化工进展 ›› 2021, Vol. 40 ›› Issue (5): 2634-2645.DOI: 10.16085/j.issn.1000-6613.2020-1284
郑龙珠1(), 苏晓竞1,2, 李红强1(), 官航1, 古孜努尔·阿巴白克力null1, 冯海洋1, 韦业1, 赖学军1, 曾幸荣1
收稿日期:
2020-07-07
出版日期:
2021-05-06
发布日期:
2021-05-24
通讯作者:
李红强
作者简介:
郑龙珠(1996—),女,硕士研究生,研究方向为功能性超疏水材料。E-mail:基金资助:
ZHENG Longzhu1(), SU Xiaojing1,2, LI Hongqiang1(), GUAN Hang1, GUZINUER Ababaikeli1, FENG Haiyang1, WEI Ye1, LAI Xuejun1, ZENG Xingrong1
Received:
2020-07-07
Online:
2021-05-06
Published:
2021-05-24
Contact:
LI Hongqiang
摘要:
由于具有独特的液体润湿性,超疏水表面在工业生产和日常生活中具有广阔的应用前景,但其单一的超疏水性却难以满足在严苛环境和新兴领域中的使用需求。近年来,将表面超疏水性与自修复性、透明性、导电性等至少一种功能相结合的功能性超疏水表面已成为该领域的研究热点,对于延长其使用寿命并拓宽其在柔性电子、快速融冰融雪等新兴领域中的应用具有重要意义。本文简单介绍了超疏水表面的基本原理,然后综述了近年来功能性超疏水表面的研究进展,具体介绍了可修复、可拉伸、透明、磁性、导电及非对称浸润性的功能性超疏水表面的构建和应用,最后总结了目前该领域存在的一些问题,主要包括功能性有待于改善、制备工艺复杂、成本高、污染环境、耐久性较差等,并指出利用简单环保的方法开发出能够长期使用的功能性超疏水表面将会是该领域未来的主要发展方向,同时要注重推动其实际生产及应用。
中图分类号:
郑龙珠, 苏晓竞, 李红强, 官航, 古孜努尔·阿巴白克力null, 冯海洋, 韦业, 赖学军, 曾幸荣. 功能性超疏水表面的构建及其应用进展[J]. 化工进展, 2021, 40(5): 2634-2645.
ZHENG Longzhu, SU Xiaojing, LI Hongqiang, GUAN Hang, GUZINUER Ababaikeli, FENG Haiyang, WEI Ye, LAI Xuejun, ZENG Xingrong. Progress in construction and application of functional superhydrophobic surfaces[J]. Chemical Industry and Engineering Progress, 2021, 40(5): 2634-2645.
1 | DARMANIN T, GUITTARD F. Superhydrophobic and superoleophobic properties in nature[J]. Materials Today, 2015, 18(5): 273-285. |
2 | E J Q, JIN Y, DENG Y W, et al. Wetting models and working mechanisms of typical surfaces existing in nature and their application on superhydrophobic surfaces: a review[J]. Advanced Materials Interfaces, 2018, 5(1): 1701052. |
3 | WEN G, GUO Z G, LIU W M. Biomimetic polymeric superhydrophobic surfaces and nanostructures: from fabrication to applications[J]. Nanoscale, 2017, 9(10): 3338-3366. |
4 | 赵晓非, 杨明全, 章磊, 等. 仿生超疏水表面的制备与应用的研究进展[J]. 化工进展, 2016, 35(9): 2818-2829. |
ZHAO Xiaofei, YANG Mingquan, ZHANG Lei, et al. Research progress in fabrication and application of bioinspired super-hydrophobic surface[J]. Chemical Industry and Engineering Progress, 2016, 35(9): 2818-2829. | |
5 | LATTHE S S, SUTAR R S, KODAG V S, et al. Self-cleaning superhydrophobic coatings: potential industrial applications[J]. Progress in Organic Coatings, 2019, 128: 52-58. |
6 | BAI X G, SHEN Y Q, TIAN H F, et al. Facile fabrication of superhydrophobic wood slice for effective water-in-oil emulsion separation[J]. Separation and Purification Technology, 2019, 210: 402-408. |
7 | CUI M K, MU P, SHEN Y Q, et al. Three-dimensional attapulgite with sandwich-like architecture used for multifunctional water remediation[J]. Separation and Purification Technology, 2020, 235: 116210. |
8 | WANG Y, YANG Y. Superhydrophobic surfaces-based redox-induced electricity from water droplets for self-powered wearable electronics[J]. Nano Energy, 2019, 56: 547-554. |
9 | CHU Z, JIAO W, HUANG Y, et al. FDTS-modified SiO2/rGO wrinkled films with a micro-nanoscale hierarchical structure and anti-icing/deicing properties under condensation condition[J]. Advanced Materials Interfaces, 2020, 7(1): 1901446. |
10 | YANG C, WU L, LI G. Magnetically responsive superhydrophobic surface: in situ reversible switching of water droplet wettability and adhesion for droplet manipulation[J]. ACS Applied Materials & Interfaces, 2018, 10(23): 20150-20158. |
