[1] XIONG Z B, HU Q, LIU D Y, et al. Influence of partial substitution of iron oxide by titanium oxide on the structure and activity of iron-cerium mixed oxide catalyst for selective catalytic reduction of NOx with NH3[J]. Fuel, 2016, 165:432-439.
[2] 苏亚欣, 苏阿龙, 任立铭. 铁基催化剂脱除NO气体的研究现状[J]. 化工进展, 2012, 31(s1):154-157. SU Y X, SU A L, REN L M. Review on state-of-art of NO reduction by iron-based catalyst[J]. Chemical Industry and Engineering Progress, 2012, 31(s1):154-157.
[3] YAO G H, WANG F, WANG X B, et al. Magnetic field effects on selective catalytic reduction of NO by NH3 over Fe2O3 catalyst in a magnetically fluidized bed[J]. Energy, 2010, 35(5):2295-2300.
[4] LIU C X, YANG S J, MA L, et al. Comparison on the performance of α-Fe2O3 and γ-Fe2O3 for selective catalytic reduction of nitrogen oxides with ammonia[J]. Catalysis Letters, 2013, 143(7):697-704.
[5] WU G X, LI J, FANG Z T, et al. FeVO4 nanorods supported TiO2 as a superior catalyst for NH3-SCR reaction in a broad temperature range[J]. Catalysis Communications, 2015, 64:75-79.
[6] YANG S J, LI J H, WANG C Z, et al. Fe-Ti spinel for the selective catalytic reduction of NO with NH3:mechanism and structureactivity relationship[J]. Applied Catalysis B:Environmental, 2012, 117/118(3):73-80.
[7] 武超, 熊志波, 周飞, 等. 磁性铁钛催化剂的制备及其NH3选择性催化还原NO性能[J]. 上海理工大学学报, 2016, 37(5):427-432. WU C, XIONG Z B, ZHOU F, et al. Selective catalytic reduction of NOx with NH3 over magnetic iron-titanium mixed oxide catalysts[J]. Journal of University of Shanghai for Science and Technology, 2016, 37(5):427-432.
[8] 王芳, 姚桂焕, 归柯庭. 铁基催化剂选择性催化还原烟气脱硝特性比较研究[J]. 中国电机工程学报, 2009, 29:47-51. WANG F, YAO G H, GUI K T. Comparison about selective catalytic reduction of deNOx on iron-based magnetic materials[J]. Proceedings of the CSEE, 2009, 29:47-51.
[9] SING K S W, EVERETT D H, HAUL R A W, et al. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity[J]. Pure & Applied Chemistry, 1985, 57(4):603-619.
[10] FANG N J, GUO J X, SHU S, et al. Enhancement of low-temperature activity and sulfur resistance of Fe0.3Mn0.5Zr0.2 catalyst for NO removal by NH3-SCR[J]. Chemical Engineering Journal, 2017, 325:114-123.
[11] SHWAN S, NEDYAL K, JANSSON J, et al. Hydrothermal stability of Fe-BEA as an NH3-SCR catalyst[J]. Industrial & Engineering Chemistry Research, 2012, 51(39):12762-12772.
[12] LI X, LI J H, PENG Y, et al. Selective catalytic reduction of NO with NH3 over novel iron-tungsten mixed oxide catalyst in a broad temperature range[J]. Catalysis Science & Technology, 2015, 5(9):4556-4564.
[13] ZHANG S, QIU M, YANG S, et al. Facile preparation of MnO2 doped Fe2O3 hollow nanofibers for low temperature SCR of NO with NH3[J]. Journal of Materials Chemistry A, 2014, 2(48):20486-20493.
[14] YANG S J, GUO Y F, YAN N Q, et al. Capture of gaseous elemental mercury from flue gas using a magnetic and sulfur poisoning resistant sorbent Mn/γ-Fe2O3 at lower temperatures.[J]. Journal of Hazardous Materials, 2011, 186(1):508-515.
[15] YANG S J, GUO Y F, YAN N Q, et al. Remarkable effect of the incorporation of titanium on the catalytic activity and SO2 poisoning resistance of magnetic Mn-Fe spinel for elemental mercury capture[J]. Applied Catalysis B:Environmental, 2011, 101(3/4):698-708.
[16] 陈亚南, 段钰峰, 朱纯, 等. Mo/Mn-TiO2催化剂的脱硝活性剂抗SO2 性能[J]. 化工进展, 2017, 36(8):2941-2948. CHEN Y N, DUAN Y F, ZHU C, et al. NH3-SCR catalytic activity and SO2 resistance over Mo/Mn-TiO2 catalyst[J]. Chemical Industry and Engineering Progress, 2017, 36(8):2941-2948.
[17] LIU F D, HE H, DING Y, et al. Effect of manganese substitution on the structure and activity of iron titanate catalyst for the selective catalytic reduction of NO with NH3[J]. Applied Catalysis B:Environmental, 2009, 93(1):3760-3769.
[18] LIU F D, ASAKURA K, HE H, et al. Influence of sulfation on iron titanate catalyst for the selective catalytic reduction of NOx with NH3[J]. Applied Catalysis B:Environmental, 2011, 103(3):369-377. |