[1] 张晓明, 黄碧纯, 叶代启. 低温等离子体光催化净化空气污染物技术研究进展[J]. 化工进展, 2005, 24(9):964-967. ZHANG X M, HUANG B C, YE D Q. Advances in researches on non thermal plasma photocatalysis technology for air polullants control[J]. Chemical Industry and Engineering Progress, 2005, 24(9):964-967.
[2] ODA T. Non-thermal plasma processing for environmental protection:decomposition of dilute VOCs in air[J]. Journal of Electrostatics, 2003, 57:293-311.
[3] HIROTA K, SAKAI H, WASHIO M, et al. Application of electron beams for the treatment of VOC streams[J]. Industrial & Engineering Chemistry Research, 2004, 43(5):1185-1191.
[4] 孙万启, 宋华, 韩素玲, 等. 废气治理低温等离子体反应器的研究进展[J]. 化工进展, 2011, 30(5):930-935. SUN W Q, SONG H, HAN S L, et al. Advances in research on non-thermal plasma reactors of waste gas treatment[J]. Chemical Industry and Engineering Progress, 2011, 30(5):930-935.
[5] 苏清发, 刘亚敏, 陈杰, 等. 低温等离子体诱导低碳烃选择性催化还原NOx研究进展[J]. 化工进展, 2009, 28(8):1449-1457. SU Q F, LIU Y M, CHEN J, et al. Research advance in non-thermal plasma induced selective catalytic reduction NOx with low hydrocarbon compounds[J]. Chemical Industry and Engineering Progress, 2009, 28(8):1449-1457.
[6] DRUME J V, DEWULF J, DEMEESTERE K, et al. Post-plasma catalytic technology for the removal of toluene of toluene from indoor air:effect of humidity[J]. Applied Catalysis B:Environmental, 2009, 87(1/2):78-83.
[7] 刘跃旭, 王少波, 原培胜, 等. 催化型低温等离子体反应器净化废气研究进展[J]. 化工进展, 2015, 34(2):79. LIU Y X, WANG S B, YUAN P S, et al. Advances in catalysis non-thermal plasma reactor for air pollution control[J]. Chemical Industry and Engineering Progress, 2015, 34(2):79.
[8] KIM H, QGATA A, FUTAMURA S. Oxygen partial pressuredependent behavior of various catalysts for the total oxidation of VOCs using cycled system of adsorption and oxygen plasma[J]. Applied Catalysis B:Environmental, 2008, 79(4):356-367.
[9] GUO Y F, YE D Q, CHEN K F, et al. Toluene removal by a DBD-type plasma combined with metal oxides catalysts supported by nickel foam[J]. Catalysis Today, 2007, 126(3/4):328-337.
[10] 赵坤, 党小庆, 朱海瀛, 等. 负载型催化剂联合低温等离子体去除甲苯[J]. 环境工程学报, 2016, 10(7):3756-3762. ZHAO K, DANG X Q, ZHU H Y, et al. Removal of toluene using of non-thermal plasma combined with supported catalysts[J]. Chinese Journal of Environmental Engineering, 2016, 10(7):3756-3762.
[11] AVGOUROPOULOS G, IOANNIDES T, MATRALIS H. Influence of the preparation method on the performance of CuO-CeO2 catalysts for the selective oxidation of CO[J]. Applied Catalysis B:Environmental, 2005, 56(1/2):87-93.
[12] 颜志鹏, 崇明本, 程党国, 等. 纯与掺杂CeO2 的氧化还原性质及其催化领域的应用[J]. 化学进展, 2008, 20(7):1037-1043. YAN Z P, CHONG M B, CHENG D G, et al. Redox properties of pure and doped ceria and their applications in catalysis[J]. Progress in Chemistry, 2008, 20(7):1037-1043.
[13] 皮志鹏, 沈本贤, 刘纪昌, 等. 铜铈改性镁铝尖晶石作为助催化剂同时脱除FCC烟气中的SOx、NOx[J]. 化工进展, 2016, 35(10):3190-3195. PI Z P, SHEN B X, LIU J C, et al. CuO, CeO2 modified Mg-Al spinel as additives for removal of SOx and NOx from FCC flue gas[J]. Chemical Industry and Engineering Progress, 2016, 35(10):3190-3195.
[14] ZHU X B, GAO X, QIN R, et al. Plasma-catalytic removal of formaldehyde over Cu-Ce catalysts in a dielectric barrier discharge reactor[J]. Applied Catalysis B:Environmental, 2015, 170/171:293-300.
[15] 朱鹏飞. 高性能铜铈催化剂的制备及铜铈之间相互作用的研究[D]. 杭州:浙江大学, 2008. ZHU P F. Preparation of high performance CuO-CeO2 catalysts and investigation of the interaction of CuO and CeO2[D]. Hangzhou:Zhejiang University, 2008.
[16] 王爱华,樊星,梁文俊,等. 低温等离子体协同锰银催化剂降解甲苯[J]. 工业催化, 2015(1):63-68. WANG A H, FAN X, LIANG W J, et al. Removal of toluene by non-thermal plasma coupled with Mn-Ag catalysts[J]. Industrial Catalysis, 2015(1):63-68.
[17] 竹涛, 万艳东, 李坚, 等. 低温等离子体-催化耦合降解甲苯的研究及机理探讨[J]. 高校化学工程学报, 2011, 25(1):161-167. ZHU T, WAN Y D, LI J, et al. Study on decomposition mechanism of toluene by non-thermal plasma coupled with catalysis[J]. Journal of Chemical Engineering of Chinese Universities, 2011, 25(1):161-167.
[18] 黄炯. 介质阻挡放电-催化降解甲苯的产物分布及机理研究[D]. 广州:华南理工大学, 2010. HUANG J. Research on products distribution and mechanism for toluene removal by dielectric barrier discharge combined with catalysis[D]. Guangzhou:South China University of Techonolgy, 2010.
[19] TANG X L, ZHANG B C, LI Y, et al. CuO/CeO2 catalysts:redox features and catalytic behaviors[J]. Applied Catalysis A:General, 2005, 288(1/2):116-125.
[20] LIU Z G, YANG S R, ZHOU R X, et al. Influence of pH values in the preparation of CuO-CeO2 on its catalytic performance for the preferential oxidation of CO in excess hydrogen[J]. Journal of Natural Gas Chemistry, 2010, 19(3):313-317.
[21] SUN J F, ZHANG L, GE C Y, et al. Comparative study on the catalytic CO oxidation properties of CuO/CeO2 catalysts prepared by solid state and wet impregnation[J]. Chinese Journal of Catalysis, 2014, 35(8):1347-1358.
[22] 李惠娟, 蒋晓原, 郑小明. 介质阻挡等离子体放电辅助CuO/CeO2/γ-Al2O3 催化剂脱除NO的研究[J]. 分子催化, 2014, 28(2):157-164. LI H J, JIANG X Y, ZHENG X M. Non-thermal-plasma combined with selective catalytic reaction of NO by CH4 over CuO/CeO2/TiO2/γ-Al2O3 catalyst[J]. Journal of Molecular Catalysis, 2014, 28(2):157-164.
[23] 吴静, 张雅静, 李德豹, 等. 助剂Mn对CO2加氢制二甲醚CuO-ZnO-ZrO2催化剂的结构和性能影响/HZSM-5[J]. 分子催化, 2014, 28(4):344-350. WU J, ZHANG Y J, LI D B, et al. Effect of Mn promoter on structure and properties of Mn modified CuO-ZnO-ZrO2/HZSM-5 catalysts for synthesis of dimethyl ether from CO2 hydrogenation[J]. Journal of Molecular Catalysis, 2014, 28(4):344-350.
[24] LEPPELT R, SCHUMACHER B, PLZAK V, et al. Kinetics and mechanism of the low-temperature water-gas shift reaction on Au/CeO2 catalysts in an idealized reaction atmosphere[J]. Journal of Catalysis, 2006, 244(2):137-152.
[25] ZHANG F, WANG P, KOBERSTEIN J, et al. Cerium oxidation state in ceria nanoparticles studied with X-ray photoelectron spectroscopy and absorption near edge spectroscopy[J]. Surface Science, 2004, 563(13):74-82.
[26] KARPENKO A, LEPPELT R, CAI J, et al. Deactivation of a Au/CeO2 catalyst during the low-temperature water-gas shift reaction and its reactivation:a combined TEM, XRD, XPS, DRIFTS, and activity study[J]. Journal of Catalysis, 2007, 250(1):139-150.
[27] LI Y, FU Q, FLYTZANI S M. Low-temperature water-gas shift reaction over Cu-and Ni-loaded cerium oxide catalysts[J]. Applied Catalysis B:Environmental, 2000, 27(3):179-191.
[28] BERA P, PRIOLKAR K R, SARODE P R, et al. Structural investigation of combustion synthesized Cu/CeO2 catalysts by EXAFS and other physical techniques:formation of a Ce1-xCuxO2-δ solid solution[J]. Chemistry of Materials, 2002, 14(8):3591-3601. |