[1] CHEN C, ZHAO Y, WEI W, et al. Fabrication of silver nanowire transparent conductive films with an ultra-low haze and ultra-high uniformity and their application in transparent electronics[J]. Journal of Materials Chemistry C, 2017, 5(9):2240-2246.
[2] XU W, XU Q, HUANG Q, et al. Fabrication of flexible transparent conductive films with silver nanowire by vacuum filtration and PET mold transfer[J]. Journal of Materials Science & Technology, 2016, 32(2):158-161.
[3] AN S, JO H S, KIM D Y, et al. Self-junctioned copper nanofiber transparent flexible conducting film via electrospinning and electroplating[J]. Advanced Materials, 2016, 28(33):7149-7154.
[4] LI L J,HUANG J,YANG W C,et al. Fabrication and characterization of p-CuS/n-GaN thin film heterojunction diodes[J]. Surface & Coatings Technology, 2016, 307:1024-1028.
[5] KRISHNAMOORTHY K, VEERASUBRAMANI G K, NAGAMALLESWARA R A, et al. One-pot hydrothermal synthesis, characterization and electrochemical properties of CuS nanoparticles towards supercapacitor applications[J]. Materials Research Express, 2014, 1(3):35006.
[6] 赵双生,应宗荣,杨佳佳,等. "一锅法"水热制备CuS/C复合材料及其在超级电容器中的应用[J]. 化工学报, 2016, 67(11):4892-4898. ZHAO S S, YING Z R, YANG J J, et al. One-pot hydrothermal synthesis of CuS/C composite and its application in supercapacitors[J]. CIESC Journal, 2016, 67(11):4892-4898.
[7] NASCU C, POP I, IONESCU V, et al. Spray pyrolysis deposition of CuS thin films[J]. Materials Letters, 1997, 32(2/3):73-77.
[8] MUKHERJEE N, SINHA A, KHAN G G, et al. A study on the structural and mechanical properties of nanocrystalline CuS thin films grown by chemical bath deposition technique[J]. Materials Research Bulletin, 2011, 46(1):6-11.
[9] 李浩楠. 纳米结构硫化钴作为超级电容器电极材料的研究进展[J].化工进展, 2016, 35(11):3549-3557. LI H N. Research progress of nanostructured cobalt sulfides materials for supercapacitors[J]. Chemical Industry and Engineering Progress, 2016, 35(11):3549-3557.
[10] NAIR M T S, NAIR P K. Chemical bath deposition of CuxS thin films and their prospective large area applications[J]. Semiconductor Science & Technology, 1999, 4(3):191.
[11] SEBASTIAN P J, GOMEZ DAZA O, CAMPOS J, et al. The structural, transport and optical properties of screen printed CuxS thick films[J]. Solar Energy Materials & Solar Cells, 1994, 32(2):159-168.
[12] CAI Q, LU S, LIAO F, et al. Catalytic degradation of dye molecules and in situ SERS monitoring by peroxidase-like Au/CuS composite[J]. Nanoscale, 2014, 6(14):8117-8123.
[13] EROKHINA S, EROKHIN V, NICOLINI C. Microstructure origin of the conductivity differences in aggregated CuS films of different thickness[J]. Langmuir, 2003, 19(3):766-771.
[14] KUCHMⅡ S Y, KORZHAK A V, RAEVSKAYA A E, et al. Catalysis of the sodium sulfide reduction of methylviologene by CuS nanoparticles[J]. Theoretical & Experimental Chemistry, 2001, 37(1):36-41.
[15] XU Z, LI T, ZHANG F, et al. Highly flexible, transparent and conducting CuS-nanosheet networks for flexible quantum-dot solar cells[J]. Nanoscale, 2017, 9(11):3826-3833.
[16] PARREIRA P, LAVAREDA G, AMARAL A, et al. Transparent p-type CuxS thin films[J]. Journal of Alloys & Compounds, 2011, 509(16):5099-5104.
[17] ZHANG X, LIU X, ZHANG Y, et al. Rational design of ITO/CuS nanosheet network composite film as counter electrode for flexible dye sensitized solar cell[J]. Journal of Materials Chemistry C, 2016, 4(34):8130-8134.
[18] SAHRAEI R, DARAFARIN S. Preparation of nanocrystalline Ni doped ZnS thin films by ammonia-free chemical bath deposition method and optical properties[J]. Journal of Luminescence, 2014, 149(5):170-175.
[19] HUSE N P, UPADHYEA D S, DIVE A S, et al. Study of opto-electronic properties of copper sulphide thin film grown by chemical bath deposition technique for electronic device application[J]. Invertis Journal of Renewable Energy, 2016, 6(2):74-78.
[20] SAGADEVAN S, PODDER J. Optical and electrical properties of nanocrystalline SnO thin films synthesized by chemical bath deposition method[J]. Soft Nanoscience Letters, 2015, 5(5):55-64.
[21] LI S J, ZHA T Y, WANG Q, et al. Facile fabrication of p-type CuxS transparent conducting thin films by metal sulfide precursor solution approach and their application in quantum dot thin films[J]. Journal of Alloys & Compounds, 2017, 716:278-283.
[22] CARDOSO J, GOMEZ-DAZA O, IXTLILCO L, et al. Conductive copper sulfide thin films on polyimide foils for optical and optoelectronic applications[J]. Modern Physics Letters B, 2001, 15(17/18/19):774-777.
[23] PATEL D K, KAMYSHNY A, ARIANDO A, et al. Fabrication of transparent conducting films composed of In3+ doped CuS and their application in flexible electroluminescent devices[J]. Journal of Materials Chemistry C, 2015, 3(33):8700-8705.
[24] KRYLOVA V, IUS M A. Optical, XPS and XRD studies of semiconducting copper sulfide layers on a polyamide film[J]. International Journal of Photoenergy, 2009(3):53-58.
[25] GASPAROTTO L H S, GARCIA A C, GOMES J F, et al. Electrocatalytic performance of environmentally friendly synthesized gold nanoparticles towards the borohydride electro-oxidation reaction[J]. Journal of Power Sources, 2012, 218(8):73-78.
[26] KIM Y, KIM H S, BAK H, et al. Transparent conducting films based on nanofibrous polymeric membranes and single-walled carbon nanotubes[J]. Journal of Applied Polymer Science, 2009, 114(5):2864-2872.
[27] FUH Y K, LIEN L C. Pattern transfer of aligned metal nano/microwires as flexible transparent electrodes using an electrospun nanofiber template[J]. Nanotechnology, 2013, 24(5):55301.
[28] MATTHEWSON M J, KURKJIAN C R, GULATI S T. Strength measurement of optical fibers by bending[J]. Journal of the American Ceramic Society, 1986, 69(11):815-821.
[29] PALERMO V, KINLOCH I A, LIGI S, et al. Nanoscale mechanics of graphene and graphene oxide in composites:a scientific and technological perspective[J]. Advanced Materials, 2016, 28(29):6232-6238. |