化工进展 ›› 2022, Vol. 41 ›› Issue (11): 5783-5799.DOI: 10.16085/j.issn.1000-6613.2022-0117
韩贺1(), 张锌豪1(), 张安峰1, 赵成浩2, 石川1, 于政锡3, 宋春山1,4, 郭新闻1()
收稿日期:
2022-01-08
修回日期:
2022-04-08
出版日期:
2022-11-25
发布日期:
2022-11-28
通讯作者:
郭新闻
作者简介:
韩贺(1988—),男,博士后,助理研究员,研究方向为分子筛合成与多相催化。E-mail:hehan@dlut.edu.cn基金资助:
HAN He1(), ZHANG Xinhao1(), ZHANG Anfeng1, ZHAO Chenghao2, SHI Chuan1, YU Zhengxi3, SONG Chunshan1,4, GUO Xinwen1()
Received:
2022-01-08
Revised:
2022-04-08
Online:
2022-11-25
Published:
2022-11-28
Contact:
GUO Xinwen
摘要:
对二甲苯是一种重要的芳烃原料,在石油化工行业中有着举足轻重的地位。近十年来,我国对二甲苯的需求保持持续增长的态势,为了保障我国对二甲苯产业健康、稳步的发展,迫切需要开发更为低成本、高效的对二甲苯生产工艺。甲苯与甲醇择形催化制对二甲苯是目前最具前景和竞争力的新技术之一,然而如何在保持高选择性的前提下提高催化剂的稳定性是该技术面临的严峻挑战。低碳烯烃的生成是导致催化剂积炭失活的主要原因之一。本文通过对催化反应机理和催化剂研究进展的介绍,认为开发高选择性、高稳定性的催化剂可以从合成既有择形效应又有优良扩散特性的分子筛母体、协同调控分子筛的孔结构和酸性质以及抑制低碳烯烃的形成三个方向发力。
中图分类号:
韩贺, 张锌豪, 张安峰, 赵成浩, 石川, 于政锡, 宋春山, 郭新闻. 甲苯与甲醇择形催化制对二甲苯技术进展[J]. 化工进展, 2022, 41(11): 5783-5799.
HAN He, ZHANG Xinhao, ZHANG Anfeng, ZHAO Chenghao, SHI Chuan, YU Zhengxi, SONG Chunshan, GUO Xinwen. Development of shape-selective alkylation of toluene with methanol to para-xylene[J]. Chemical Industry and Engineering Progress, 2022, 41(11): 5783-5799.
名称 | 拓扑结构 | 分子筛结构 | 孔道尺寸 | 反应条件 | 改性条件 | 对二甲苯 选择性/% | 甲苯 转化率/% | 参考文献 |
---|---|---|---|---|---|---|---|---|
SAPO-5 | AFI | 一维十二元环孔道 | 直孔道0.73nm×0.73nm | 400℃;常压; F/W=0.24mol·g-1·h-1; n(T)/n(M)=2 | 未改性 | 25.0 | 16.0 | [ |
β | BEA | 三维十二元环孔道 | 直孔道0.73nm×0.60nm 弯曲孔道0.56nm×0.56nm | 300℃;常压; WHSV=17.3min-1; n(T)/n(M)=4 | 未改性 | 29.4 | 6.7 | [ |
Y | FAU | 由SOD笼和六方柱笼连接围成八面沸石笼,笼间通过十二元环相连 | 孔口直径0.74~0.74nm | 225℃;常压; F/W=0.008mol·g-1·h-1; n(T)/n(M)=2 | 阳离子交换 | 51.0 | 28.9 | [ |
Mordenite | MOR | c轴方向十二元环主孔道和平行的八元环侧通道 | 主孔道0.65nm×0.70nm 侧通道0.28nm×0.57nm | 400℃;常压; 催化剂/进料比例为5 n(T)/n(M)=1 | 未改性 | 24.2 | 49.6 | [ |
ZSM-12 | MTW | 十二元环构成的一维线性非交叉孔道 | 0.57nm×0.61nm | 300℃;常压;LHSV=2.5h-1 n(T)/n(M)=0.5 | 未改性 | 50.9 | 61.7 | [ |
SAPO-11 | AEL | 一维十元环孔道 | 0.39nm×0.64nm | 450℃;常压; WHSV=2h-1 n(T)/n(M)=2 | 金属/非金属 改性;硅氧 烷试剂修饰 | 89.5 | 6.7 | [ |
SAPO-41 | AFO | 一维椭圆十元环孔道 | 0.43nm×0.7nm | 400℃;常压; WHSV=4.5h-1 n(T)/n(M)=2 | 未改性 | 37.9 | 57.6 | [ |
MCM-22 | MWW | 具有十元环交叉孔道、十元环开口的十二元环超笼及表面的十二元环孔穴 | 正弦孔道0.51nm×0.41nm 短孔道0.55nm×0.40nm | 250℃;常压; F/W=0.47mol·g-1·h-1; n(T)/n(M)=1 | 三甲基吡啶 处理 | 74.1 | 3.8 | [ |
ZSM-5 | MFI | 由截面椭圆形的十元环直孔道和截面近乎圆形的正弦孔道相互交叉构成 | 直孔道0.53nm×0.56nm 正弦孔道0.51nm×0.55nm | 460℃;常压; WHSV=2h-1; n(T)/n(M)=2; n(H2)/n(H2O)/n(T+M)=8/8/1 | Si-P-Mg 改性后负载Pt | 98.0 | 23.0 | [ |
460℃;0.2MPa; WHSV=2.5h-1; n(T)/n(M)=4; n(H2)/n(H2O)/n(T+M)=2/2/1 | Si-P-Mg 改性后负载Pt | 94.0 | 12.0 | [ |
表1 不同分子筛的孔结构性质及其甲苯与甲醇烷基化反应性能
名称 | 拓扑结构 | 分子筛结构 | 孔道尺寸 | 反应条件 | 改性条件 | 对二甲苯 选择性/% | 甲苯 转化率/% | 参考文献 |
---|---|---|---|---|---|---|---|---|
SAPO-5 | AFI | 一维十二元环孔道 | 直孔道0.73nm×0.73nm | 400℃;常压; F/W=0.24mol·g-1·h-1; n(T)/n(M)=2 | 未改性 | 25.0 | 16.0 | [ |
β | BEA | 三维十二元环孔道 | 直孔道0.73nm×0.60nm 弯曲孔道0.56nm×0.56nm | 300℃;常压; WHSV=17.3min-1; n(T)/n(M)=4 | 未改性 | 29.4 | 6.7 | [ |
Y | FAU | 由SOD笼和六方柱笼连接围成八面沸石笼,笼间通过十二元环相连 | 孔口直径0.74~0.74nm | 225℃;常压; F/W=0.008mol·g-1·h-1; n(T)/n(M)=2 | 阳离子交换 | 51.0 | 28.9 | [ |
Mordenite | MOR | c轴方向十二元环主孔道和平行的八元环侧通道 | 主孔道0.65nm×0.70nm 侧通道0.28nm×0.57nm | 400℃;常压; 催化剂/进料比例为5 n(T)/n(M)=1 | 未改性 | 24.2 | 49.6 | [ |
ZSM-12 | MTW | 十二元环构成的一维线性非交叉孔道 | 0.57nm×0.61nm | 300℃;常压;LHSV=2.5h-1 n(T)/n(M)=0.5 | 未改性 | 50.9 | 61.7 | [ |
SAPO-11 | AEL | 一维十元环孔道 | 0.39nm×0.64nm | 450℃;常压; WHSV=2h-1 n(T)/n(M)=2 | 金属/非金属 改性;硅氧 烷试剂修饰 | 89.5 | 6.7 | [ |
SAPO-41 | AFO | 一维椭圆十元环孔道 | 0.43nm×0.7nm | 400℃;常压; WHSV=4.5h-1 n(T)/n(M)=2 | 未改性 | 37.9 | 57.6 | [ |
MCM-22 | MWW | 具有十元环交叉孔道、十元环开口的十二元环超笼及表面的十二元环孔穴 | 正弦孔道0.51nm×0.41nm 短孔道0.55nm×0.40nm | 250℃;常压; F/W=0.47mol·g-1·h-1; n(T)/n(M)=1 | 三甲基吡啶 处理 | 74.1 | 3.8 | [ |
ZSM-5 | MFI | 由截面椭圆形的十元环直孔道和截面近乎圆形的正弦孔道相互交叉构成 | 直孔道0.53nm×0.56nm 正弦孔道0.51nm×0.55nm | 460℃;常压; WHSV=2h-1; n(T)/n(M)=2; n(H2)/n(H2O)/n(T+M)=8/8/1 | Si-P-Mg 改性后负载Pt | 98.0 | 23.0 | [ |
460℃;0.2MPa; WHSV=2.5h-1; n(T)/n(M)=4; n(H2)/n(H2O)/n(T+M)=2/2/1 | Si-P-Mg 改性后负载Pt | 94.0 | 12.0 | [ |
图6 ZSM-5沸石形貌的变化对甲苯与甲醇烷基化反应性能的影响[42](a) 2.5nm厚的ZSM-5纳米片(NS-2.5)的SEM照片;(b) NS-2.5的HRTEM照片;(c) 平均厚度为20nm的ZSM-5纳米晶体(NC-20)的SEM照片;(d) 平均厚度为200nm的ZSM-5块状晶体(B-200)的SEM照片;(e) 不同ZSM-5沸石上甲苯甲基化反应的甲醇利用率;(f) 不同ZSM-5沸石上甲苯转化率随反应时间的变化
图7 协同调控ZSM-5沸石孔结构和酸性质的策略(a) ZSM-5@Silicalite-1沸石的Silicalite-1与ZSM-5沸石界面处HRTEM照片(插图为HRTEM照片所选区域);(b) ZSM-5@Silicalite-1沸石在[101]方向上的选取电子衍射图;(c) ZSM-5晶核表面生长Silicalite-1壳层模型示意图[47-48];(d) 具有孪生结构的ZSM-5沸石(ZSM-5-T)的SEM照片;(e) ZSM-5-T沸石的推理模型;(f) 未经修饰的HZSM-5-T沸石在甲苯与甲醇烷基化反应中的催化性能[54]
图8 金属纳米颗粒或纳米团簇与分子筛的匹配策略(a) 采用浸渍法制备的甲苯与甲醇烷基化反应高稳定性Pt/ZSM-5催化剂的TEM照片(Pt颗粒尺寸2~10 nm)[37];(b) 采用FAU-MFI转晶法制备的含Pt纳米团簇的MFI沸石的TEM照片(Pt颗粒尺寸1.0 nm)[58];(c) 采用离子交换法制备的含孤立PtO x 位点的KLTL沸石的STEM照片(Pt颗粒尺寸<1.0nm)[59];(d)和(e)分别采用负载法和封装法制备的Pt/β(d)和Pt@β(e)沸石经空气中高温焙烧处理后的HRTEM照片[Pt颗粒尺寸:2.0~12.0 nm(d)和0.8~3.2nm(e)][60]
1 | 朱志荣, 谢在库, 陈庆龄, 等. 甲苯择形歧化合成对二甲苯催化剂的研究与应用[C]//分子筛催化与纳米技术——分子筛协作组2006年学术年会论文集. 天津. 2006: 55-58 |
ZHU Zhirong, XIE Zaiku, CHEN Qingling, et al. Synthesis of p-xylene by shape selective disproportionation of toluene[C]//Proceedings of the 2006 Annual Conference of Molecular sieve Catalysis and Nanotechnology. Tianjin. 2006:55-58 | |
2 | 曹德安. 甲苯甲醇烷基化制对二甲苯技术研究进展[J]. 化学反应工程与工艺, 2007,23(4): 359-364. |
CAO De’an. Technology advances on selective methylation of toluene with methanol to para-xylene[J]. Chemical Reaction Engineering and Technology, 2007, 23(4): 359-364. | |
3 | 戴厚良. 芳烃生产技术展望[J]. 石油炼制与化工, 2013, 44(1): 1-10. |
DAI Houliang. Outlook of aromatics production technology[J]. Petroleum Processing and Petrochemicals, 2013, 44(1): 1-10. | |
4 | 韩贺, 刘民, 吴宏宇, 等. 镍盐前驱体对Ni改性HZSM-5择形催化甲苯与甲醇合成对二甲苯反应性能的影响[J]. 石油学报(石油加工), 2014, 30(4): 611-619. |
HAN He, LIU Min, WU Hongyu, et al. Effects of Ni precursor on the catalytic performance of Ni-modified HZSM-5 in shape-selective alkylation of toluene with methanol to p-xylene[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2014, 30(4): 611-619. | |
5 | 安超. 全球对二甲苯供需分析与预测[J]. 世界石油工业, 2021,28(3): 37-43. |
AN Chao. Analysis and forecast of global p-xylene supply and demand[J]. World Petroleum Industry, 2021, 28(3): 37-43. | |
6 | 郑宁来. 中国对二甲苯进口依存度大幅降低[J]. 聚酯工业, 2019,32(5): 5. |
ZHENG Ninglai.China’s import dependence on paraxylene has been greatly reduced[J]. Polyester Industry, 2019, 32(5): 5. | |
7 | 吴巍. 芳烃联合装置生产技术进展及成套技术开发[J]. 石油学报(石油加工), 2015, 31(2): 275-281. |
WU Wei. Advances and development of aromatics production technologies for an aromatics complex[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2015, 31(2): 275-281. | |
8 | WEISZ P B, FRILETTE V J. Intracrystalline and molecular-shape-selective catalysis by zeolite salts[J]. The Journal of Physical Chemistry, 1960, 64(3): 382. |
9 | 朱志荣, 谢在库, 李灿. 分子筛择形催化合成对二甲苯的技术进展[C]//第四届全国工业催化技术及应用年会论文集. 广州. 2007: 23-28. |
ZHU Zhirong, XIE Zaiku, LI Can. Progress in the synthesis of p-xylene by molecular sieve shape selective catalysis[C]//Proceedings of the 4th National Conference on Industrial Catalysis technology and Application. Guangzhou. 2007: 23-28. | |
10 | SONG C S, GARCÉS J M, SUGI Y. Introduction to shape-selective satalysis[M]. USA: American Chemical Society, 1999: 1-16. |
11 | 王桂茹. 催化剂与催化作用[M]. 大连: 大连理工大学出版社, 2000: 41-81. |
WANG Guiru. Catalysts and catalysis[M]. Dalian: Dalian University of Technology Press, 2000: 41-81. | |
12 | KOKOTAILO G T, LAWTON S L, OLSON D H, et al. Structure of synthetic zeolite ZSM-5[J]. Nature, 1978, 272(5652): 437-438. |
13 | WEISZ Paul B. Molecular shape selective catalysis[J]. Studies in Surface Science and Catalysis, 1981, 7: 3-20. |
14 | 李玲玲, 聂小娃, 宋春山, 等. H-ZSM-5分子筛催化二甲苯异构化的反应机理[J]. 物理化学学报, 2013, 29(4): 754-762. |
LI Lingling, NIE Xiaowa, SONG Chunshan, et al. Isomerization mechanism of xylene catalyzed by H-ZSM-5 molecular sieve[J]. Acta Physico-Chimica Sinica, 2013, 29(4): 754-762. | |
15 | 于政锡, 徐庶亮, 张涛, 等. 对二甲苯生产技术研究进展及发展趋势[J]. 化工进展, 2020, 39(12): 4984-4992. |
YU Zhengxi, XU Shuliang, ZHANG Tao, et al. Research progress and development trend in para-xylene production technology[J]. Chemical Industry and Engineering Progress, 2020, 39(12): 4984-4992. | |
16 | ARSLAN Muhammad Tahir, Babar ALI, GILANI Syed Zulfiqar Ali, et al. Selective conversion of syngas into tetramethylbenzene via an Aldol-aromatic mechanism[J]. ACS Catalysis, 2020, 10(4): 2477-2488. |
17 | DAHL Ivar M, KOLBOE Stein. On the reaction mechanism for propene formation in the MTO reaction over SAPO-34[J]. Catalysis Letters, 1993, 20(3/4): 329-336. |
18 | DAHL I M, KOLBOE S. On the reaction mechanism for hydrocarbon formation from methanol over SAPO-34: 1. Isotopic labeling studies of the co-reaction of ethene and methanol[J]. Journal of Catalysis, 1994, 149(2): 458-464. |
19 | SVELLE Stian, JOENSEN Finn, NERLOV Jesper, et al. Conversion of methanol into hydrocarbons over zeolite H-ZSM-5: ethene formation is mechanistically separated from the formation of higher alkenes[J]. Journal of the American Chemical Society, 2006, 128(46): 14770-14771. |
20 | DAHL I M, KOLBOE S. On the reaction mechanism for hydrocarbon formation from methanol over SAPO-34: 2. Isotopic labeling studies of the co-reaction of ethene and methanol[J]. Journal of Catalysis, 1996, 161(1): 304-309. |
21 | Morten BJØRGEN, SVELLE Stian, JOENSEN Finn, et al. Conversion of methanol to hydrocarbons over zeolite H-ZSM-5: on the origin of the olefinic species[J]. Journal of Catalysis, 2007, 249(2): 195-207. |
22 | BI Yi, WANG Yingli, WEI Yingxu, et al. Improved selectivity toward light olefins in the reaction of toluene with methanol over the modified HZSM-5 catalyst[J]. ChemCatChem, 2014, 6(3): 713-718. |
23 | John H AHN, KOLVENBACH Robin, AL-KHATTAF Sulaiman S, et al. Methanol usage in toluene methylation with medium and large pore zeolites[J]. ACS Catalysis, 2013, 3(5): 817-825. |
24 | MILINA Maria, MITCHELL Sharon, COOKE David, et al. Impact of pore connectivity on the design of long-lived zeolite catalysts[J]. Angewandte Chemie (International Edition), 2015, 54(5): 1591-1594. |
25 | HAN He, ZHANG Anfeng, REN Limin, et al. Coke-resistant (Pt + Ni)/ZSM-5 catalyst for shape-selective alkylation of toluene with methanol to para-xylene[J]. Chemical Engineering Science, 2022, 252: 117529. |
26 | YASHIMA Tatsuaki, YAMAZAKI Kaoru, AHMAD Habib, et al. Alkylation on synthetic zeolites: II. Selectivity of p-xylene formation[J]. Journal of Catalysis, 1970, 17(2): 151-156. |
27 | CHEN N Y, KAEDING W W, DWYER F G. Para-directed aromatic reactions over shape-selective molecular sieve zeolite catalysts[J]. Journal of the American Chemical Society, 1979, 101(22): 6783-6784. |
28 | VOS A M, ROZANSKA X, SCHOONHEYDT R A, et al. A theoretical study of the alkylation reaction of toluene with methanol catalyzed by acidic mordenite[J]. Journal of the American Chemical Society, 2001, 123(12): 2799-2809. |
29 | ZHU Zhirong, CHEN Qingling, XIE Zaiku, et al. The roles of acidity and structure of zeolite for catalyzing toluene alkylation with methanol to xylene[J]. Microporous and Mesoporous Materials, 2006, 88(1/2/3): 16-21. |
30 | MASUKAWA T, KOMATSU T, YASHIMA T. Alkylation of toluene on HSAPO-5 with various Si concentrations[J]. Zeolites, 1997, 19: 429-433. |
31 | LLOPIS Francisco J, SASTRE German, CORMA Avelino. Xylene isomerization and aromatic alkylation in zeolites NU-87, SSZ-33, β, and ZSM-5: molecular dynamics and catalytic studies[J]. Journal of Catalysis, 2004, 227(1): 227-241. |
32 | BADURAIG A, ODEDAIRO T, AL-KHATTAF S. Disproportionation and methylation of toluene with methanol over zeolite catalysts[J]. Topics in Catalysis, 2010, 53(19/20): 1446-1456. |
33 | JOSHI P N, NIPHADKAR P S, DESAI P A, et al. Toluene alkylation to selective formation of p-xylene over co-crystalline ZSM-12/ZSM-5 catalyst[J]. Journal of Natural Gas Chemistry, 2007, 16(1): 37-41. |
34 | 许磊, 刘中民, 张新志, 等. 甲苯甲醇烷基化制对二甲苯和低碳烯烃固定床催化剂及应用: CN101417233A[P]. [2009-04-29]. |
XU Lei, LIU Zhongmin, ZHANG Xinzhi, et al. Fixed-bed catalyst for alkylation of toluene and methanol to p-xylene and low carbon olefin and its application: CN101417233A[P]. [2009-04-29]. | |
35 | PRAKASH A M, CHILUKURI Satyanarayana V V, BAGWE R P, et al. Silicoaluminophosphate molecular sieves SAPO-11, SAPO-31 and SAPO-41: synthesis, characterization and alkylation of toluene with methanol[J]. Microporous Materials, 1996, 6(2): 89-97. |
36 | INAGAKI Satoshi, KAMINO Kohei, KIKUCHI Eiichi, et al. Shape selectivity of MWW-type aluminosilicate zeolites in the alkylation of toluene with methanol[J]. Applied Catalysis A: General, 2007, 318: 22-27. |
37 | ZHAO Yan, WU Hongyu, TAN Wei, et al. Effect of metal modification of HZSM-5 on catalyst stability in the shape-selective methylation of toluene[J]. Catalysis Today, 2010, 156(1/2): 69-73. |
38 | WANG Yiren, LIU Min, ZHANG Anfeng, et al. Methanol usage in toluene methylation over Pt modified ZSM-5 catalyst: effects of total pressure and carrier gas[J]. Industrial & Engineering Chemistry Research, 2017, 56(16): 4709-4717. |
39 | ODEDAIRO T, BALASAMY R J, AL-KHATTAF S. Toluene disproportionation and methylation over zeolites TNU-9, SSZ-33, ZSM-5, and mordenite using different reactor systems[J]. Industrial & Engineering Chemistry Research, 2011, 50(6): 3169-3183. |
40 | KIM Jongho, KUNIEDA Takehisa, NIWA Miki. Generation of shape-selectivity of p-xylene formation in the synthesized ZSM-5 zeolites[J]. Journal of Catalysis, 1998, 173(2): 433-439. |
41 | WU Hongyu, LIU Min, TAN Wei, et al. Effect of ZSM-5 zeolite morphology on the catalytic performance of the alkylation of toluene with methanol[J]. Journal of Energy Chemistry, 2014, 23(4): 491-497. |
42 | LEE Changq, LEE Seungjun, KIM Wookdong, et al. High utilization of methanol in toluene methylation using MFI zeolite nanosponge catalyst[J]. Catalysis Today, 2018, 303: 143-149. |
43 | CEJKA Jirí, Naděžda ſILKOVÁ, Blanka WICHTERLOVÁ, et al. Decisive role of transport rate of products for zeolite para-selectivity: effect of coke deposition and external surface silylation on activity and selectivity of HZSM-5 in alkylation of toluene[J]. Zeolites, 1996, 17(3): 265-271. |
44 | 李明慧, 李书纹, 王祥生. 碱土金属化合物改性ZSM-5沸石的甲苯-甲醇烷基化反应性能[J]. 辽宁化工, 1989, 18(1): 12-15. |
LI Minghui, LI Shuwen, WANG Xiangsheng. Toluene-methanol alkylation of ZSM-5 zeolite modified by alkaline earth metal compounds[J]. Liaoning Chemical Industry, 1989, 18(1): 12-15. | |
45 | 张志萍, 赵岩, 吴宏宇, 等. 改性纳米HZSM-5催化剂上甲苯与甲醇的烷基化反应[J]. 催化学报, 2011, 32(7): 1280-1286. |
ZHANG Zhiping, ZHAO Yan, WU Hongyu, et al. Shape-selective alkylation of toluene with methanol over modified nano-scale HZSM-5 zeolite[J]. Chinese Journal of Catalysis, 2011, 32(7): 1280-1286. | |
46 | TAN Wei, LIU Min, ZHAO Yan, et al. Para-selective methylation of toluene with methanol over nano-sized ZSM-5 catalysts: synergistic effects of surface modifications with SiO2, P2O5 and MgO[J]. Microporous and Mesoporous Materials, 2014, 196: 18-30. |
47 | MIYAMOTO M, KAMEI T, NISHIYAMA N, et al. Single crystals of ZSM-5/silicalite composites[J]. Advanced Materials, 2005, 17(16): 1985-1988. |
48 | Dung Van VU, MIYAMOTO Manabu, NISHIYAMA Norikazu, et al. Catalytic activities and structures of silicalite-1/H-ZSM-5 zeolite composites[J]. Microporous and Mesoporous Materials, 2008, 115(1/2): 106-112. |
49 | Dung VAN VU, MIYAMOTO Manabu, NISHIYAMA Norikazu, et al. Selective formation of para-xylene over H-ZSM-5 coated with polycrystalline silicalite crystals[J]. Journal of Catalysis, 2006, 243(2): 389-394. |
50 | 那银娜, 刘民, 宋春山, 等. 水对改性HZSM-5催化联苯甲基化反应的影响[J]. 物理化学学报, 2013, 29(5): 1073-1079. |
NA Yinna, LIU Min, SONG Chunshan, et al. Effect of water on biphenyl methylation over modified HZSM-5[J]. Acta Physico-Chimica Sinica, 2013, 29(5): 1073-1079. | |
51 | NUNAN John, CRONIN John, CUNNINGHAM Joseph. Combined catalytic and infrared study of the modification of H-ZSM-5 with selected poisons to give high p-xylene selectivity[J]. Journal of Catalysis, 1984, 87(1): 77-85. |
52 | LI Junhui, XIANG Hao, LIU Min, et al. The deactivation mechanism of two typical shape-selective HZSM-5 catalysts for alkylation of toluene with methanol[J]. Catalysis Science & Technology, 2014, 4(8): 2639-2649. |
53 | Dung VU, MIYAMOTO Manabu, NISHIYAMA Norikazu, et al. Morphology control of silicalite/HZSM-5 composite catalysts for the formation of para-xylene[J]. Catalysis Letters, 2008, 127(3/4): 233-238. |
54 | WANG Chuanfu, ZHANG Lei, HUANG Xin, et al. Maximizing sinusoidal channels of HZSM-5 for high shape-selectivity to p-xylene[J]. Nature Communications, 2019, 10(1): 4348. |
55 | ZHAO Yan, TAN Wei, WU Hongyu, et al. Effect of Pt on stability of nano-scale ZSM-5 catalyst for toluene alkylation with methanol into p-xylene[J]. Catalysis Today, 2011, 160(1): 179-183. |
56 | LI Junhui, JI Wenxue, LIU Min, et al. New insight into the alkylation-efficiency of methanol with toluene over ZSM-5: microporous diffusibility significantly affects reacting-pathways[J]. Microporous and Mesoporous Materials, 2019, 282: 252-259. |
57 | CHOI Minkee, WU Zhijie, IGLESIA Enrique. Mercaptosilane-assisted synthesis of metal clusters within zeolites and catalytic consequences of encapsulation[J]. Journal of the American Chemical Society, 2010, 132(26): 9129-9137. |
58 | GOEL Sarika, ZONES Stacey I, IGLESIA Enrique. Encapsulation of metal clusters within MFI via interzeolite transformations and direct hydrothermal syntheses and catalytic consequences of their confinement[J]. Journal of the American Chemical Society, 2014, 136(43): 15280-15290. |
59 | KISTLER Joseph D, CHOTIGKRAI Nutchapon, XU Pinghong, et al. A single-site platinum CO oxidation catalyst in zeolite KLTL: microscopic and spectroscopic determination of the locations of the platinum atoms[J]. Angewandte Chemie International Edition, 2014, 53(34): 8904-8907. |
60 | ZHANG Jian, WANG Liang, ZHANG Bingsen, et al. Sinter-resistant metal nanoparticle catalysts achieved by immobilization within zeolite crystals via seed-directed growth[J]. Nature Catalysis, 2018, 1(7): 540-546. |
61 | 顾道斌. 甲苯甲醇催化烷基化制对二甲苯技术研究进展[J]. 天然气化工(C1化学与化工), 2013, 38(6): 62-66. |
GU Daobin. Research advances in technologies of catalytic alkylation of toluene with methanol to para-xylene[J]. Natural Gas Chemical Industry, 2013, 38(6): 62-66. | |
62 | 孔德金, 祁晓岚, 郑均林, 等. 面向芳烃工业的催化新材料[J]. 化学反应工程与工艺, 2013, 29(5): 449-455. |
KONG Dejin, QI Xiaolan, ZHENG Junlin, et al. Novel catalytic materials towards industrial production of aromatics[J]. Chemical Reaction Engineering and Technology, 2013, 29(5): 449-455. | |
63 | 李木金, 杨卫胜, 贺来宾, 等. 甲苯甲醇择形甲基化工艺在芳烃联合装置中的应用[J]. 炼油技术与工程, 2015, 45(5): 6-9. |
LI Mujin, YANG Weisheng, HE Laibin, et al. Research on application of toluene methanol selective methylation process in aromatic complex[J]. Petroleum Refinery Engineering, 2015, 45(5): 6-9. | |
64 | 中国石化有机原料科技情报中心站. 全球首套甲苯甲醇甲基化装置竣工验收[J]. 石油炼制与化工, 2018, 49(3): 79. |
Sinopec Organic Raw Material Science and Technology Information Center. The world’s first toluene and methanol methylation unit was completed and accepted[J]. Petroleum Processing and Petrochemicals, 2018, 49(3): 79 | |
65 | 张变玲, 徐瑞芳, 张世刚, 等. 甲苯甲醇烷基化制对二甲苯技术专利分析[J]. 广东化工, 2016, 43(14): 103-105. |
ZHANG Bianling, XU Ruifang, ZHANG Shigang, et al. Patent analysis on technology of the alkylation of toluene with methanol to para-xylene[J]. Guangdong Chemical Industry, 2016, 43(14): 103-105. | |
66 | 许磊, 华邦嵩, 刘中民, 等. 一种甲苯甲基化制对二甲苯联产低碳烯烃的方法: CN1721378A[P]. [2006-01-18]. |
XU Lei, HUA Bangsong, LIU Zhengmin, et al. Process for combined preparation of p-xylene and low carbon olefin by methylation of toluene: CN1721378A[P]. [2006-01-18]. | |
67 | 中国石化有机原料科技情报中心站.中国科学院甲苯甲醇制PX联产烯烃技术通过鉴定[J]. 石油炼制与化工, 2013, 44(2): 87. |
Sinopec Organic Raw Material Science and Technology Information Center. The Chinese Academy of Sciences approved the technology of producing PX with toluene and methanol[J]. Petroleum Processing and Petrochemicals, 2013, 44(2): 87. | |
68 | 胡敏. “甲醇甲苯制对二甲苯联产烯烃工艺”通过成果鉴定[J]. 炼油技术与工程, 2017, 47(8): 15. |
HU Min. Methanol toluene to p-xylene combined olefin production process passed the achievement appraisal[J]. Petroleum Refinery Engineering, 2017, 47(8): 15. | |
69 | 中国石化有机原料科技情报中心站. 甲苯与甲醇制对二甲苯联产低碳烯烃技术通过鉴定[J]. 石油炼制与化工, 2019, 50(4): 87. |
Sinopec Organic Raw Material Science and Technology Information Center. The technology of producing low carbon olefin from toluene and methanol to paraxylene was identified[J]. Petroleum Processing and Petrochemicals, 2019, 50(4): 87. | |
70 | 中国石化有机原料科技情报中心站. 陕煤化苯/甲苯甲醇甲基化制PX两项技术通过鉴定[J]. 石油化工技术与经济, 2017, 33(5): 49. |
Sinopec Organic Raw Material Science and Technology Information Center. Shaanxi coal benzene/toluene methanol methylation PX two technology through identification[J]. Technology & Economics in Petrochemicals, 2017, 33(5): 49. | |
71 | 汪彩彩, 辛玉兵, 张世刚. 甲苯甲醇烷基化制对二甲苯技术研究进展[J]. 山东化工, 2019, 48(4): 39-41. |
WANG Caicai, XIN Yubing, ZHANG Shigang. Research progress in the preparation of Para-xylene by alkylation of ttoluene with methanol[J]. Shandong Chemical Industry, 2019, 48(4): 39-41. | |
72 | 丁春华, 王祥生, 郭新闻. 氧化物改性MCM-22上甲苯与甲醇的烷基化性能研究[J]. 石油学报(石油加工), 2007, 23(5): 38-42. |
DING Chunhua, WANG Xiangsheng, GUO Xinwen. Study on alkylation of toluene with methanol over oxide-modified mcm-22 zeolite[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2007, 23(5): 38-42. | |
73 | BROWN Stephen H, MATHIAS Mark F, WARE Robert A, et al. Selective para-xylene production by toluene methylation: US6423879[P]. [2002-07-23]. |
74 | DAKKA J M, BUCHANAN J S, CRANE R A, et al. Process for aromatic alkylation: US7453018(B2)[P]. [2008-11-18]. |
75 | 中国石化有机原料科技情报中心站. 埃克森美孚公司推介“EMTAM”和“LP”两项芳烃生产工艺[J]. 石油炼制与化工, 2018, 49(9): 63. |
Sinopec Organic Raw Material Science and Technology Information Center. Exxonmobil introduced EMTAM and LP aromatics production processes[J]. Petroleum Processing and Petrochemicals, 2018, 49(9): 63. | |
76 | SOULTANIDIS Nikolaos, DETJEN Todd E, WEIGEL Scott J. Catalyst and process for the production of para-xylene: US20190039968[P]. [2019-02-07]. |
77 | 朱伟平, 李飞, 薛云鹏, 等. 甲醇制芳烃技术研究进展[J]. 现代化工, 2014, 34(7): 36-40, 42. |
ZHU Weiping, LI Fei, XUE Yunpeng, et al. Advances in methanol to aromatics technology[J]. Modern Chemical Industry, 2014, 34(7): 36-40, 42. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[3] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[4] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[5] | 陈崇明, 陈秋, 宫云茜, 车凯, 郁金星, 孙楠楠. 分子筛基CO2吸附剂研究进展[J]. 化工进展, 2023, 42(S1): 411-419. |
[6] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[7] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[8] | 董佳宇, 王斯民. 超声强化对二甲苯结晶特性及调控机理实验[J]. 化工进展, 2023, 42(9): 4504-4513. |
[9] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[10] | 王鹏, 史会兵, 赵德明, 冯保林, 陈倩, 杨妲. 过渡金属催化氯代物的羰基化反应研究进展[J]. 化工进展, 2023, 42(9): 4649-4666. |
[11] | 张启, 赵红, 荣峻峰. 质子交换膜燃料电池中氧还原反应抗毒性电催化剂研究进展[J]. 化工进展, 2023, 42(9): 4677-4691. |
[12] | 王伟涛, 鲍婷玉, 姜旭禄, 何珍红, 王宽, 杨阳, 刘昭铁. 醛酮树脂基非金属催化剂催化氧气氧化苯制备苯酚[J]. 化工进展, 2023, 42(9): 4706-4715. |
[13] | 葛亚粉, 孙宇, 肖鹏, 刘琦, 刘波, 孙成蓥, 巩雁军. 分子筛去除VOCs的研究进展[J]. 化工进展, 2023, 42(9): 4716-4730. |
[14] | 吴海波, 王希仑, 方岩雄, 纪红兵. 3D打印催化材料开发与应用进展[J]. 化工进展, 2023, 42(8): 3956-3964. |
[15] | 向阳, 黄寻, 魏子栋. 电催化有机合成反应的活性和选择性调控研究进展[J]. 化工进展, 2023, 42(8): 4005-4014. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |