化工进展 ›› 2022, Vol. 41 ›› Issue (10): 5474-5493.DOI: 10.16085/j.issn.1000-6613.2022-0016
汪小钰1(), 胡平1(), 操齐高2(), 李世磊1, 胡卜亮1, 葛松伟1, 杨帆1, 陈波1, 朱昕宇1, 王快社1
收稿日期:
2022-01-04
修回日期:
2022-03-30
出版日期:
2022-10-20
发布日期:
2022-10-21
通讯作者:
胡平,操齐高
作者简介:
汪小钰(1998—),女,硕士研究生,研究方向为功能材料。E-mail:wangxiaoyu4032@163.com。
基金资助:
WANG Xiaoyu1(), HU Ping1(), CAO Qigao2(), LI Shilei1, HU Boliang1, GE Songwei1, YANG Fan1, CHEN Bo1, ZHU Xinyu1, WANG Kuaishe1
Received:
2022-01-04
Revised:
2022-03-30
Online:
2022-10-20
Published:
2022-10-21
Contact:
HU Ping, CAO Qigao
摘要:
柔性传感器能够实现压力、应变、温度、湿度及气体等与人体健康相关信号多功能识别及监测,在可穿戴人工智能设备的开发中展现出巨大的应用前景。本文综述了具有多种模式监测功能的柔性电化学式传感器领域最新研究成果,包括双模式传感器、三模式传感器和多模式传感器;重点介绍了传感器实现多功能监测的途径和传感机理。研究表明,多模式传感性的实现方法主要包括结构设计和多功能材料制备两种。而基于先进功能材料(包括纳米金属、纳米碳及导电聚合物)和柔性基体材料(如水凝胶、气凝胶及弹性聚合物)所制造的柔性多功能复合材料可有效降低多模式传感器的复杂性。最后,对比并指出了不同类型的功能材料在制造多功能柔性传感器中的特点与优势,为多功能柔性传感器的研究提供借鉴意义。
中图分类号:
汪小钰, 胡平, 操齐高, 李世磊, 胡卜亮, 葛松伟, 杨帆, 陈波, 朱昕宇, 王快社. 不同模式多功能柔性传感器研究进展[J]. 化工进展, 2022, 41(10): 5474-5493.
WANG Xiaoyu, HU Ping, CAO Qigao, LI Shilei, HU Boliang, GE Songwei, YANG Fan, CHEN Bo, ZHU Xinyu, WANG Kuaishe. Latest research progress of multifunctional flexible sensors with different modes[J]. Chemical Industry and Engineering Progress, 2022, 41(10): 5474-5493.
材料 | 模式 | 工作机制 | 灵敏度 | 工作范围 | 稳定性 | 参考文献 |
---|---|---|---|---|---|---|
褶皱MXene薄膜 | 压力 | 摩擦电 | 2.35V·kPa-1 | 0.3~1.0kPa | 500 | [ |
应变 | 电阻 | — | 400% | 100 | ||
MX@SiNPs棉纤维 | 压力 | 电阻 | 12.23kPa-1 | 8.8Pa~70kPa | 1000 | [ |
弯曲/扭曲 | 电阻 | — | 0~180°/0~628rad·m-1 | — | ||
3D GMC-PDMS膜 | 压力 | 电阻 | 0.5kPa-1 | 约50kPa | 6800 | [ |
应变 | 电阻 | 灵敏系数(GF)=10/15/5 | 90% | 1050 | ||
CCH | 压力 | 电阻 | 0.62kPa-1 | 0~1.0kPa | 1500 | [ |
应变 | 电阻 | GF=3.4 | 0~300% | — | ||
GLIG | 压力 | 电阻 | 678.2kPa-1 | 1~500kPa | 7000 | [ |
应变 | 电阻 | 2203.5 | 0~10% | 15000 | ||
空心MXene球/AgNWs | 压力 | 电容 | 0.02kPa-1 | 0~40kPa | 1000 | [ |
应变 | 电阻 | GF=39 | 0~40% | 2000 | ||
3D-TGS | 压力 | 电阻 | — | 5~20kPa | — | [ |
应变 | 电阻 | — | 0~20% | 3000 |
表1 具有压力和应变模式的多功能传感器的性能总结
材料 | 模式 | 工作机制 | 灵敏度 | 工作范围 | 稳定性 | 参考文献 |
---|---|---|---|---|---|---|
褶皱MXene薄膜 | 压力 | 摩擦电 | 2.35V·kPa-1 | 0.3~1.0kPa | 500 | [ |
应变 | 电阻 | — | 400% | 100 | ||
MX@SiNPs棉纤维 | 压力 | 电阻 | 12.23kPa-1 | 8.8Pa~70kPa | 1000 | [ |
弯曲/扭曲 | 电阻 | — | 0~180°/0~628rad·m-1 | — | ||
3D GMC-PDMS膜 | 压力 | 电阻 | 0.5kPa-1 | 约50kPa | 6800 | [ |
应变 | 电阻 | 灵敏系数(GF)=10/15/5 | 90% | 1050 | ||
CCH | 压力 | 电阻 | 0.62kPa-1 | 0~1.0kPa | 1500 | [ |
应变 | 电阻 | GF=3.4 | 0~300% | — | ||
GLIG | 压力 | 电阻 | 678.2kPa-1 | 1~500kPa | 7000 | [ |
应变 | 电阻 | 2203.5 | 0~10% | 15000 | ||
空心MXene球/AgNWs | 压力 | 电容 | 0.02kPa-1 | 0~40kPa | 1000 | [ |
应变 | 电阻 | GF=39 | 0~40% | 2000 | ||
3D-TGS | 压力 | 电阻 | — | 5~20kPa | — | [ |
应变 | 电阻 | — | 0~20% | 3000 |
类型 | 常见材料 | 优点 | 传感性能 |
---|---|---|---|
纳米金属 | 银纳米颗粒/线、金纳米颗粒、铂纳米颗粒 | 高导电性 | 压力、应变、温度 |
纳米碳 | 炭黑、碳纳米管、石墨烯及其衍生物、碳化物(MXenes) | 高导电性、高机械性、易功能化、成本低 | 压力、应变、温度、湿度、pH、化学气体 |
导电聚合物 | 聚苯胺、聚吡咯、聚偏二氟乙烯、PEDOT:PSS | 弹性好、易功能化 | 压力、应变、温度 |
表2 传感功能材料性能总结
类型 | 常见材料 | 优点 | 传感性能 |
---|---|---|---|
纳米金属 | 银纳米颗粒/线、金纳米颗粒、铂纳米颗粒 | 高导电性 | 压力、应变、温度 |
纳米碳 | 炭黑、碳纳米管、石墨烯及其衍生物、碳化物(MXenes) | 高导电性、高机械性、易功能化、成本低 | 压力、应变、温度、湿度、pH、化学气体 |
导电聚合物 | 聚苯胺、聚吡咯、聚偏二氟乙烯、PEDOT:PSS | 弹性好、易功能化 | 压力、应变、温度 |
15 | HOREV Yehu David, MAITY Arnab, ZHENG Youbin, et al. Stretchable and highly permeable nanofibrous sensors for detecting complex human body motion[J]. Advanced Materials, 2021, 33(41): 2102488. |
16 | JIANG Xiaoping, REN Zongling, FU Yafei, et al. Highly compressible and sensitive pressure sensor under large strain based on 3D porous reduced graphene oxide fiber fabrics in wide compression strains[J]. ACS Applied Materials & Interfaces, 2019, 11(40): 37051-37059. |
17 | WANG Lin, ZHANG Meiyun, YANG Bin, et al. Highly compressible, thermally stable, light-weight, and robust aramid nanofibers/Ti3AlC2 MXene composite aerogel for sensitive pressure sensor[J]. ACS Nano, 2020, 14(8): 10633-10647. |
18 | XU Chuanhui, ZHENG Zhongjie, LIN Mengzhuan, et al. Strengthened, antibacterial, and conductive flexible film for humidity and strain sensors[J]. ACS Applied Materials & Interfaces, 2020, 12(31): 35482-35492. |
19 | SUSHMITHA Veeralingam, SUSHMEE Badhulika. Bi2S3/PVDF/ppy-based freestanding, wearable, transient nanomembrane for ultrasensitive pressure, strain, and temperature sensing[J]. ACS Applied Bio Materials, 2021, 4(1): 14-23. |
20 | AMJADI Morteza, PICHITPAJONGKIT Aekachan, LEE Sangjun, et al. Highly stretchable and sensitive strain sensor based on silver nanowire-elastomer nanocomposite[J]. ACS Nano, 2014, 8(5): 5154-5163. |
21 | WENG Dehui, XU Fuchang, LI Xiang, et al. Polymeric complex-based transparent and healable ionogels with high mechanical strength and ionic conductivity as reliable strain sensors[J]. ACS Applied Materials & Interfaces, 2020, 12(51): 57477-57485. |
22 | JIA Lichuan, ZHOU Changge, DAI Kun, et al. Facile fabrication of highly durable superhydrophobic strain sensors for subtle human motion detection[J]. Journal of Materials Science & Technology, 2022, 110: 35-42. |
23 | LIU Libing, ZHANG Xuezhong, XIANG Dong, et al. Highly stretchable, sensitive and wide linear responsive fabric-based strain sensors with a self-segregated carbon nanotube (CNT)/polydimethylsiloxane (PDMS) coating[J]. Progress in Natural Science: Materials International, 2022, 32(1): 34-42. |
24 | TRUNG Tran Quang, DANG Thi My Linh, RAMASUNDARAM Subramaniyan, et al. A stretchable strain-insensitive temperature sensor based on free-standing elastomeric composite fibers for on-body monitoring of skin temperature[J]. ACS Applied Materials & Interfaces, 2019, 11(2): 2317-2327. |
25 | WANG Zhenyu, GAO Weilian, ZHANG Qiang, et al. 3D-printed graphene/polydimethylsiloxane composites for stretchable and strain-insensitive temperature sensors[J]. ACS Applied Materials & Interfaces, 2019, 11(1): 1344-1352. |
26 | YAMADA Shunsuke, TOSHIYOSHI Hiroshi. Temperature sensor with a water-dissolvable ionic gel for ionic skin[J]. ACS Applied Materials & Interfaces, 2020, 12(32): 36449-36457. |
27 | ZHANG Zuocai, LU Tianyun, YANG Dan, et al. A high-wet-strength biofilm for readable and highly sensitive humidity sensors[J]. Nano Letters, 2021, 21(21): 9030-7. |
28 | WANG Yang, ZHANG Lina, ZHOU Jinping, et al. Flexible and transparent cellulose-based ionic film as a humidity sensor[J]. ACS Applied Materials & Interfaces, 2020, 12(6): 7631-7638. |
29 | WU Jianhui, YIN Changshuai, ZHOU Jian, et al. Ultrathin glass-based flexible, transparent, and ultrasensitive surface acoustic wave humidity sensor with ZnO nanowires and graphene quantum dots[J]. ACS Applied Materials & Interfaces, 2020, 12(35): 39817-39825. |
30 | HUANG Kaiyan, NING Huiming, HU Ning, et al. Ultrasensitive MWCNT/PDMS composite strain sensor fabricated by laser ablation process[J]. Composites Science and Technology, 2020, 192: 108105. |
31 | JIA Guangwen, ZHENG Ao, WANG Xiao, et al. Flexible, biocompatible and highly conductive MXene-graphene oxide film for smart actuator and humidity sensor[J]. Sensors and Actuators B: Chemical, 2021, 346: 130507. |
32 | HE Haoxuan, ZHAO Chenxi, XU Jing, et al. Exploiting free-standing p-CuO/n-TiO2 nanochannels as a flexible gas sensor with high sensitivity for H2S at room temperature[J]. ACS Sensors, 2021, 6(9): 3387-3397. |
33 | TAN Haotian, CHU Yingli, WU Xiaohan, et al. High-performance flexible gas sensors based on layer-by-layer assembled polythiophene thin films[J]. Chemistry of Materials, 2021, 33(19): 7785-7794. |
34 | YAN Wenhao, YAN Wenrong, CHEN Tiandi, et al. Size-tunable flowerlike MoS2 nanospheres combined with laser-induced graphene electrodes for NO2 sensing [J]. ACS Applied Nano Materials, 2020, 3(3): 2545-2453. |
35 | KIM Jong-Woo, PORTE Yoann, Kyung Yong KO, et al. Micropatternable double-faced ZnO nanoflowers for flexible gas sensor[J]. ACS Applied Materials & Interfaces, 2017, 9(38): 32876-32886. |
36 | CHEN Jianwen, ZHU Yutian, CHANG Xiaohua, et al. Recent progress in essential functions of soft electronic skin[J]. Advanced Functional Materials, 2021, 31(42): 2104686. |
37 | WU Yuting, YAN Tao, PAN Zhijuan. Wearable carbon-based resistive sensors for strain detection: a review[J]. IEEE Sensors Journal, 2021, 21(4): 4030-4043. |
38 | 鲍艳, 郑茜, 郭茹月. 柔性可降解压力传感器关键制备材料的研究进展[J]. 化工进展, 2022, 41(7): 3624-3635. |
BAO Yan, ZHENG Xi, GUO Ruyue. Recent progress of key materials for flexible degradable pressure sensors [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3624-3635. | |
39 | CHEN Song, LIU Shuqi, WANG Pingping, et al. Highly stretchable fiber-shaped e-textiles for strain/pressure sensing, full-range human motions detection, health monitoring, and 2D force mapping[J]. Journal of Materials Science, 2018, 53(4): 2995-3005. |
40 | WANG Jian, ZHANG Congcong, CHEN Duo, et al. Fabrication of a sensitive strain and pressure sensor from gold nanoparticle-assembled 3D-interconnected graphene microchannel-embedded PDMS[J]. ACS Applied Materials & Interfaces, 2020, 12(46): 51854-51863. |
1 | WU Xiaomin, LI Enlong, LIU Yaqian, et al. Artificial multisensory integration nervous system with haptic and iconic perception behaviors[J]. Nano Energy, 2021, 85: 106000. |
2 | LI Ling, ZHANG Jianyu, YANG Chenyi, et al. Stimuli-responsive materials from ferrocene-based organic small molecule for wearable sensors[J]. Small, 2021, 17(46): 2103125. |
3 | KIM Seunghwan, AMJADI Morteza, LEE Tae-Ik, et al. Wearable, ultrawide-range, and bending-insensitive pressure sensor based on carbon nanotube network-coated porous elastomer sponges for human interface and healthcare devices[J]. ACS Applied Materials & Interfaces, 2019, 11(26): 23639-23648. |
4 | WANG Hongchen, ZHOU Ruicong, LI Donghai, et al. High-performance foam-shaped strain sensor based on carbon nanotubes and Ti3C2T x MXene for the monitoring of human activities[J]. ACS Nano, 2021, 15(6): 9690-9700. |
5 | CHOI Suji, HAN Sang Ihn, JUNG Dongjun, et al. Highly conductive, stretchable and biocompatible Ag-Au core-sheath nanowire composite for wearable and implantable bioelectronics[J]. Nature Nanotechnology, 2018, 13(11): 1048-1056. |
6 | CAO Yule, GUO Yinben, CHEN Zixi, et al. Highly sensitive self-powered pressure and strain sensor based on crumpled MXene film for wireless human motion detection[J]. Nano Energy, 2022, 92: 106689. |
7 | CLEVENGER Michael, KIM Hyeonghun, SONG Han Wook, et al. Binder-free printed PEDOT wearable sensors on everyday fabrics using oxidative chemical vapor deposition[J]. Science Advances, 2021, 7(42): eabj8958. |
8 | YANG T, DENG W, CHU X, et al. Hierarchically microstructure-bioinspired flexible piezoresistive bioelectronics[J]. ACS Nano, 2021, 15: 1027-1038. |
9 | LI Zixiu, WANG Jian, XU Yongjian, et al. Green and sustainable cellulose-derived humidity sensors: a review[J]. Carbohydrate Polymers, 2021, 270: 118385. |
10 | 唐子龙, 郝远强, 刘又年. 基于薄层黑磷的电化学传感器研究新进展[J]. 化工进展, 2022, 41(4): 1925-1940. |
TANG Zilong, HAO Yuanqiang, LIU Younian. Recent progress of electrochemical sensors based on layered black phosphorus [J]. Chemical Industry and Engineering Progress, 2022, 41(4): 1925-1940. | |
11 | 何崟, 周艺颖, 刘皓, 等. 基于碳材料的柔性压力传感器研究进展[J]. 化工进展, 2018, 37(7): 2664-2671. |
41 | Jingchun LYU, LIU Zeng, ZHANG Long, et al. Multifunctional polypyrrole and rose-like silver flower-decorated e-textile with outstanding pressure/strain sensing and energy storage performance[J]. Chemical Engineering Journal, 2022, 427: 130823. |
42 | ZHAO Xuefeng, WEN Xiaohong, ZHONG Shulin, et al. Hollow MXene sphere-based flexible e-skin for multiplex tactile detection[J]. ACS Applied Materials & Interfaces, 2021, 13(38): 45924-45934. |
43 | LI Qiushi, WU Tongyu, ZHAO Wei, et al. Laser-induced corrugated graphene films for integrated multimodal sensors[J]. ACS Applied Materials & Interfaces, 2021, 13(31): 37433-37444. |
44 | ZHAO Xuefeng, WEN Xiaohong, SUN Peng, et al. Spider web-like flexible tactile sensor for pressure-strain simultaneous detection[J]. ACS Applied Materials & Interfaces, 2021, 13(8): 10428-10436. |
45 | WANG Shuang, DU Xiaosheng, LUO Yaofa, et al. Hierarchical design of waterproof, highly sensitive, and wearable sensing electronics based on MXene-reinforced durable cotton fabrics[J]. Chemical Engineering Journal, 2021, 408: 127363. |
46 | YU Xiaohui, ZHENG Yong, ZHANG Haopeng, et al. Fast-recoverable, self-healable, and adhesive nanocomposite hydrogel consisting of hybrid nanoparticles for ultrasensitive strain and pressure sensing[J]. Chemistry of Materials, 2021, 33(15): 6146-6157. |
47 | SARWAR Mirza Saquib, DOBASHI Yuta, PRESTON Claire, et al. Bend, stretch, and touch: locating a finger on an actively deformed transparent sensor array[J]. Science Advances, 2017, 3(3): e1602200. |
48 | WEI Huige, KONG Deshuo, LI Tuo, et al. Solution-processable conductive composite hydrogels with multiple synergetic networks toward wearable pressure/strain sensors[J]. ACS Sensors, 2021, 6(8): 2938-2951. |
49 | WANG Tao, ZHANG Ying, LIU Qingchang, et al. A self-healable, highly stretchable, and solution processable conductive polymer composite for ultrasensitive strain and pressure sensing[J]. Advanced Functional Materials, 2018, 28(7): 1705551. |
50 | 王雨柔, 王国琪, 李想, 等. 溶液法制备柔性压阻式传感器的研究进展[J]. 化学学报, 2022, 80(2): 214-228. |
WANG Yurou, WANG Guoqi, LI Xiang, et al. Research progress of flexible piezoresistive sensors prepared by solution-based processing[J]. Acta Chimica Sinica, 2022, 80(2): 214-228. | |
51 | ZHU Pengcheng, WANG Yalong, WANG Yao, et al. Human-machine interactions: flexible 3D architectured piezo/thermoelectric bimodal tactile sensor array for E-skin application [J]. Advanced Energy Materials, 2020, 10(39): 2070161. |
52 | WANG Yaling, ZHU Wei, DENG Yuan, et al. High-sensitivity self-powered temperature/pressure sensor based on flexible Bi-Te thermoelectric film and porous microconed elastomer[J]. Journal of Materials Science & Technology, 2022, 103: 1-7. |
53 | ZHU Lingfeng, WANG Yancheng, MEI Deqing, et al. Fully elastomeric fingerprint-shaped electronic skin based on tunable patterned graphene/silver nanocomposites[J]. ACS Applied Materials & Interfaces, 2020, 12(28): 31725-31737. |
54 | ZHENG Shaodi, JIANG Yuanping, WU Xiaotian, et al. Highly sensitive pressure sensor with broad linearity via constructing a hollow structure in polyaniline/polydimethylsiloxane composite[J]. Composites Science and Technology, 2021, 201: 108546. |
55 | SANG Mingyu, KANG Kyowon, ZHANG Yue, et al. Ultrahigh sensitive Au-doped silicon nanomembrane based wearable sensor arrays for continuous skin temperature monitoring with high precision[J]. Advanced Materials, 2022, 34(4): e2105865. |
56 | HOU Wenwen, LUAN Zhaohui, XIE Dan, et al. High performance dual strain-temperature sensor based on alginate nanofibril/graphene oxide/polyacrylamide nanocomposite hydrogel[J]. Composites Communications, 2021, 27: 100837. |
57 | LIN Mengzhuan, ZHENG Zhongjie, YANG Li, et al. A high-performance, sensitive, wearable multifunctional sensor based on rubber/CNT for human motion and skin temperature detection[J]. Advanced Materials, 2022, 34(1): 2107309. |
58 | MIN Hyeongho, BAIK Sangyul, KIM Jinhyung, et al. Tough carbon nanotube-implanted bioinspired three-dimensional electrical adhesive for isotropically stretchable water-repellent bioelectronics[J]. Advanced Functional Materials, 2022, 32(8): 2107285. |
59 | YANG Yan, ZHAO Guojie, CHENG Xi, et al. Stretchable and healable conductive elastomer based on PEDOT:PSS/natural rubber for self-powered temperature and strain sensing[J]. ACS Applied Materials & Interfaces, 2021, 13(12): 14599-14611. |
60 | JANG Gwon Neung, HONG Soo Yeong, PARK Heun, et al. Highly sensitive pressure and temperature sensors fabricated with poly(3-hexylthiophene-2,5-diyl)-coated elastic carbon foam for bio-signal monitoring[J]. Chemical Engineering Journal, 2021, 423: 130197. |
61 | LEE Jeng Hun, KIM Eunyoung, ZHANG Heng, et al. Rational design of all resistive multifunctional sensors with stimulus discriminability[J]. Advanced Functional Materials, 2022, 32(1): 2107570. |
62 | DUAN Zaihua, JIANG Yadong, TAI Huiling. Recent advances in humidity sensors for human body related humidity detection[J]. Journal of Materials Chemistry C, 2021, 9(42): 14963-14980. |
63 | ZHENG Yanjun, LI Yilong, DAI Kun, et al. A highly stretchable and stable strain sensor based on hybrid carbon nanofillers/polydimethylsiloxane conductive composites for large human motions monitoring[J]. Composites Science and Technology, 2018, 156: 276-286. |
64 | OUYANG Yue, WANG Xuechuan, HOU Mengdi, et al. Skin-inspired wearable self-powered electronic skin with tunable sensitivity for real-time monitoring of sleep quality[J]. Nano Energy, 2022, 91: 106682. |
65 | ZHAO Jing, WEI Zheng, LI Zhongyi, et al. Skin-inspired high-performance active-matrix circuitry for multimodal user-interaction[J]. Advanced Functional Materials, 2021, 31(38): 2105480. |
66 | KHALIFA Mohammed, WUZELLA Guenter, LAMMER Herfried, et al. Smart paper from graphene coated cellulose for high-performance humidity and piezoresistive force sensor[J]. Synthetic Metals, 2020, 266: 116420. |
67 | MIAO Liming, WAN Ji, SONG Yu, et al. Skin-inspired humidity and pressure sensor with a wrinkle-on-sponge structure[J]. ACS Applied Materials & Interfaces, 2019, 11(42): 39219-39227. |
68 | ZENG Sheng, ZHANG Junyao, ZU Guoqing, et al. Transparent, flexible, and multifunctional starch-based double-network hydrogels as high-performance wearable electronics[J]. Carbohydrate Polymers, 2021, 267: 118198. |
69 | LU Qixin, CHEN Hong, ZENG Yuanming, et al. Intelligent facemask based on triboelectric nanogenerator for respiratory monitoring[J]. Nano Energy, 2022, 91: 106612. |
70 | TANG Xinyue, YANG Weidong, YIN Shuran, et al. Controllable graphene wrinkle for a high-performance flexible pressure sensor[J]. ACS Applied Materials & Interfaces, 2021, 13(17): 20448-20458. |
71 | WEI Peiran, LENG Houming, CHEN Qiyi, et al. Reprocessable 3D-printed conductive elastomeric composite foams for strain and gas sensing[J]. ACS Applied Polymer Materials, 2019, 1(4): 885-892. |
72 | WON Chihyeong, LEE Sanggeun, JUNG Han Hee, et al. Ultrasensitive and stretchable conductive fibers using percolated Pd nanoparticle networks for multisensing wearable electronics: crack-based strain and H2 sensors [J]. ACS Applied Materials & Interfaces, 2020, 12(40): 45243-53. |
73 | ZHI Hui, ZHANG Xiaobo, WANG Fengya, et al. Flexible Ti3C2T x MXene/PANI/bacterial cellulose aerogel for e-skins and gas sensing[J]. ACS Applied Materials & Interfaces, 2021, 13(38): 45987-45994. |
74 | NAKATA Shogo, SHIOMI Mao, FUJITA Yusuke, et al. A wearable pH sensor with high sensitivity based on a flexible charge-coupled device[J]. Nature Electronics, 2018, 1(11): 596-603. |
75 | LU Yuyao, FUJITA Yusuke, HONDA Satoko, et al. Wireless and flexible skin moisture and temperature sensor sheets toward the study of thermoregulator center[J]. Advanced Healthcare Materials, 2021, 10(17): 2170078. |
76 | HUANG Xuewu, LI Bei, WANG Ling, et al. Superhydrophilic, underwater superoleophobic, and highly stretchable humidity and chemical vapor sensors for human breath detection[J]. ACS Applied Materials & Interfaces, 2019, 11(27): 24533-24543. |
77 | Yong Suk OH, KIM Jae-Hwan, XIE Zhaoqian, et al. Battery-free, wireless soft sensors for continuous multi-site measurements of pressure and temperature from patients at risk for pressure injuries[J]. Nature Communications, 2021, 12(1): 5008. |
78 | HAN Shaobo, JIAO Fei, KHAN Zia Ullah, et al. Thermoelectric polymer aerogels for pressure-temperature sensing applications[J]. Advanced Functional Materials, 2017, 27(44): 1703549. |
79 | YANG Shuaitao, LI Chengwei, WEN Ningxuan, et al. All-fabric-based multifunctional textile sensor for detection and discrimination of humidity, temperature, and strain stimuli[J]. Journal of Materials Chemistry C, 2021, 9(39): 13789-13798. |
80 | ZHANG Chao, ZHOU Yongsen, HAN Haijie, et al. Dopamine-triggered hydrogels with high transparency, self-adhesion, and thermoresponse as skinlike sensors[J]. ACS Nano, 2021, 15(1): 1785-1794. |
81 | LIU Jing, WANG Haiyan, Rongxian OU, et al. Anti-bacterial silk-based hydrogels for multifunctional electrical skin with mechanical-thermal dual sensitive integration[J]. Chemical Engineering Journal, 2021, 426: 130722. |
82 | ZU Guoqing, KANAMORI Kazuyoshi, NAKANISHI Kazuki, et al. Superhydrophobic ultraflexible triple-network graphene/polyorganosiloxane aerogels for a high-performance multifunctional temperature/strain/pressure sensing array[J]. Chemistry of Materials, 2019, 31(16): 6276-6285. |
83 | QIAN Cuncun, LI Lihong, GAO Meng, et al. All-printed 3D hierarchically structured cellulose aerogel based triboelectric nanogenerator for multi-functional sensors[J]. Nano Energy, 2019, 63: 103885. |
84 | CHEN Weixing, WANG Zhiwen, LI Qiuzhao, et al. Hollow polyaniline microsphere functionalized paper with multimodal sensitivity to strain, humidity, and pressure[J]. ACS Applied Electronic Materials, 2020, 2(1): 247-253. |
85 | LIN Rongzhou, KIM Han-Joon, ACHAVANANTHADITH Sippanat, et al. Wireless battery-free body sensor networks using near-field-enabled clothing[J]. Nature Communications, 2020, 11(1): 444. |
86 | BI Siyi, HOU Lei, LU Yinxiang. An integrated wearable strain, temperature and humidity sensor for multifunctional monitoring[J]. Composites A: Applied Science and Manufacturing, 2021, 149: 106504. |
87 | YUE Ouyang, WANG Xuechuan, LIU Xinhua, et al. Spider-web and ant-tentacle doubly bio-inspired multifunctional self-powered electronic skin with hierarchical nanostructure[J]. Advanced Science, 2021, 8(15): 2004377. |
88 | LIN Xiuzhu, LI Fan, BING Yu, et al. Biocompatible multifunctional e-skins with excellent self-healing ability enabled by clean and scalable fabrication[J]. Nano-Micro Letters, 2021, 13(1): 200. |
89 | LI Chengwei, YANG Shuaitao, GUO Yuan, et al. Flexible, multi-functional sensor based on all-carbon sensing medium with low coupling for ultrahigh-performance strain, temperature and humidity sensing[J]. Chemical Engineering Journal, 2021, 426: 130364. |
90 | HAN Shaobo, ALVI Naveed Ul Hassan, Lars GRANLÖF, et al. A multiparameter pressure-temperature-humidity sensor based on mixed ionic-electronic cellulose aerogels[J]. Advanced Science, 2019, 6(8): 1802128. |
91 | GAO Yang, JIA Fei, GAO Guanghui. Ultra-thin, transparent, anti-freezing organohydrogel film responded to a wide range of humidity and temperature[J]. Chemical Engineering Journal, 2022, 430: 132919. |
92 | CHEN Jianwen, WANG Fei, ZHU Guoxuan, et al. Breathable strain/temperature sensor based on fibrous networks of ionogels capable of monitoring human motion, respiration, and proximity[J]. ACS Applied Materials & Interfaces, 2021, 13(43): 51567-51577. |
93 | Zhao S, Zhu R. Electronic skin with multifunction sensors based on thermosensation[J]. Advanced Materials, 2017, 29(15): 1606151. |
94 | KHATIB Muhammad, ZOHAR Orr, SALIBA Walaa, et al. A multifunctional electronic skin empowered with damage mapping and autonomic acceleration of self-healing in designated locations[J]. Advanced Materials, 2020, 32(17): e2000246. |
95 | GUO Hongshuang, BAI Ming, ZHU Yingnan, et al. Pro-healing zwitterionic skin sensor enables multi-indicator distinction and continuous real-time monitoring[J]. Advanced Functional Materials, 2021, 31(50): 2106406. |
96 | HUA Qilin, SUN Junlu, LIU Haitao, et al. Skin-inspired highly stretchable and conformable matrix networks for multifunctional sensing[J]. Nature Communications, 2018, 9(1): 244. |
97 | WEI Y H, LI X S, WANG Y F, et al. Graphene-based multifunctional textile for sensing and actuating[J]. ACS Nano, 2021, 15(11): 17738-17747. |
98 | WANG Haihang, CEN Yuemei, ZENG Xiangqiong. Highly sensitive flexible tactile sensor mimicking the microstructure perception behavior of human skin[J]. ACS Applied Materials & Interfaces, 2021, 13(24): 28538-28545. |
99 | HE Peng, GUO Runsheng, HU Kui, et al. Tough and super-stretchable conductive double network hydrogels with multiple sensations and moisture-electric generation[J]. Chemical Engineering Journal, 2021, 414: 128726. |
11 | HE Yin, ZHOU Yiying, LIU Hao, et al. Research progress of flexible pressure sensors based on carbon materials[J]. Chemical Industry and Engineering Progress, 2018, 37(7): 2664-2671. |
12 | FU Xuemei, LI Jiaxin, TANG Chengqiang, et al. Hydrogel cryo-microtomy continuously making soft electronic devices[J]. Advanced Functional Materials, 2021, 31(7): 2008355. |
13 | CHO Kyung Gook, AN Sol, CHO Dae Hyun, et al. Block copolymer-based supramolecular ionogels for accurate on-skin motion monitoring[J]. Advanced Functional Materials, 2021, 31(36): 2102386. |
14 | GUO Yunjian, WEI Xiao, GAO Song, et al. Recent advances in carbon material-based multifunctional sensors and their applications in electronic skin systems[J]. Advanced Functional Materials, 2021, 31(40): 2104288. |
100 | LIU Hanbin, XIANG Huacui, WANG Yao, et al. A flexible multimodal sensor that detects strain, humidity, temperature, and pressure with carbon black and reduced graphene oxide hierarchical composite on paper[J]. ACS Applied Materials & Interfaces, 2019, 11(43): 40613-40619. |
101 | XU Jingxuan, BAN Chaoyi, XIU Fei, et al. Multimode visualization of electronic skin from bioinspired colorimetric sensor[J]. ACS Applied Materials & Interfaces, 2021, 13(25): 30205-30212. |
102 | LU Lijun, YANG Bin, LIU Jingquan. Flexible multifunctional graphite nanosheet/electrospun-polyamide 66 nanocomposite sensor for ECG, strain, temperature and gas measurements[J]. Chemical Engineering Journal, 2020, 400: 125928. |
103 | ZHANG Min, SUN Jiaxing Jeccy, KHATIB Muhammad, et al. Time-space-resolved origami hierarchical electronics for ultrasensitive detection of physical and chemical stimuli[J]. Nature Communications, 2019, 10(1): 1120. |
[1] | 蔡楚玥, 方晓明, 凌子夜, 张正国. 相变热界面材料导热增强及定形改善的研究进展[J]. 化工进展, 2022, 41(9): 4907-4917. |
[2] | 李学刚, 肖文德. 电子特气甲硅烷的国产化实践及行业展望[J]. 化工进展, 2021, 40(9): 5231-5235. |
[3] | 杨晓幸, 苗鹤, 袁金良. 可逆固体氧化物燃料电池氧电极材料的研究进展[J]. 化工进展, 2021, 40(9): 4904-4917. |
[4] | 李仲明, 李斌, 武思蕊, 赵梁成. 基于3D打印技术制造柔性传感器研究进展[J]. 化工进展, 2020, 39(5): 1835-1843. |
[5] | 何崟, 周艺颖, 刘皓, 孙可可, 李晓久, 王晓云. 基于碳材料的柔性压力传感器研究进展[J]. 化工进展, 2018, 37(07): 2664-2671. |
[6] | 陈建军, 黄月文, 梁彩珍, 王斌. 功能化碳纳米管/环氧树脂多孔复合材料制备及电磁屏蔽性能[J]. 化工进展, 2018, 37(02): 664-672. |
[7] | 胡飞燕, 胡景, 任碧野. LED灌封用高折光指数有机硅树脂的制备与性能[J]. 化工进展, 2017, 36(02): 634-640. |
[8] | 葛洋, 姜未汀. 微通道换热器的研究及应用现状[J]. 化工进展, 2016, 35(S1): 10-15. |
[9] | 骆仲泱, 王少鹏, 方梦祥, 王昊, 王勤辉. 煤焦油沥青的深度利用及发展前景[J]. 化工进展, 2016, 35(02): 611-616. |
[10] | 史雪, 高婷婷, 周国伟. 过渡金属化合物多壳空心球的制备及其应用研究进展[J]. 化工进展, 2015, 34(11): 3951-3958,3989. |
[11] | 王杰, 王茜. 热管科学及吸液芯研究进展回顾与展望[J]. 化工进展, 2015, 34(04): 891-902. |
[12] | 辛忠, 张雯斐. 超双疏表面的构筑及研究进展[J]. 化工进展, 2015, 34(02): 447-455,478. |
[13] | 褚良银,汪伟,巨晓洁,谢锐. 微流控法构建微尺度相界面及制备新型功能材料研究进展[J]. 化工进展, 2014, 33(09): 2229-2234. |
[14] | 曾小亮1,于淑会1,孙蓉1,赖茂柏1,许建斌2. 聚乙二醇改性双马来酰亚胺-三嗪树脂/玻璃纤维布复合材料的热性能[J]. 化工进展, 2014, 33(01): 150-154. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |