1 |
LIU X, ZHOU Y, PEI C. Mimetic biomineralization matrix using bacterial cellulose hydrogel and egg white to prepare various morphologies of CaCO3[J]. CrystEngComm, 2018, 20(32): 4536-4540.
|
2 |
PARAMBIL J V, POORNACHARY S K, HENG J Y, et al. Template-induced nucleation for controlling crystal polymorphism: from molecular mechanisms to applications in pharmaceutical processing[J]. CrystEngComm, 2019, 21(28): 4122-4135.
|
3 |
CASCONE S, LAMBERTI G. Hydrogel-based commercial products for biomedical applications: a review[J]. International Journal of Pharmaceutics, 2020, 573:118803.
|
4 |
刘壮, 谢锐, 巨晓洁, 等. 环境刺激响应型高强度智能水凝胶研究进展[J]. 化工进展, 2016, 35(6): 1812-1819.
|
|
LIU Zhuang, XIE Rui, JU Xiaojie, et al. Progress in stimuli-responsive smart hydrogels with high mechanical properties[J]. Chemical Industry and Engineering Progress, 2016, 35(6): 1812-1819.
|
5 |
潘玉妹, 徐坚, 陈强, 等. 智能水凝胶在生物载药领域的研究进展[J]. 化工进展, 2016, 35(S1): 202-208.
|
|
PAN Yumei, XU Jian, CHEN Qiang, et al. Research progress of intelligent hydrogels in biological drug carrying[J]. Chemical Industry and Engineering Progress, 2016, 35 (S1): 202-208.
|
6 |
NIE J, PEI B, WANG Z, et al. Construction of ordered structure in polysaccharide hydrogel: a review[J]. Carbohydrate Polymers, 2019, 205: 225-235.
|
7 |
AHMED E M. Hydrogel: preparation, characterization, and applications: a review[J]. Journal of Advanced Research, 2015, 6(2): 105-121.
|
8 |
YANG Q, ADRUS N, TOMICKI F, et al. Composites of functional polymeric hydrogels and porous membranes[J]. Journal of Materials Chemistry, 2011, 21(9): 2783-2811.
|
9 |
张敏, 李碧婵, 陈良壁. 互穿网络聚合物水凝胶的制备及其吸附研究进展[J]. 化工进展, 2015, 34(4): 1043-1049, 1087.
|
|
ZHANG Min, LI Bichan, CHEN Liangbi. Progress in preparation of interpenetrating polymer network hydrogels and their application in adsorption[J]. Chemical Industry and Engineering Progress, 2015, 34 (4): 1043-1049, 1087.
|
10 |
龚桂胜, 刘景勃, 钟玉鹏, 等. 聚乙烯醇水凝胶自修复性能[J]. 化工进展, 2016, 35(8): 2507-2512.
|
|
GONG Guisheng, LIU Jingbo, ZHONG Yupeng, et al. Self-healing performance of poly(vinyl alcohol) hydrogel[J]. Chemical Industry and Engineering Progress, 2016, 35 (8): 2507-2512.
|
11 |
KATO K, UCHIDA E, KANG E T, et al. Polymer surface with graft chains[J]. Progress in Polymer Science, 2003, 28(2): 209-259.
|
12 |
BUEHLER K L, AMDERSON J L. Solvent effects on the permeability of membrane-supported gels[J]. Industrial & Engineering Chemistry Research, 2002, 41(3): 464-472.
|
13 |
PROFIO G D, POLINO M, NICOLETTA F P, et al. Tailored hydrogel membranes for efficient protein crystallization[J]. Advanced Functional Materials, 2013, 24(11): 1582-1590.
|
14 |
DI PROFIO G, SALEHI S M, CALIANDRO R, et al. Bioinspired synthesis of CaCO3 superstructures through a novel hydrogel composite membranes mineralization platform: a comprehensive view[J]. Advanced Materials, 2016, 28(4): 610-616.
|
15 |
GARCIA-RUIZ J, NOVELLA M, MORENO R, et al. Agarose as crystallization media for proteins Ⅰ: transport processes[J]. Journal of Crystal Growth, 2001, 232(1): 165-172.
|
16 |
MARTILLO M A, NAZZAL L, CRITTENDEN D B. The crystallization of monosodium urate[J]. Current Rheumatology Reports, 2014, 16(2):400.
|
17 |
RIDI R EL, TALLIMA H. Physiological functions and pathogenic potential of uric acid: a review[J]. Journal of Advanced Research, 2017, 8(5): 487-493.
|
18 |
BUSSO N, SO A. Microcrystals as DAMPs and their role in joint inflammation[J]. Rheumatology, 2012, 51(7): 1154-1160.
|
19 |
ODA M, SATTA Y, TAKENAKA O, et al. Loss of urate oxidase activity in hominoids and its evolutionary implications[J]. Molecular Biology and Evolution, 2002, 19(5): 640-653.
|
20 |
SEBESTA I. Genetic disorders resulting in hyper- or hypouricemia[J]. Advances in Chronic Kidney Disease, 2012, 19(6): 398-403.
|
21 |
HOWARD R G, PILLINGER M H, GYFTOPOULOS S, et al. Reproducibility of musculoskeletal ultrasound for determining monosodium urate deposition: concordance between readers[J]. Arthritis Care & Research, 2011, 63(10): 1456-1462.
|
22 |
PINEDA C, AMEZCUA-GUERRA L M, SOLANO C, et al. Joint and tendon subclinical involvement suggestive of gouty arthritis in asymptomatic hyperuricemia: an ultrasound controlled study[J]. Arthritis Research & Therapy, 2011, 13(1): 1-7.
|
23 |
PUIG J, BELTRAN L, MEJIA-CHEW C, et al. Ultrasonography in the diagnosis of asymptomatic hyperuricemia and gout[J]. Nucleosides, Nucleotides and Nucleic Acids, 2016, 35: 517-523.
|
24 |
CHIH M H, LEE H L, LEE T. The culprit of gout: triggering factors and formation of monosodium urate monohydrate[J]. CrystEngComm, 2016, 18(2): 290-297.
|
25 |
ERWIN C L, NANCOLLAS G H. The crystallization and dissolution of sodium urate[J]. Journal of Crystal Growth, 1981, 53(1): 215-223.
|
26 |
KIPPEN I, KLINENBERG J R, WEINBERGER A, et al. Factors affecting urate solubility in vitro[J]. Annals of the Rheumatic Diseases, 1974, 33(4): 313-317.
|
27 |
CHHANA A, LEE G, DALBETH N. Factors influencing the crystallization of monosodium urate: a systematic literature review[J]. BMC Musculoskeletal Disorders, 2015, 16(1): 296-296.
|
28 |
OYANE A, KIM H M, FURUYA T, et al. Preparation and assessment of revised simulated body fluids[J]. Journal of Biomedical Materials Research Part A, 2003, 65(2): 188-195.
|
29 |
JIANG X, LU D, XIAO W, et al. Membrane assisted cooling crystallization: process model, nucleation, metastable zone, and crystal size distribution[J]. AIChE Journal, 2016, 62(3): 829-841.
|
30 |
JIN S, CHEN M, LI Z, et al. Design and mechanism of the formation of spherical KCl particles using cooling crystallization without additives[J]. Powder Technology, 2018, 329: 455-462.
|
31 |
WU S, LI K, ZHANG T, et al. Size control of atorvastatin calcium particles based on spherical agglomeration[J]. Chemical Engineering & Technology, 2015, 38(6): 1081-1087.
|
32 |
ZHANG H, CHEN Y, WANG J, et al. Investigation on the spherical crystallization process of cefotaxime sodium[J]. Industrial & Engineering Chemistry Research, 2010, 49(3): 1402-1411.
|