 1: 844-849. |
49 | HU J , SHEN D , WU S , et al . Insight into the effect of ZnCl2 on analytical pyrolysis behavior of cellulolytic enzyme corn stover lignin[J]. Journal of Analytical and Applied Pyrolysis, 2017, 127: 444-450. |
50 | YU Y , LI X , SU L , et al . The role of shape selectivity in catalytic fast pyrolysis of lignin with zeolite catalysts[J]. Applied Catalysis A: General, 2012, 447-448: 115-123. |
51 | KURNIAA I , KARNJANAKOMA S , BAYU A , et al . In-situ catalytic upgrading of bio-oil derived from fast pyrolysis of lignin over high aluminum zeolites[J]. Fuel Processing Technology, 2017, 167: 730-737. |
52 | ZHAO Y , DENG L , LIAO Bin , et al . Aromatics production via catalytic pyrolysis of pyrolytic lignins from bio-oil[J]. Energy and Fuels, 2010, 24: 5735-5740. |
53 | WANG Z , MA R, SONG W . Influence of HSAPO-34, HZSM-5, and NaY on pyrolysis of corn straw fermentation residue via Py-GC/MS[J]. Journal of Analytical and Applied Pyrolysis, 2016, 122: 183-190. |
54 | BEN H, RAGAUSKAS A J . Pyrolysis of kraft lignin with additives[J]. Energy and Fuels, 2011, 25: 4662-4668. |
55 | FRENCH R , CZERNIK S . Catalytic pyrolysis of biomass for biofuels production[J]. Fuel Processing Technology, 2010, 91: 25-32. |
56 | PAYSEPAR H , RAO K T V , YUAN Z , et al . Zeolite catalysts screening for production of phenolic bio-oils with high contents of monomeric aromatics/phenolics from hydrolysis lignin via catalytic fast pyrolysis[J]. Fuel Processing Technology, 2018, 178: 362-370. |
57 | TANG S , ZHANG C , XUE X , et al . Catalytic pyrolysis of lignin over hierarchical HZSM-5 zeolites prepared by post-treatment with alkaline solutions[J]. Journal of Analytical and Applied Pyrolysis, 2019,137:86-95. |
58 | LOU R , WU S , LYU G . Quantified monophenols in the bio-oil derived from lignin fast pyrolysis[J]. Journal of Analytical and Applied Pyrolysis, 2015, 111: 27-32. |
59 | ZHAO J , WANG X , HU J , et al . Thermal degradation of softwood lignin and hardwood lignin by TG-FTIR and Py-GC/MS[J]. Polymer Degradation and Stability, 2014, 108: 133-138. |
60 | ZHENG Y , CHEN D , ZHU X . Aromatic hydrocarbon production by the online catalytic cracking of lignin fast pyrolysis vapors using Mo2N/γ-Al2O3 [J]. Journal of Analytical and Applied Pyrolysis, 2013,104: 514-520. |
61 | FARAG S , MUDRABOYINA B P , JESSOP P G . Impact of the heating mechanism on the yield and composition of bio-oil from pyrolysis of kraft lignin[J]. Biomass and Bioenergy, 2016, 95: 344-353. |
62 | LU Q , ZHOU M , LI W , et al . Catalytic fast pyrolysis of biomass with noble metal-like catalysts to produce high-grade bio-oil: analytical Py-GC/MS study[J]. Catalysis Today, 2018, 302: 169-179. |
63 | ZHANG X , CHEN Q , ZHANG Q , et al . Conversion of pyrolytic lignin to aromatic hydrocarbons by hydrocracking over pristine MoO3 catalyst[J]. Journal of Analytical and Applied Pyrolysis, 2018, 135: 60-66. |
64 | KIM Y, PARKA S , KANG B , et al . Suppressed char agglomeration by rotary kiln reactor with alumina ball during the pyrolysis of kraft lignin[J]. Journal of Industrial and Engineering Chemistry, 2018, 66: 72-77. |
65 | XIE W , LIANG J , MORGAN H M J , et al . Ex-situ catalytic microwave pyrolysis of lignin over Co/ZSM-5 to upgrade bio-oil[J]. Journal of Analytical and Applied Pyrolysis, 2018, 132: 163-170. |
66 | STANZIONE J F , GIANGIULIO P A , SADLER J M , et al . Lignin-based bio-oil mimic as biobased resin for composite applications[J]. ACS Sustainable Chemistry and Engineering, 2013, 1: 419-426. |
67 | GUO J , RUAN R , ZHANG Y . Hydrotreating of phenolic compounds separated from bio-oil to alcohols[J]. Industrial and Engineering Chemistry Research, 2012, 51: 6599-6604. |
[1] | 戴欢涛, 曹苓玉, 游新秀, 徐浩亮, 汪涛, 项玮, 张学杨. 木质素浸渍柚子皮生物炭吸附CO2特性[J]. 化工进展, 2023, 42(S1): 356-363. |
[2] | 王伟涛, 鲍婷玉, 姜旭禄, 何珍红, 王宽, 杨阳, 刘昭铁. 醛酮树脂基非金属催化剂催化氧气氧化苯制备苯酚[J]. 化工进展, 2023, 42(9): 4706-4715. |
[3] | 邵志国, 任雯, 许世佩, 聂凡, 许毓, 刘龙杰, 谢水祥, 李兴春, 王庆吉, 谢加才. 终温对油基钻屑热解产物分布和特性影响[J]. 化工进展, 2023, 42(9): 4929-4938. |
[4] | 李志远, 黄亚继, 赵佳琪, 于梦竹, 朱志成, 程好强, 时浩, 王圣. 污泥与聚氯乙烯共热解重金属特性[J]. 化工进展, 2023, 42(9): 4947-4956. |
[5] | 李海东, 杨远坤, 郭姝姝, 汪本金, 岳婷婷, 傅开彬, 王哲, 何守琴, 姚俊, 谌书. 炭化与焙烧温度对植物基铁碳微电解材料去除As(Ⅲ)性能的影响[J]. 化工进展, 2023, 42(7): 3652-3663. |
[6] | 关红玲, 杨辉, 井红权, 刘玉琼, 谷守玉, 王好斌, 侯翠红. 木质素基控释材料及其在药物输送和肥料控释中的应用[J]. 化工进展, 2023, 42(7): 3695-3707. |
[7] | 姚丽铭, 王亚琢, 范洪刚, 顾菁, 袁浩然, 陈勇. 餐厨垃圾处理现状及其热解技术研究进展[J]. 化工进展, 2023, 42(7): 3791-3801. |
[8] | 张杉, 仲兆平, 杨宇轩, 杜浩然, 李骞. 磷酸盐改性高岭土对生活垃圾热解过程中重金属的富集[J]. 化工进展, 2023, 42(7): 3893-3903. |
[9] | 李栋先, 王佳, 蒋剑春. 皂脚热解-催化气态加氢制备生物燃料[J]. 化工进展, 2023, 42(6): 2874-2883. |
[10] | 朱薇, 齐鹏刚, 苏银海, 张书平, 熊源泉. 生物油分级多孔碳超级电容器电极材料的制备及性能[J]. 化工进展, 2023, 42(6): 3077-3086. |
[11] | 任建鹏, 吴彩文, 刘慧君, 吴文娟. 木质素-聚苯胺复合材料的制备及对刚果红的吸附[J]. 化工进展, 2023, 42(6): 3087-3096. |
[12] | 于丁一, 李圆圆, 王晨钰, 纪永升. pH响应性木质素水凝胶的制备及药物控释[J]. 化工进展, 2023, 42(6): 3138-3146. |
[13] | 杨红梅, 高涛, 鱼涛, 屈撑囤, 高家朋. 高铁酸盐处理难降解有机物磺化酚醛树脂[J]. 化工进展, 2023, 42(6): 3302-3308. |
[14] | 李若琳, 何少林, 苑宏英, 刘伯约, 纪冬丽, 宋阳, 刘博, 余绩庆, 徐英俊. 原位热解对油页岩物性及地下水水质影响探索[J]. 化工进展, 2023, 42(6): 3309-3318. |
[15] | 王志伟, 郭帅华, 吴梦鸽, 陈颜, 赵俊廷, 李辉, 雷廷宙. 生物质与塑料催化共热解技术研究进展[J]. 化工进展, 2023, 42(5): 2655-2665. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |