化工进展 ›› 2021, Vol. 40 ›› Issue (5): 2646-2664.DOI: 10.16085/j.issn.1000-6613.2020-1196
收稿日期:
2020-06-28
出版日期:
2021-05-06
发布日期:
2021-05-24
通讯作者:
宋湛谦
作者简介:
王思恒(1996—),男,硕士研究生,研究方向为纤维素基功能高分子材料。E-mail:基金资助:
WANG Siheng(), YANG Xinxin, LIU He, SHANG Shibin, SONG Zhanqian()
Received:
2020-06-28
Online:
2021-05-06
Published:
2021-05-24
Contact:
SONG Zhanqian
摘要:
导电水凝胶是一类将亲水性基质和导电介质有机结合的新型水凝胶,具有较高的柔韧性、可调的力学性能和优异的电化学性能,在柔性电子设备等领域具有广阔的应用前景。本文综述了导电水凝胶材料的研究前沿和动态,介绍了导电水凝胶的分类及制备方法,讨论了导电水凝胶的结构设计与性能,重点阐述了导电水凝胶材料的应用研究进展,归纳了导电水凝胶材料面临的问题与挑战,并展望了导电水凝胶材料的发展趋势,指出采用天然可再生资源为原料开发具有高导电性、力学性能稳定、耐极端温度、生物相容性和生物可降解的导电水凝胶将成为下一步研究重点,同时优化柔性电子装置、提高器件输出稳定性也将成为重要的研究方向之一。导电水凝胶的制备及应用研究将促进柔性电子功能材料领域的快速发展。
中图分类号:
王思恒, 杨欣欣, 刘鹤, 商士斌, 宋湛谦. 导电水凝胶的制备及应用研究进展[J]. 化工进展, 2021, 40(5): 2646-2664.
WANG Siheng, YANG Xinxin, LIU He, SHANG Shibin, SONG Zhanqian. Research progress in preparation and application of conductive hydrogels[J]. Chemical Industry and Engineering Progress, 2021, 40(5): 2646-2664.
制备方法 | 导电介质 | 导电类型 | 阻抗/Ω | 导电率/S·m-1 | 参考文献 |
---|---|---|---|---|---|
引入导电聚合物到水凝胶 | PANI | 电子 | 102~105 | 10-3~101 | [ |
PPy | 102~104 | 10-2~101 | [ | ||
PEDOT∶PSS | 102~103 | 10-1~101 | [ | ||
引入导电颗粒到水凝胶 | 金属 | 电子 | 101~103 | 10-2~101 | [ |
CNT | 103~107 | 10-3~101 | [ | ||
GO | 103~105 | 10-3~100 | [ | ||
引入导电离子到水凝胶 | 离子盐 | 离子 | 102~105 | 10-2~101 | [ |
表1 导电水凝胶的导电性能
制备方法 | 导电介质 | 导电类型 | 阻抗/Ω | 导电率/S·m-1 | 参考文献 |
---|---|---|---|---|---|
引入导电聚合物到水凝胶 | PANI | 电子 | 102~105 | 10-3~101 | [ |
PPy | 102~104 | 10-2~101 | [ | ||
PEDOT∶PSS | 102~103 | 10-1~101 | [ | ||
引入导电颗粒到水凝胶 | 金属 | 电子 | 101~103 | 10-2~101 | [ |
CNT | 103~107 | 10-3~101 | [ | ||
GO | 103~105 | 10-3~100 | [ | ||
引入导电离子到水凝胶 | 离子盐 | 离子 | 102~105 | 10-2~101 | [ |
类别 | 水凝胶 | 导电介质 | 导电率 /S·m-1 | 断裂 伸长率/% | 压缩模量 /MPa | 应用 | 参考文献 |
---|---|---|---|---|---|---|---|
PAA基导电水凝胶 | PAA/PANI | PANI | 5.12 | 1160 | N/A | 传感器 | [ |
PAA/BaFe12O19 | BaFe12O19 | 1.22 | N/A | 0.0871 | 传感器 | [ | |
PAA/PEO-b-PLAA/KCl | KCl | 1 | 9800 | N/A | N/A | [ | |
PAA/PDMAPS/IL | PDMAPS/IL | 1.2 | 10000 | 2.2 | 传感器 | [ | |
PAAm基导电水凝胶 | P(AGA-co-AAm)/Fe3+ | Fe3+ | 2.4 | 707 | 36.1 | N/A | [ |
PAAm/GO | GO | 8.865 | N/A | N/A | 电池 | [ | |
PAAm/SiO2/H3PO4 | H3PO4 | 1.7 | 1500 | N/A | 超级电容器 | [ | |
PAAm/LiCl | LiCl | 1 | 1000 | N/A | 触摸屏 | [ | |
PVA基导电水凝胶 | PVA/HPC/NaCl | NaCl | 3.4 | 975 | N/A | 传感器 | [ |
PVA/PANI | PANI | 19 | 416 | 2.68 | 超级电容器 | [ | |
PVA/植酸 | 植酸 | 13.4 | 1100 | N/A | 传感器 | [ | |
PVA/PDA/GO | GO | 2.7 | 415 | N/A | 传感器 | [ | |
PVA/丝素蛋白/硼砂 | 硼砂 | 63 | 5000 | N/A | 传感器 | [ | |
PEG基导电水凝胶 | (PEG/PEDOT)∶(PSS/H2SO4) | PEDOT∶(PSS/H2SO4) | 1.69 | N/A | 0.021 | 组织工程支架 | [ |
PEG/PEDOT | PEDOT | N/A | N/A | 1.28 | 传感器 | [ | |
PEG/AgNWs | AgNWs | N/A | 100 | 0.016 | 传感器 | [ | |
PEG/Na2SO4 | Na2SO4 | N/A | N/A | N/A | 离子电路 | [ |
表2 合成高分子类导电水凝胶的性能及应用
类别 | 水凝胶 | 导电介质 | 导电率 /S·m-1 | 断裂 伸长率/% | 压缩模量 /MPa | 应用 | 参考文献 |
---|---|---|---|---|---|---|---|
PAA基导电水凝胶 | PAA/PANI | PANI | 5.12 | 1160 | N/A | 传感器 | [ |
PAA/BaFe12O19 | BaFe12O19 | 1.22 | N/A | 0.0871 | 传感器 | [ | |
PAA/PEO-b-PLAA/KCl | KCl | 1 | 9800 | N/A | N/A | [ | |
PAA/PDMAPS/IL | PDMAPS/IL | 1.2 | 10000 | 2.2 | 传感器 | [ | |
PAAm基导电水凝胶 | P(AGA-co-AAm)/Fe3+ | Fe3+ | 2.4 | 707 | 36.1 | N/A | [ |
PAAm/GO | GO | 8.865 | N/A | N/A | 电池 | [ | |
PAAm/SiO2/H3PO4 | H3PO4 | 1.7 | 1500 | N/A | 超级电容器 | [ | |
PAAm/LiCl | LiCl | 1 | 1000 | N/A | 触摸屏 | [ | |
PVA基导电水凝胶 | PVA/HPC/NaCl | NaCl | 3.4 | 975 | N/A | 传感器 | [ |
PVA/PANI | PANI | 19 | 416 | 2.68 | 超级电容器 | [ | |
PVA/植酸 | 植酸 | 13.4 | 1100 | N/A | 传感器 | [ | |
PVA/PDA/GO | GO | 2.7 | 415 | N/A | 传感器 | [ | |
PVA/丝素蛋白/硼砂 | 硼砂 | 63 | 5000 | N/A | 传感器 | [ | |
PEG基导电水凝胶 | (PEG/PEDOT)∶(PSS/H2SO4) | PEDOT∶(PSS/H2SO4) | 1.69 | N/A | 0.021 | 组织工程支架 | [ |
PEG/PEDOT | PEDOT | N/A | N/A | 1.28 | 传感器 | [ | |
PEG/AgNWs | AgNWs | N/A | 100 | 0.016 | 传感器 | [ | |
PEG/Na2SO4 | Na2SO4 | N/A | N/A | N/A | 离子电路 | [ |
类别 | 水凝胶 | 导电介质 | 导电率 /S·m-1 | 断裂伸长率/% | 压缩模量 /MPa | 应用 | 参考 文献 |
---|---|---|---|---|---|---|---|
明胶基导电水凝胶 | 明胶/(NH4)2SO4 | (NH4)2SO4 | 5 | 300 | 6.41 | N/A | [ |
明胶/PANI | PANI | 4.54×10-2 | N/A | N/A | 组织工程支架 | [ | |
明胶/MWNT | MWNT | 5×10-2 | 160 | N/A | 传感器 | [ | |
明胶/AgNWs/Na2SO4 | AgNWs/Na2SO4 | 10 | 350 | N/A | 传感器 | [ | |
海藻酸盐基导电水凝胶 | 海藻酸钠/PAAm/CaCl2 | CaCl2 | N/A | 2422 | N/A | 传感器 | [ |
海藻酸钠/PAAm/PAA/ZnSO4 | ZnSO4 | N/A | 4200 | N/A | 传感器 | [ | |
海藻酸钠/PAAm/CNT/(PEDOT∶PSS) | CNT/(PEDOT∶PSS) | 0.048 | 1000 | N/A | 超级电容器 | [ | |
海藻酸钠/PAAm/Na2SO4 | Na2SO4 | 1.49 | 2400 | N/A | 超级电容器 | [ | |
壳聚糖基导电水凝胶 | 壳聚糖/PAAm/PPy | PPy | 0.3 | 500 | 136.3 | 创面修复 | [ |
壳聚糖/AgNWs/AgNO3 | AgNWs/AgNO3 | 0.48 | N/A | N/A | 传感器 | [ | |
壳聚糖/AgNWs/CuSO4 | AgNWs/CuSO4 | 0.25 | N/A | N/A | 传感器 | [ | |
壳聚糖/PANI | PANI | 743.7 | N/A | N/A | N/A | [ | |
纤维素基导电水凝胶 | 纤维素/PANI | PANI | 3.47 | N/A | 4 | 超级电容器 | [ |
纤维素/[Bmim]Cl | [Bmim]Cl | 4 | 100 | N/A | 传感器 | [ | |
纤维素/(NH4)2S2O8 | (NH4)2S2O8 | 0.016 | 126 | 0.036 | 传感器 | [ | |
纤维素/PAAm/ZnSO4/MnSO4 | ZnSO4/MnSO4 | 2.28 | 1400 | N/A | 电池 | [ |
表3 天然高分子类导电水凝胶的性能及应用
类别 | 水凝胶 | 导电介质 | 导电率 /S·m-1 | 断裂伸长率/% | 压缩模量 /MPa | 应用 | 参考 文献 |
---|---|---|---|---|---|---|---|
明胶基导电水凝胶 | 明胶/(NH4)2SO4 | (NH4)2SO4 | 5 | 300 | 6.41 | N/A | [ |
明胶/PANI | PANI | 4.54×10-2 | N/A | N/A | 组织工程支架 | [ | |
明胶/MWNT | MWNT | 5×10-2 | 160 | N/A | 传感器 | [ | |
明胶/AgNWs/Na2SO4 | AgNWs/Na2SO4 | 10 | 350 | N/A | 传感器 | [ | |
海藻酸盐基导电水凝胶 | 海藻酸钠/PAAm/CaCl2 | CaCl2 | N/A | 2422 | N/A | 传感器 | [ |
海藻酸钠/PAAm/PAA/ZnSO4 | ZnSO4 | N/A | 4200 | N/A | 传感器 | [ | |
海藻酸钠/PAAm/CNT/(PEDOT∶PSS) | CNT/(PEDOT∶PSS) | 0.048 | 1000 | N/A | 超级电容器 | [ | |
海藻酸钠/PAAm/Na2SO4 | Na2SO4 | 1.49 | 2400 | N/A | 超级电容器 | [ | |
壳聚糖基导电水凝胶 | 壳聚糖/PAAm/PPy | PPy | 0.3 | 500 | 136.3 | 创面修复 | [ |
壳聚糖/AgNWs/AgNO3 | AgNWs/AgNO3 | 0.48 | N/A | N/A | 传感器 | [ | |
壳聚糖/AgNWs/CuSO4 | AgNWs/CuSO4 | 0.25 | N/A | N/A | 传感器 | [ | |
壳聚糖/PANI | PANI | 743.7 | N/A | N/A | N/A | [ | |
纤维素基导电水凝胶 | 纤维素/PANI | PANI | 3.47 | N/A | 4 | 超级电容器 | [ |
纤维素/[Bmim]Cl | [Bmim]Cl | 4 | 100 | N/A | 传感器 | [ | |
纤维素/(NH4)2S2O8 | (NH4)2S2O8 | 0.016 | 126 | 0.036 | 传感器 | [ | |
纤维素/PAAm/ZnSO4/MnSO4 | ZnSO4/MnSO4 | 2.28 | 1400 | N/A | 电池 | [ |
1 | AHMED Enas M. Hydrogel: Preparation, characterization, and applications: a review[J]. Journal of Advanced Research, 2015, 6(2): 105-121. |
2 | MIN Jihong, PATEL Madhumita, Wongun KOH. Incorporation of conductive materials into hydrogels for tissue engineering applications[J]. Polymers, 2018, 10(10): 1078. |
3 | RONG Qinfeng, LEI Wenwei, LIU Mingjie. Conductive hydrogels as smart materials for flexible electronic devices[J]. Chemistry:a European Journal, 2018, 24(64): 16930-16943. |
4 | KIM Sun Hong, JUNG Sungmook, YOON In Seon, et al. Ultrastretchable conductor fabricated on skin‐like hydrogel-elastomer hybrid substrates for skin electronics[J]. Advanced Materials, 2018, 30(26): 1800109. |
5 | KOOK Geon, JEONG Sohyeon, KIM Mi Kyung, et al. Fabrication of highly dense silk fibroin biomemristor array and its resistive switching characteristics[J]. Advanced Materials Technologies, 2020, 5(4): 1900991. |
6 | PAN Shaowu, ZHANG Feilong, CAI Pingqiang, et al. Mechanically interlocked hydrogel-elastomer hybrids for on-skin electronics[J]. Advanced Functional Materials, 2020, 30(29): 1909540. |
7 | DAUTTA Manik, ALSHETAIWI Muhannad, ESCOBAR Alberto, et al. Multi-functional hydrogel-interlayer RF/NFC resonators as a versatile platform for passive and wireless biosensing[J]. Advanced Electronic Materials, 2020, 6(4): 1901311. |
8 | DING Hanyuan, XIN Zeqin, YANG Yueyang, et al. Ultrasensitive, low-voltage operational, and asymmetric ionic sensing hydrogel for multipurpose applications[J]. Advanced Functional Materials, 2020, 30(12): 1909616. |
9 | KHAZAELI Ali, Gabrielle GODBILLE-CARDONA, BARZ Dominik P J. A novel flexible hybrid battery-supercapacitor based on a self-assembled vanadium-graphene hydrogel[J]. Advanced Functional Materials, 2020, 30(21): 1910738. |
10 | LIU Yudong, LU Nan, LIU Fengya, et al. Highly strong and tough double‐crosslinked hydrogel electrolyte for flexible supercapacitors[J]. ChemElectroChem, 2020, 7(4): 1007-1015. |
11 | DISTLER Thomas, BOCCACCINI Aldo R. 3D printing of electrically conductive hydrogels for tissue engineering and biosensors: a review[J]. Acta Biomaterialia, 2020, 101: 1-13. |
12 | ZHAO Fei, SHI Ye, PAN Lijia, et al. Multifunctional nanostructured conductive polymer gels: synthesis, properties, and applications[J]. Accounts of Chemical Research, 2017, 50(7): 1734-1743. |
13 | DENG Hua, LIN Lin, JI Mizhi, et al. Progress on the morphological control of conductive network in conductive polymer composites and the use as electroactive multifunctional materials[J]. Progress in Polymer Science, 2014, 39(4): 627-655. |
14 | SHI Ye, PENG Lele, DING Yu, et al. Nanostructured conductive polymers for advanced energy storage[J]. Chemical Society Reviews, 2015, 44(19): 6684-6696. |
15 | Hyunwoo YUK, LU Baoyang, ZHAO Xuanhe. Hydrogel bioelectronics[J]. Chemical Society Reviews, 2019, 48(6): 1642-1667. |
16 | WANG Zhiwen, ZHOU Hongwei, LAI Jialiang, et al. Extremely stretchable and electrically conductive hydrogels with dually synergistic networks for wearable strain sensors[J]. Journal of Materials Chemistry C, 2018, 6(34): 9200-9207. |
17 | Yooyong LEE, KANG Hoyoung, GWON Seok Hyeon, et al. A strain‐insensitive stretchable electronic conductor: PEDOT:PSS/acrylamide organogels[J]. Advanced Materials, 2016, 28(8): 1636-1643. |
18 | DING Qinqin, XU Xinwu, YUE Yiying, et al. Nanocellulose-mediated electroconductive self-healing hydrogels with high strength, plasticity, viscoelasticity, stretchability, and biocompatibility toward multifunctional applications[J]. ACS Applied Materials & Interfaces, 2018, 10(33): 27987-28002. |
19 | ZHANG Rui, RUAN Hengzhi, ZHOU Tianxu, et al. High-performance poly(acrylic acid) hydrogels formed with a block copolymer crosslinker containing amino-acid derivatives[J]. Soft Matter, 2019, 15(37): 7381-7389. |
20 | CHOI Suji, HAN Sang Ihn, KIM Dokyoon, et al. High-performance stretchable conductive nanocomposites: materials, processes, and device applications[J]. Chemical Society Reviews, 2019, 48(6): 1566-1595. |
21 | GAN Donglin, HAN Lu, WANG Menghao, et al. Conductive and tough hydrogels based on biopolymer molecular templates for controlling in situ formation of polypyrrole nanorods[J]. ACS Applied Materials & Interfaces, 2018, 10(42): 36218-36228. |
22 | ADHIKARI Sarbani, BANERJI P. Polyaniline composite by in situ polymerization on a swollen PVA gel[J]. Synthetic Metals, 2009, 159(23/24): 2519-2524. |
23 | LIN Jianming, TANG Qunwei, HU De, et al. Electric field sensitivity of conducting hydrogels with interpenetrating polymer network structure[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 346(1): 177-183. |
24 | BAJPAI A K, BAJPAI J, SONI S N. Designing polyaniline (PANI) and polyvinyl alcohol (PVA) based electrically conductive nanocomposites: preparation, characterization and blood compatible study[J]. Journal of Macromolecular Science A, 2009, 46(8): 774-782. |
25 | LI Wanwan, GAO Fengxian, WANG Xiaoqian, et al. Strong and robust polyaniline-based supramolecular hydrogels for flexible supercapacitors[J]. Angewandte Chemie, 2016, 128(32): 9342-9347. |
26 | WU Qian, WEI Junjie, XU Bing, et al. A robust, highly stretchable supramolecular polymer conductive hydrogel with self-healability and thermo-processability[J]. Scientific Reports, 2017, 7(1): 41566. |
27 | ZHANG Wei, FENG Pan, CHEN Jian, et al. Electrically conductive hydrogels for flexible energy storage systems[J]. Progress in Polymer Science, 2019, 88: 220-240. |
28 | FAN Zhanxi, ZHANG Hua. Crystal phase-controlled synthesis, properties and applications of noble metal nanomaterials[J]. Chemical Society Reviews, 2016, 45(1): 63-82. |
29 | BAEI Payam, Sasan JALILI-FIROOZINEZHAD, Sareh RAJABI-ZELETI, et al. Electrically conductive gold nanoparticle-chitosan thermosensitive hydrogels for cardiac tissue engineering[J]. Materials Science & Engineering, C: Materials for Biological Applications, 2016, 63: 131-141. |
30 | Yumi AHN, Hyungjin LEE, Donghwa LEE, et al. Highly conductive and flexible silver nanowire-based microelectrodes on biocompatible hydrogel[J]. ACS Applied Materials & Interfaces, 2014, 6(21): 18401-18407. |
31 | NAVAEI Ali, SAINI Harpinder, CHRISTENSON Wayne, et al. Gold nanorod-incorporated gelatin-based conductive hydrogels for engineering cardiac tissue constructs[J]. Acta Biomaterialia, 2016, 41: 133-146. |
32 | LIN Fengcai, WANG Zi, SHEN Yanping, et al. Natural skin-inspired versatile cellulose biomimetic hydrogels[J]. Journal of Materials Chemistry A, 2019, 7(46): 26442-26455. |
33 | SHAO Hui, WU Yih-Chyng, LIN Zifeng, et al. Nanoporous carbon for electrochemical capacitive energy storage[J]. Chemical Society Reviews, 2020, 49(10): 3005-3039. |
34 | MENG Zheng, STOLZ Robert M, MENDECKI Lukasz, et al. Electrically-transduced chemical sensors based on two-dimensional nanomaterials[J]. Chemical Reviews, 2019, 119(1): 478-598. |
35 | PARK Junggeon, CHOI Jang Hee, KIM Semin, et al. Micropatterned conductive hydrogels as multifunctional muscle-mimicking biomaterials: graphene-incorporated hydrogels directly patterned with femtosecond laser ablation[J]. Acta Biomaterialia, 2019, 97: 141-153. |
36 | HAN Jingquan, WANG Huixiang, YUE Yiying, et al. A self-healable and highly flexible supercapacitor integrated by dynamically cross-linked electro-conductive hydrogels based on nanocellulose-templated carbon nanotubes embedded in a viscoelastic polymer network[J]. Carbon, 2019, 149: 1-18. |
37 | XIA Shan, SONG Shixin, JIA Fei, et al. A flexible, adhesive and self-healable hydrogel-based wearable strain sensor for human motion and physiological signal monitoring[J]. Journal of Materials Chemistry B, 2019, 7(30): 4638-4648. |
38 | LI Huili, LV Tian, SUN Huanhuan, et al. Ultrastretchable and superior healable supercapacitors based on a double cross-linked hydrogel electrolyte[J]. Nature Communications, 2019, 10(1): 536. |
39 | XU Yuxin, SHENG Kaixuan, LI Chun, et al. Self-assembled graphene hydrogel via a one-step hydrothermal process[J]. ACS Nano, 2010, 4(7): 4324-4330. |
40 | KEPLINGER Christoph, SUN Jeong-Yun, Choon Chiang FOO, et al. Stretchable, transparent, ionic conductors[J]. Science, 2013, 341(6149): 984-987. |
41 | YANG Canhui, SUO Zhigang. Hydrogel ionotronics[J]. Nature Reviews Materials, 2018, 3(6): 125-142. |
42 | Hae-Ryung LEE, KIM Chong-Chan, SUN Jeong-Yun. Stretchable ionics: a promising candidate for upcoming wearable devices[J]. Advanced Materials, 2018, 30(42): 1704403. |
43 | RAY P C, YU H T, FU P P. Toxicity and environmental risks of nanomaterials: challenges and future needs[J]. Journal of Environmental Science and Health C: Environmental Carcinogenesis & Ecotoxicology Reviews, 2009, 27(1): 1-35. |
44 | ZHAO Shiwei, TSENG Peter, GRASMAN Jonathan, et al. Programmable hydrogel ionic circuits for biologically matched electronic interfaces[J]. Advanced Materials, 2018, 30(25): 1800598. |
45 | WANG Lingyun, DAOUD Walid A. Hybrid conductive hydrogels for washable human motion energy harvester and self-powered temperature-stress dual sensor[J]. Nano Energy, 2019, 66: 104080. |
46 | LIU Hao, LI Moxiao, LIU Shaobao, et al. Spatially modulated stiffness on hydrogels for soft and stretchable integrated electronics[J]. Materials Horizons, 2020, 7(1): 203-213. |
47 | LIU Yanjun, CAO Wentao, MA Mingguo, et al. Ultrasensitive wearable soft strain sensors of conductive, self-healing, and elastic hydrogels with synergistic “soft and hard” hybrid networks[J]. ACS Applied Materials & Interfaces, 2017, 9(30): 25559-25570. |
48 | LEI Zhouyue, WANG Quankang, SUN Shengtong, et al. A bioinspired mineral hydrogel as a self-healable, mechanically adaptable ionic skin for highly sensitive pressure sensing[J]. Advanced Materials, 2017, 29(22): 1700321. |
49 | EELKEMA Rienk, PICH Andrij. Pros and cons: supramolecular or macromolecular: what is best for functional hydrogels with advanced properties?[J]. Advanced Materials, 2020, 32(20): 1906012. |
50 | GYLES Desireé Alesa, CASTRO Lorena Diniz, SILVA José Otávio Carréra, et al. A review of the designs and prominent biomedical advances of natural and synthetic hydrogel formulations[J]. European Polymer Journal, 2017, 88: 373-392. |
51 | YIN Mingjie, YAO Mian, GAO Shaorui, et al. Rapid 3D patterning of poly(acrylic acid) ionic hydrogel for miniature pH sensors[J]. Advanced Materials, 2016, 28(7): 1394-1399. |
52 | MAHINROOSTA Mostafa, JOMEH FARSANGI Zohreh, ALLAHVERDI Ali, et al. Hydrogels as intelligent materials: a brief review of synthesis, properties and applications[J]. Materials Today Chemistry, 2018, 8: 42-55. |
53 | GU Hongbo, ZHANG Hongyuan, MA Chao, et al. Smart strain sensing organic-inorganic hybrid hydrogels with nano barium ferrite as the cross-linker[J]. Journal of Materials Chemistry C, 2019, 7(8): 2353-2360. |
54 | LIAO Haiyang, ZHOU Fenglin, ZHANG Zhanzhan, et al. A self-healable and mechanical toughness flexible supercapacitor based on polyacrylic acid hydrogel electrolyte[J]. Chemical Engineering Journal, 2019, 357: 428-434. |
55 | LEI Zhouyue, WU Peiyi. A highly transparent and ultra-stretchable conductor with stable conductivity during large deformation[J]. Nature Communications, 2019, 10(1): 3429. |
56 | ZHANG Qiang, LIU Libin, PAN Chenguang, et al. Review of recent achievements in self-healing conductive materials and their applications[J]. Journal of Materials Science, 2018, 53(1): 27-46. |
57 | Xiau Yeen LEE, FAN Hwee Wen, Hui Jing KOH. Characterization of electrically conductive hydrogels-polyaniline/polyacrylamide and graphene/polyacrylamide[J]. Materials Science Forum, 2020, 977: 59-64. |
58 | TRAN Van Tron, MREDHA Md Tariful Islam, PATHAK Suraj Kumar, et al. Conductive tough hydrogels with a staggered ion-coordinating structure for high self-recovery rate[J]. ACS Applied Materials & Interfaces, 2019, 11(27): 24598-24608. |
59 | CHEN Jiayi, XIE Pu, ZHANG Zeping. Reduced graphene oxide/polyacrylamide composite hydrogel scaffold as biocompatible anode for microbial fuel cell[J]. Chemical Engineering Journal, 2019, 361: 615-624. |
60 | HUANG Yan, ZHONG Ming, SHI Fukuan, et al. An intrinsically stretchable and compressible supercapacitor containing a polyacrylamide hydrogel electrolyte[J]. Angewandte Chemie : International Edition, 2017, 56(31): 9141-9145. |
61 | KIM Chong-Chan, Hyun-Hee LEE, Kyu Hwan OH, et al. Highly stretchable, transparent ionic touch panel[J]. Science, 2016, 353(6300): 682-687. |
62 | WEN Nan, JIANG Bojun, WANG Xiaojing, et al. Overview of polyvinyl alcohol nanocomposite hydrogels for electro-skin, actuator, supercapacitor and fuel cell[J]. The Chemical Record, 2020, 20: 1-21. |
63 | ZHOU Yang, WAN Changjin, YANG Yongsheng, et al. Highly stretchable, elastic, and ionic conductive hydrogel for artificial soft electronics[J]. Advanced Functional Materials, 2019, 29(1): 1806220. |
64 | LI Le, ZHANG Yu, LU Hengyi, et al. Cryopolymerization enables anisotropic polyaniline hybrid hydrogels with superelasticity and highly deformation-tolerant electrochemical energy storage[J]. Nature Communications, 2020, 11(1): 62. |
65 | ZHANG Shuai, ZHANG Yihan, LI Bo, et al. One-step preparation of a highly stretchable, conductive, and transparent poly(vinyl alcohol)-phytic acid hydrogel for casual writing circuits[J]. ACS Applied Materials & Interfaces, 2019, 11(35): 32441-32448. |
66 | WANG Man, CHEN Yujie, KHAN Rajwali, et al. A fast self-healing and conductive nanocomposite hydrogel as soft strain sensor[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 567: 139-149. |
67 | YANG Ningning, QI Ping, REN Jing, et al. Polyvinyl alcohol/silk fibroin/borax hydrogel ionotronics: a highly stretchable, self-healable, and biocompatible sensing platform[J]. ACS Applied Materials & Interfaces, 2019, 11(26): 23632-23638. |
68 | ZHU Junmin. Bioactive modification of poly(ethylene glycol) hydrogels for tissue engineering[J]. Biomaterials, 2010, 31(17): 4639-4656. |
69 | KIM Yong Seok, Kanghee CHO, Hyun Jong LEE, et al. Highly conductive and hydrated peg-based hydrogels for the potential application of a tissue engineering scaffold[J]. Reactive and Functional Polymers, 2016, 109: 15-22. |
70 | SHIN Dongsik, MATHARU Zimple, YOU Jungmok, et al. Sensing conductive hydrogels for rapid detection of cytokines in blood[J]. Advanced Healthcare Materials, 2016, 5(6): 659-664. |
71 | Jong Min LEE, MOON Joo Yoon, KIM Tae Hyun, et al. Conductive hydrogel/nanowire micropattern-based sensor for neural stem cell differentiation[J]. Sensors and Actuators B: Chemical, 2018, 258: 1042-1050. |
72 | SHI Zhijun, GAO Xing, ULLAH Muhammad Wajid, et al. Electroconductive natural polymer-based hydrogels[J]. Biomaterials, 2016, 111: 40-54. |
73 | LIU Chunlin, ZHANG HuiJie, YOU Xiangyu, et al. Electrically conductive tough gelatin hydrogel[J]. Advanced Electronic Materials, 2020, 6(4): 2000040. |
74 | LI Longchao, GE Juan, GUO Baolin, et al. In situ forming biodegradable electroactive hydrogels[J]. Polymer Chemistry, 2014, 5(8): 2880-2890. |
75 | HSIAO Liyin, JING Lin, LI Kerui, et al. Carbon nanotube-integrated conductive hydrogels as multifunctional robotic skin[J]. Carbon, 2020, 161: 784-793. |
76 | JING Xin, WANG Xinyi, MI Haoyang, et al. Stretchable gelatin/silver nanowires composite hydrogels for detecting human motion[J]. Materials Letters, 2019, 237: 53-56. |
77 | Kuen Yong LEE, MOONEY David J. Alginate: properties and biomedical applications[J]. Progress in Polymer Science, 2012, 37(1): 106-126. |
78 | DVIR Tal, TIMKO Brian P, BRIGHAM Mark D, et al. Nanowired three-dimensional cardiac patches[J]. Nature Nanotechnology, 2011, 6(11): 720-725. |
79 | XIA Shan, SONG Shixin, GAO Guanghui. Robust and flexible strain sensors based on dual physically cross-linked double network hydrogels for monitoring human-motion[J]. Chemical Engineering Journal, 2018, 354: 817-824. |
80 | HUANG Hailong, HAN Lu, LI Junfeng, et al. Super-stretchable, elastic and recoverable ionic conductive hydrogel for wireless wearable, stretchable sensor[J]. Journal of Materials Chemistry A, 2020, 8(20): 10291-10300. |
81 | ZENG Juan, DONG Liubing, SHA Wuxin, et al. Highly stretchable, compressible and arbitrarily deformable all-hydrogel soft supercapacitors[J]. Chemical Engineering Journal, 2020, 383: 123098. |
82 | SAMI EL-BANNA Fatma, MAHFOUZ Magdy Elsayed, LEPORATTI Stefano, et al. Chitosan as a natural copolymer with unique properties for the development of hydrogels[J]. Applied Sciences, 2019, 9(11): 2193. |
83 | Celil ULUTüRK, ALEMDAR Neslihan. Electroconductive 3D polymeric network production by using polyaniline/chitosan-based hydrogel[J]. Carbohydrate Polymers, 2018, 193: 307-315. |
84 | JIN Xiaoqiang, JIANG Huihong, LI Guoqi, et al. Stretchable, conductive PAni-PAAm-GOCS hydrogels with excellent mechanical strength, strain sensitivity and skin affinity[J]. Chemical Engineering Journal, 2020, 394: 124901. |
85 | ZHAO Dawei, ZHU Ying, CHENG Wanke, et al. Cellulose-based flexible functional materials for emerging intelligent electronics[J]. Advanced Materials, 2020, 32: 2000619. |
86 | WANG Hongfei, WU Juan, QIU Jun, et al. In situ formation of a renewable cellulose hydrogel electrolyte for high-performance flexible all-solid-state asymmetric supercapacitors[J]. Sustainable Energy & Fuels, 2019, 3(11): 3109-3115. |
87 | ZHAO Dawei, ZHU Ying, CHENG Wanke, et al. A dynamic gel with reversible and tunable topological networks and performances[J]. Matter, 2020, 2(2): 390-403. |
88 | TONG Ruiping, CHEN Guangxue, PAN Danhong, et al. Highly stretchable and compressible cellulose ionic hydrogels for flexible strain sensors[J]. Biomacromolecules, 2019, 20(5): 2096-2104. |
89 | WANG Donghong, LI Hongfei, LIU Zhuoxin, et al. A nanofibrillated cellulose/polyacrylamide electrolyte-based flexible and sewable high-performance Zn-MnO2 battery with superior shear resistance[J]. Small, 2018, 14(51): 1803978. |
90 | Helen H. HSU, LIU Yuqing, WANG Ying, et al. Mussel-inspired autonomously self-healable all-in-one supercapacitor with biocompatible hydrogel[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(18): 6935-6948. |
91 | ZHANG Haoxiang, NIU Wenbin, ZHANG Shufen. Extremely stretchable, sticky and conductive double-network ionic hydrogel for ultra-stretchable and compressible supercapacitors[J]. Chemical Engineering Journal, 2020, 387: 124105. |
92 | LIU Zhikang, CHEN Jisi, ZHAN Yang, et al. Fe3+ cross-linked polyaniline/cellulose nanofibril hydrogels for high-performance flexible solid-state supercapacitors[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(21): 17653-17660. |
93 | PENG Hui, LV Yaya, WEI Ganggang, et al. A flexible and self-healing hydrogel electrolyte for smart supercapacitor[J]. Journal of Power Sources, 2019, 431: 210-219. |
94 | ZHOU Hongwei, WANG Zhiwen, ZHAO Weifeng, et al. Robust and sensitive pressure/strain sensors from solution processable composite hydrogels enhanced by hollow-structured conducting polymers[J]. Chemical Engineering Journal, 2021, 403: 126307. |
95 | SUN Hongling, ZHAO Yi, WANG Chunfeng, et al. Ultra-stretchable, durable and conductive hydrogel with hybrid double network as high performance strain sensor and stretchable triboelectric nanogenerator[J]. Nano Energy, 2020, 76: 105035. |
96 | FAN Ling, XIE Jinliang, ZHENG Yaping, et al. Antibacterial, self-adhesive, recyclable, and tough conductive composite hydrogels for ultrasensitive strain sensing[J]. ACS Applied Materials & Interfaces, 2020, 12(19): 22225-22236. |
97 | WANG Zifeng, LI Hongfei, TANG Zijie, et al. Hydrogel electrolytes for flexible aqueous energy storage devices[J]. Advanced Functional Materials, 2018, 28(48): 1804560. |
98 | MA Longtao, CHEN Shengmei, WANG Donghong, et al. Super-stretchable zinc-air batteries based on an alkaline-tolerant dual-network hydrogel electrolyte[J]. Advanced Energy Materials, 2019, 9(12): 1803046. |
99 | HUANG Shuo, WAN Fang, BI Songshan, et al. A self-healing integrated all-in-one zinc-ion battery[J]. Angewandte Chemie: International Edition, 2019, 58(13): 4313-4317. |
100 | LI Qingxin, CUI Ximing, PAN Qinmin. Self-healable hydrogel electrolyte toward high-performance and reliable quasi-solid-state Zn-MnO2 batteries[J]. ACS Applied Materials & Interfaces, 2019, 11(42): 38762-38770. |
[1] | 王少凡, 周颖, 郝康安, 黄安荣, 张如菊, 吴翀, 左晓玲. 具有pH响应性的自愈合蓝光水凝胶[J]. 化工进展, 2023, 42(9): 4837-4846. |
[2] | 于丁一, 李圆圆, 王晨钰, 纪永升. pH响应性木质素水凝胶的制备及药物控释[J]. 化工进展, 2023, 42(6): 3138-3146. |
[3] | 冯琬淇, 哈尼夏·巴合提null, 葛雨璇, 赵俭波. 磁性PASP/PAM半互穿水凝胶的制备及性能[J]. 化工进展, 2023, 42(6): 3130-3137. |
[4] | 张赫, 李小可, 熊颖, 文劲. 基于水凝胶界面光蒸发的压裂返排液脱盐降污处理[J]. 化工进展, 2023, 42(2): 1073-1079. |
[5] | 仉洁, 王旭东, 杨逸飞, 任玥, 陈立成. 响应面优化温敏水凝胶汲取剂的制备及性能[J]. 化工进展, 2023, 42(10): 5363-5372. |
[6] | 王子航, 梁瑞升, 邓超和, 王佳韵. 离子凝胶复合吸附剂的制备及空气取水性能[J]. 化工进展, 2022, 41(S1): 389-396. |
[7] | 邱艺娟, 林佳伟, 秦济锐, 吴嘉茵, 林凤采, 卢贝丽, 唐丽荣, 黄彪. 双重动态共价键交联纳米纤维素导电水凝胶及其柔性传感器[J]. 化工进展, 2022, 41(8): 4406-4416. |
[8] | 常炜, 史秋兰, 赵正阳, 王瑞婷, 王志福, 赵俭波. 高内相乳液法制备聚丙烯酰胺多孔水凝胶及应用[J]. 化工进展, 2022, 41(7): 3832-3839. |
[9] | 陈彰旭, 陈冰冰, 王荣财, 叶晨光, 郑炳云. β-NaYF4:Yb3+,Tm3+/g-C3N4复合水凝胶材料的制备及其应用[J]. 化工进展, 2022, 41(6): 3146-3154. |
[10] | 沈娟莉, 付时雨. 纤维素基水凝胶的研究进展[J]. 化工进展, 2022, 41(6): 3022-3037. |
[11] | 张彦, 汪伟, 谢锐, 巨晓洁, 刘壮, 褚良银. 负载酶@ZIF-8复合物的聚合物微颗粒可控制备[J]. 化工进展, 2022, 41(4): 2022-2028. |
[12] | 胡庭瑗, 李平凡, 汪伟, 刘壮, 巨晓洁, 谢锐, 褚良银. 面向柔性超级电容器的功能水凝胶材料的研究进展[J]. 化工进展, 2022, 41(3): 1578-1593. |
[13] | 夏泽秋, 贺高红, 王林, 姜晓滨. 均匀水凝胶片层高效调控一水合尿酸钠晶习[J]. 化工进展, 2021, 40(2): 977-989. |
[14] | 赵俭波, 魏军, 曹辉, 谭天伟. 聚天冬氨酸水凝胶的研究与应用进展[J]. 化工进展, 2019, 38(07): 3355-3364. |
[15] | 张稳, 韩晓东, 于坤, 苏红莹, 贾庆明, 陕绍云. 反相微乳液交联法制备葡聚糖水凝胶微球的粒径调控[J]. 化工进展, 2017, 36(10): 3807-3814. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |