[1] GHOSHAL S, WANG P H, GULGUNJE P, et al. High impact strength polypropylene containing carbon nanotubes[J]. Polymer, 2016, 100:259-274.
[2] 王柯, 朱燕灵, 傅强. 聚丙烯的结晶形态调控与高性能化[J]. 高分子学报, 2017, 7(7):1073-1081. WANG K, ZHU Y L, FU Q. Toward high-performance polypropylene via controlling crystalline morphology[J]. Journal of Polymer Science, 2017, 7(7):1073-1081.
[3] 张荣, 刘忠柱, 付艳芹, 等. 碳纳米管改性及其聚丙烯基复合材料的研究进展[J]. 上海塑料, 2014(4):1-6. ZHANG R, LIU Z Z, FU Y Q, et al. Research progress of carbon nanotubes modification and polypropylene/carbon nanotubes composites[J]. Shanghai Plastics, 2014(4):1-6.
[4] TARIG F, SHIFA M, BALOCH R A. Mechanical and thermal properties of multi-scale carbon nanotubes-carbon fiber-epoxy composite[J]. Arabian Journal for Science and Engineering, 2018(2):1-12.
[5] 谢克锋, 宋赛楠, 高琳, 等. 新型碳材料与聚烯烃复合材料研究进展[J]. 化工进展, 2014, 33(5):1225-1229. XIE K F, SONG S N, GAO L, et al. Research progress of new type carbon materials/polyolefin composite[J]. Chemical Industry and Engineering Progress, 2014, 33(5):1225-1229.
[6] LI Y, ZHENG Y, ZHAN P, et al. Vapor sensing performance as a diagnosis probe to estimate the distribution of multi-walled carbon nanotubes in poly (lactic acid)/polypropylene conductive composites[J]. Sensors and Actuators B:Chemical, 2018, 255:2809-2819.
[7] 周庆祥, 肖军平, 汪卫东, 等. 碳纳米管应用研究进展[J]. 化工进展, 2006, 25(7):750-754. ZHOU Q X, XIAO J P, WANG W D, et al. Progress of the application of carbon nanotubes[J]. Chemical Industry and Engineering Progress, 2006, 25(7):750-754.
[8] PATTI A, BARRETTA R, DE SCIARRA F M, et al. Flexural properties of multi-wall carbon nanotube/polypropylene composites:experimental investigation and nonlocal modeling[J]. Composite Structures, 2015, 131:282-289.
[9] MAZOV I N, ILINYKH I A, KUZNETSOV V L, et al. Thermal conductivity of polypropylene-based composites with multiwall carbon nanotubes with different diameter and morphology[J]. Journal of Alloys and Compounds, 2014, 586:S440-S442.
[10] KAZEMI Y, KAKROODI A R, WANG S, et al. Conductive network formation and destruction in polypropylene/carbon nanotube composites via crystal control using supercritical carbon dioxide[J]. Polymer, 2017, 129:179-188.
[11] 姚忠亮, 曹宁宁, 郑玉婴, 等. 聚丙烯/多壁碳纳米管复合材料的制备与性能研究[J]. 中国塑料, 2017, 31(7):40-47. YAO Z L, CAO N N, ZHENG Y Y, et al. Fabrication and properties of polypropylene/multi-wall carbon nanotubes comtmsites[J]. China Plastics, 2017, 31(7):40-47.
[12] LIANG J Z, ZHOU T Y, ZOU S Y. Non-isothermal crystallization properties of polypropylene composites filled with multi-walled carbon nanotubes[J]. Polymer Testing, 2016, 55:184-189.
[13] SCHAWE J E K, PÖTSCHKE P, ALIG I. Nucleation efficiency of fillers in polymer crystallization studied by fast scanning calorimetry:carbon nanotubes in polypropylene[J]. Polymer, 2017, 116:160-172.
[14] 栗娟, 李彩虹. 大分子增容剂对聚丙烯/碳纳米管复合材料性能的影响[J]. 塑料科技, 2017, 45(10):111-114. LI J, LI C H. Infiuence of macromolecular compatibilizer on properties of polypropylene/carbon nanotube composites[J]. Plastics Science and Technology, 2017, 45(10):111-114.
[15] ACIERNO S, BARRETTA R, LUCIANO R, et al. Experimental evaluations and modeling of the tensile behavior of polypropylene/single-walled carbon nanotubes fibers[J]. Composite Structures, 2017, 174:12-18.
[16] HUANG J, RODRIGUE D. The effect of carbon nanotube orientation and content on the mechanical properties of polypropylene based composites[J]. Materials & Design, 2014, 55:653-663.
[17] LV Q, WANG Z, CHEN S, et al. Effects of single adatom and stone-wales defects on the elastic properties of carbon nanotube/polypropylene composites:a molecular simulation study[J]. International Journal of Mechanical Sciences, 2017, 131:527-534.
[18] 叶靖, 方建鹏, 张玲, 等. 聚丙烯/碳纳米管复合材料的结构与导电性能:注塑工艺与膨胀石墨的影响[J]. 华东理工大学学报(自然科学版), 2017, 43(5):606-613. YE J, FANG J P, ZHANG L, et al. Structure and electric conductivity of polypropylene/carbon nanotubes composites:effect of injection process and expanded graphite[J]. Journal of East China University of Science and Technology (Natural Science Edition), 2017, 43(5):606-613.
[19] LIN Z I, LOU C W, PAN Y J, et al. Conductive fabrics made of polypropylene/multi-walled carbon nanotube coated polyester yarns:mechanical properties and electromagnetic interference shielding effectiveness[J]. Composites Science and Technology, 2017, 141:74-82.
[20] AMELI A, KAZEMI Y, WANG S, et al. Process-microstructure-electrical conductivity relationships in injection-molded polypropylene/carbon nanotube nanocomposite foams[J]. Composites Part A:Applied Science and Manufacturing, 2017, 96:28-36.
[21] 辛忠, 石尧麒. α/β复合成核剂调控聚丙烯结晶过程的研究进展[J]. 化工进展, 2012, 31(1):126-132. XIN Z, SHI Y Q. Research advance in controlled crystallization of isotactic polypropylene based on α/β compounded nucleating agents[J]. Chemical Industry and Engineering Progress, 2012, 31(1):126-132.
[22] ASUKE F, ABDULWAHAB M, AIGBODION V S, et al. Effect of load on the wear behaviour of polypropylene/carbonized bone ash particulate composite[J]. Egyptian Journal of Basic and Applied Sciences, 2014, 1(1):67-70.
[23] GANDHI R A, PALANIKUMAR K, RAGUNATH B K, et al. Role of carbon nanotubes (CNTs) in improving wear properties of polypropylene (PP) in dry sliding condition[J]. Materials & Design, 2013, 48:52-57.
[24] 庄白妞, 宋泽凯, 罗永杰, 等. 液相法制备CNTs/PP复合材料的摩擦性能[J]. 机电技术, 2016(6):69-71. ZHUANG B N, SONG Z K, LUO Y J, et al. Friction properties of CNTs/PP composites prepared by liquid-phase method[J]. Mechanical & Electrical Technology, 2016(6):69-71.
[25] 卢月美, 王世伟. 不同工况下碳纳米管/聚丙烯复合材料摩擦性能研究[J]. 塑料工业, 2016, 44(1):85-89. LU Y M, WANG S W. Study on tribological properties of carbon nanotubes/polypropylene composites under different working conditions[J]. China Plastics Industry, 2016, 44(1):85-89.
[26] BERBER S, KWON Y K, TOMÁNEK D. Unusually high thermal conductivity of carbon nanotubes[J]. Physical Review Letters, 2000, 84(20):4613-4616.
[27] POP E, MANN D, WANG Q, et al. Thermal conductance of an individual single-wall carbon nanotube above room temperature[J]. Nano Letters, 2006, 6(1):96-100.
[28] 杨芳, 徐百平, 杜遥雪. PP/KPEG/MWNTs导热复合材料制备及性能[J]. 工程塑料应用, 2017, 45(3):45-49. YANG F, XU B P, DU Y X. PP/KPEG/MWNTs thermal conductive composites preparation and properties[J]. Engineering Plastics Application, 2017, 45(3):45-49.
[29] XU R, CHEN M, ZHANG F, et al. High thermal conductivity and low electrical conductivity tailored in carbon nanotube (carbon black)/polypropylene (alumina) composites[J]. Composites Science and Technology, 2016, 133:111-118.
[30] 周磊, 李东泽, 于燕燕, 等. 包覆CNT和膨胀阻燃剂在聚丙烯基体中的协效阻燃性[J]. 塑料工业, 2015, 43(6):101-105. ZHOU L, LI D Z, YU Y Y, et al. Flame-retarded synergy between coated CNT and an intumescent flame retardant in polypropylene matrix[J]. China Plastics Industry, 2015, 43(6):101-105.
[31] ZHANG D, YANG H, LIU Z, et al. Interfacial interaction between polypropylene and nanotube:a molecular dynamics simulation[J]. Journal of Molecular Structure, 2017, 1144:260-264.
[32] BOUNOS G, ANDRIKOPOULOS K S, MOSCHOPOULOU H, et al. Enhancing water vapor permeability in mixed matrix polypropylene membranes through carbon nanotubes dispersion[J]. Journal of Membrane Science, 2017, 524:576-584.
[33] NISAR M, BERGMANN C P, GESHEV J, et al. Synthesis and characterization of polypropylene/iron encapsulated carbon nanotube composites with high magnetic response at room temperature[J]. Polymer, 2017, 118:68-74.
[34] 练澎, 张小凤. 碳纳米管制备方法的研究进展[J]. 当代化工, 2015, 44(4):737-739. LIAN P, ZHANG X F. Research progress in preparation methods of carbon nanotubes[J]. Contemporary Chemical Industry, 2015, 44(4):737-739. |