11 | KWOK D Y, NEUMANN A W. Contact angle measurement and contact angle interpretation[J]. Advances in Colloid and Interface Science, 1999, 81(3): 167-249. |
12 | WENZEL R N. Resistance of solid surfaces to wetting by water[J]. Industrial & Engineering Chemistry, 1936, 28(8): 988-994. |
13 | CASSIE A, BAXTER S. Wettability of porous surfaces[J]. Transactions of the Faraday Society, 1944, 40: 546-551. |
14 | WANG B, ZHANG Y B, SHI L, et al. Advances in the theory of superhydrophobic surfaces[J]. Journal of Materials Chemistry, 2012, 22(38): 20112-20127. |
15 | NEINHUIS C, BARTHLOTT W. Characterization and distribution of water-repellent, self-cleaning plant surfaces[J]. Annals of Botany, 1997, 79(6): 667-677. |
16 | SAM E K, SAM D K, LYU X M, et al. Recent development in the fabrication of self-healing superhydrophobic surfaces[J]. Chemical Engineering Journal, 2019, 373: 531-546. |
17 | ZHANG H, HOU C P, SONG L X, et al. A stable 3D sol-gel network with dangling fluoroalkyl chains and rapid self-healing ability as a long-lived superhydrophobic fabric coating[J]. Chemical Engineering Journal, 2019, 334: 598-610. |
18 | 周莹, 肖利吉, 姚丽, 等. 自修复型超疏水材料研究进展[J]. 材料导报, 2019, 33(7): 1234-1242. |
ZHOU Ying, XIAO Liji, YAO Li, et al. Research progress in self-healing superhydrophobic surfaces[J]. Materials Reports, 2019, 33(7): 1234-1242. | |
19 | IONOV L, SYNYTSKA A. Self-healing superhydrophobic materials[J]. Physical Chemistry Chemical Physics, 2012, 14(30): 10497-10502. |
20 | ZHU D D, LU X M, LU Q H. Electrically conductive PEDOT coating with self-healing superhydrophobicity[J]. Langmuir, 2014, 30(16): 4671-4677. |
21 | WU M C, LI Y, AN N, et al. Applied voltage and near‐infrared light enable healing of superhydrophobicity loss caused by severe scratches in conductive superhydrophobic films[J]. Advanced Functional Materials, 2016, 26(37): 6777-6784. |
22 | QIN L M, CHEN N, ZHOU X, et al. A superhydrophobic aerogel with robust self-healability[J]. Journal of Materials Chemistry A, 2018, 6(10): 4424-4431. |
23 | 梁婷, 范振忠, 刘庆旺, 等. 超疏水/超双疏表面自修复方式的研究进展[J]. 化工进展, 2019, 38(7): 3185-3193. |
LIANG Ting, FAN Zhenzhong, LIU Qingwang, et al. Research progress on the self-healing on superhydrophobic/superamphiphobic surface[J]. Chemical Industry and Engineering Progress, 2019, 38(7): 3185-3193. | |
24 | WANG P, SUN B, LIANG Y, et al. A stretchable and super-robust graphene superhydrophobic composite for electromechanical sensor application[J]. Journal of Materials Chemistry A, 2019, 6(12): 10404-10410. |
25 | SAHOO B N, WOO J, ALGADI H, et al. Superhydrophobic, transparent, and stretchable 3D hierarchical wrinkled film-based sensors for wearable applications[J]. Advanced Materials Technologies, 2019, 4(10): 1900230. |
26 | JU J, YAO X, HOU X, et al. A highly stretchable and robust non-fluorinated superhydrophobic surface[J]. Journal of Materials Chemistry A, 2017, 5(7): 16273-16280. |
27 | GAO J F, LI B, HUANG X W, et al. Electrically conductive and fluorine free superhydrophobic strain sensors based on SiO2 /graphene-decorated electrospun nanofibers for human motion monitoring[J]. Chemical Engineering Journal, 2019, 273: 298-306. |
28 | LI B, LUO J, HUANG X, et al. A highly stretchable, super-hydrophobic strain sensor based on polydopamine and graphene reinforced nanofiber composite for human motion monitoring[J]. Composites Part B: Engineering, 2020, 181: 107580. |
29 | WANG F, PI J, SONG F, et al. A superhydrophobic coating to create multi-functional materials with mechanical/chemical/physical robustness[J]. Chemical Engineering Journal, 2020, 381: 122539. |
30 | YU S, GUO Z, LIU W. Biomimetic transparent and superhydrophobic coatings: from nature and beyond nature[J]. Chemical Communications, 2015, 51(10): 1775-1794. |
31 | 葛思洁, 王法军, 温姜霞, 等. SiO2/PDMS复合透明超疏水涂层的制备与性能研究[J]. 化工新型材料, 2017, 45(6): 227-229. |
GE Sijie, WANG Fajun, WEN Jiangxia, et al. Preparation and property of transparent and superhydrophobic coating based on SiO2/PDMS composite[J]. New Chemical Materials, 2017, 45(6): 227-229. | |
32 | WU X H, CHEN Z. A mechanically robust transparent coating for anti-icing and self-cleaning applications[J]. Journal of Materials Chemistry A, 2018, 6(33): 16043-16052. |
33 | LIN Y, HAN J P, CAI M Y, et al. Durable and robust transparent superhydrophobic glass surfaces fabricated by a femtosecond laser with exceptional water repellency and thermostability[J]. Journal of Materials Chemistry A, 2018, 6(19): 9049-9056. |
34 | GONG D W, LONG J Y, JIANG D F, et al. Robust and stable transparent superhydrophobic polydimethylsiloxane films by duplicating via a femtosecond laser-ablated template[J]. ACS Applied Materials & Interfaces, 2016, 8(27): 17511-17518. |
35 | JANG N S, HA S H, KIM K H, et al. Facile one-step photopatterning of hierarchical polymer structures for highly transparent, flexible superhydrophobic films[J]. Progress in Organic Coatings, 2019, 130: 24-30. |
36 | YANG C, ZHANG Z, LI G. Programmable droplet manipulation by combining a superhydrophobic magnetic film and an electromagnetic pillar array[J]. Sensors and Actuators B: Chemical, 2018, 262: 892-901. |
37 | BEN S, ZHOU T T, MA H, et al. Multifunctional magnetocontrollables superwettable-microcilia surface for directional droplet manipulation[J].Advanced Science, 2019, 6(17): 1900834. |
38 | 张雪梅, 王航, 郝彬彬, 等. 磁性超疏水聚氨酯海绵的制备及其性能研究[J]. 当代化工, 2019, 48(8): 1714-1717. |
ZHANG Xuemei, WANG Hang, HAO Binbin, et al. Study on preparation and properties of magnetic superhydrophobic polyurethane sponges[J]. Contemporary Chemical Industry, 2019, 48(8): 1714-1717. | |
39 | MI H, JING X, XIE H, et al. Magnetically driven superhydrophobic silica sponge decorated with hierarchical cobalt nanoparticles for selective oil absorption and oil/water separation[J]. Chemical Engineering Journal, 2018, 337: 541-551. |
40 | SU X J, LI H Q, LAI X J, et al. Dual-functional superhydrophobic textiles with asymmetric roll-down/pinned states for water droplet transportation and oil-water separation[J]. ACS Applied Materials & Interfaces, 2018, 10(4): 4213-4221. |
41 | SHARMA M, JOSHI M, NIGAM S, et al. Efficient oil removal from wastewater based on polymer coated superhydrophobic tetrapodal magnetic nanocomposite adsorbent[J]. Applied Materials Today, 2019, 17: 130-141. |
42 | ZHANG C A, LI Y L, SUN S, et al. Novel magnetic and flame-retardant superhydrophobic sponge for solar-assisted high-viscosity oil/water separation[J]. Progress in Organic Coatings, 2020, 139: 105369. |
43 | JIANG S J, HU Y L, WU H, et al. Multifunctional Janus microplates arrays actuated by magnetic fields for water/light switches and bio‐inspired assimilatory coloration[J]. Advanced Materials, 2019, 31(15): 1807507. |
44 | LIN L, WANG L, LI B, et al. Dual conductive network enabled superhydrophobic and high performance strain sensors with outstanding electro-thermal performance and extremely high gauge factors[J]. Chemical Engineering Journal, 2020, 385: 123391. |
45 | JIA L C, ZHANG G Q, XU L, et al. Robustly superhydrophobic conductive texile for efficient electromagnetic interference shielding[J].ACS Applied Materical & Interfaces, 2019, 11(1): 1680-1688. |
46 | 周存, 何雅僖. 超疏水导电聚酯织物的制备及其性能[J]. 纺织学报, 2018, 39(8): 88-94, 99. |
ZHOU Cun, HE Yaxi. Preparation and properties of superhydrophobic conductive polyethylene terephthalate fabrics[J]. Journal of Textile Research, 2018, 39(8): 88-94, 99. | |
47 | LI L H, BAI Y Y, LI L L, et al. A superhydrophobic smart coating for flexible and wearable sensing electronics[J]. Advanced Materials, 2017, 29(43): 1702517. |
48 | GAO J F, LUO J C, WANG L, et al. Flexible, superhydrophobic and highly conductive composite based on non-woven polypropylene fabric for electromagnetic interference shielding[J]. Chemical Engineering Journal, 2019, 364: 493-502. |
49 | WU J J, LI H Q, LAI X J, et al. Superhydrophobic polydimethylsiloxane@multiwalled carbon nanotubes membrane for effective water-in-oil emulsions separation and quick deicing[J]. Industrial & Engineering Chemistry Research, 2019, 58(20): 8791-8799. |
50 | YAN S, REN F, LI C, et al. Unidirectional self-transport of air bubble via a Janus membrane in aqueous environment[J]. Applied Physics Letters, 2018, 113(26): 261602. |
51 | SOZ C K, TROSIEN S, BIESALSKI M. Superhydrophobic hybrid paper sheets with Janus-type wettability[J]. ACS Applied Materials & Interfaces, 2018, 10(43): 37478-37488. |
52 | 张贤, 母情源, 任琳琳, 等. 单面超疏水单面亲水Janus-CA纤维膜的制备及其油水分离性能[J]. 浙江理工大学学报(自然科学版), 2020, 43(3): 283-292. |
ZHANG Xian, MU Qingyuan, REN Linlin, et al. Preparation of superhydrophobic/hydrophilic Janus-CA fibrous membrane and its oil-water separation performance[J]. Journal of Zhejiang Sci-Tech University (Natural Sciences Edition), 2020, 43(3): 283-292. | |
53 | 任宝娜, 皮浩弘, 谷英姝, 等. Janus膜的制备及其应用研究进展[J]. 材料工程, 2020, 48(6): 73-81. |
REN Baona, PI Haohong, GU Yingshu, et al. Research progress in preparation and application of Janus membranes[J]. Journal of Materials Engineering, 2020, 48(6): 73-81. | |
54 | ZHAO Y Y, YU C M, LAN H, et al. Improved interfacial floatability of superhydrophobic/superhydrophilic Janus sheet inspired by lotus leaf[J]. Advanced Functional Materials, 2017, 27(27): 1701466. |
55 | ZHU T, WU J R, ZHAO N, et al. Superhydrophobic/superhydrophilic Janus fabrics reducing blood loss[J]. Advanced Healthcare Materials, 2018, 7(7): 1701086. |
56 | GORE P M, KANDASUBRAMANIAN B. Heterogeneous wettable cotton based superhydrophobic Janus biofabric engineered with PLA/functionalized-organoclay microfibers for efficient oil-water separation[J]. Journal of Materials Chemistry A, 2018, 6(17): 7457-7479. |
57 | 谢超, 洪国辉, 杨伟强, 等. 利用蜡烛灰制备超疏水疏油抗菌涂层[J]. 高等学校化学学报, 2019, 40(2): 379-384. |
XIE Chao, HONG Guohui, YANG Weiqiang, et al. Antibacterial superhydrophobic-oleophobic coating fabricated by candle soot[J]. Chemical Journal of Chinese Universities, 2019, 40(2): 379-384. | |
58 | YANG R, ZHU Y, QIN D, et al. Light-operated dual-mode propulsion at the liquid/air interface using flexible, superhydrophobic, and thermally stable photothermal paper[J]. ACS Applied Materials & Interfaces, 2019, 12(1): 1339-1347. |
59 | 吉婉丽, 钟少锋, 余雪满. 阻燃超疏水棉纤维的制备及性能[J]. 应用化学, 2020, 37(3): 301-306. |
JI Wanli, ZHONG Shaofeng, YU Xueman. Preparation and properties of superhydrophobic and flame-retardant cotton fabric[J]. Chinese Journal of Applied Chemistry, 2020, 37(3): 301-306. | |
60 | WANG W, VAHABI H, MOVAFAGHI S, et al. Superomniphobic surfaces with improved mechanical durability: synergy of hierarchical texture and mechanical interlocking[J]. Advanced Materials Interfaces, 2019, 6(18): 1900538. |
61 | BU Y M, ZHANG S Y, CAI Y J, et al. Fabrication of durable antibacterial and superhydrophobic textiles viain situ synthesis of silver nanoparticle on tannic acid-coated viscose textiles[J]. Cellulose, 2019, 26(3): 2109-2122. |
62 | WANG W, LIU Y, LIU Y, et al. Direct laser writing of superhydrophobic PDMS elastomers for controllable manipulation via marangoni effect[J]. Advanced Functional Materials, 2017, 27(44): 1702946. |
63 | CHEN S S, LI X, LI Y, et al. Intumescent flame-retardant and self-healing superhydrophobic coatings on cotton fabric[J]. ACS Nano, 2015, 9(4): 4070-4076. |
64 | LIN D M, ZENG X R, LI H Q, et al. One-pot fabrication of superhydrophobic and flame-retardant coatings on cotton fabrics via sol-gel reaction[J]. Journal of Colloid and Interface Science, 2019, 533: 198-206. |
65 | KIM H, HAN H, LEE S, et al. Nonfluorinated superomniphobic surfaces through shape-tunable mushroom-like polymeric micropillar arrays[J]. ACS Applied Materials & Interfaces, 2019, 11(5): 5484-5491. |
[1] | 张杰, 白忠波, 冯宝鑫, 彭肖林, 任伟伟, 张菁丽, 刘二勇. PEG及其复合添加剂对电解铜箔后处理的影响[J]. 化工进展, 2023, 42(S1): 374-381. |
[2] | 赵景超, 谭明. 表面活性剂对电渗析减量化工业含盐废水的影响[J]. 化工进展, 2023, 42(S1): 529-535. |
[3] | 王谨航, 何勇, 史伶俐, 龙臻, 梁德青. 气体水合物阻聚剂研究进展[J]. 化工进展, 2023, 42(9): 4587-4602. |
[4] | 高彦静. 单原子催化技术国际研究态势分析[J]. 化工进展, 2023, 42(9): 4667-4676. |
[5] | 吴海波, 王希仑, 方岩雄, 纪红兵. 3D打印催化材料开发与应用进展[J]. 化工进展, 2023, 42(8): 3956-3964. |
[6] | 张振, 李丹, 陈辰, 吴菁岚, 应汉杰, 乔浩. 吸附树脂对唾液酸的分离纯化[J]. 化工进展, 2023, 42(8): 4153-4158. |
[7] | 张超, 杨鹏, 刘广林, 赵伟, 杨绪飞, 张伟, 宇波. 表面微结构对阵列微射流沸腾换热的影响[J]. 化工进展, 2023, 42(8): 4193-4203. |
[8] | 李润蕾, 王子彦, 王志苗, 李芳, 薛伟, 赵新强, 王延吉. CuO-CeO2/TiO 2 高效催化CO低温氧化反应性能[J]. 化工进展, 2023, 42(8): 4264-4274. |
[9] | 王鑫, 王兵兵, 杨威, 徐志明. 金属表面PDA/PTFE超疏水涂层抑垢与耐腐蚀性能[J]. 化工进展, 2023, 42(8): 4315-4321. |
[10] | 储甜甜, 刘润竹, 杜高华, 马嘉浩, 张孝阿, 王成忠, 张军营. 有机胍催化脱氢型RTV硅橡胶的制备和可降解性能[J]. 化工进展, 2023, 42(7): 3664-3673. |
[11] | 张凯, 吕秋楠, 李刚, 李小森, 莫家媚. 南海海泥中甲烷水合物的形貌及赋存特性[J]. 化工进展, 2023, 42(7): 3865-3874. |
[12] | 俞俊楠, 俞建峰, 程洋, 齐一搏, 化春键, 蒋毅. 基于深度学习的变宽度浓度梯度芯片性能预测[J]. 化工进展, 2023, 42(7): 3383-3393. |
[13] | 陈香李, 李倩倩, 张甜, 李彪, 李康康. 自愈合油水分离膜的研究进展[J]. 化工进展, 2023, 42(7): 3600-3610. |
[14] | 刘战剑, 付雨欣, 任丽娜, 张曦光, 袁中涛, 杨楠, 汪怀远. 超疏水涂层在防腐阻垢领域研究进展[J]. 化工进展, 2023, 42(6): 2999-3011. |
[15] | 杨家添, 唐金铭, 梁恣荣, 黎胤宏, 胡华宇, 陈渊. 新型淀粉基高吸水树脂抑尘剂的制备及其应用[J]. 化工进展, 2023, 42(6): 3187-3196. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |