化工进展 ›› 2022, Vol. 41 ›› Issue (9): 4907-4917.DOI: 10.16085/j.issn.1000-6613.2021-2411

• 材料科学与技术 • 上一篇    下一篇

相变热界面材料导热增强及定形改善的研究进展

蔡楚玥1(), 方晓明1,2, 凌子夜1,2, 张正国1,2,3()   

  1. 1.华南理工大学传热强化与过程节能教育部重点实验室,广东 广州 510640
    2.广东省热能高效储存与利用工程技术研究中心,广东 广州 510640
    3.华南理工大学珠海现代产业创新研究院,广东 珠海 519175
  • 收稿日期:2021-11-23 修回日期:2021-12-27 出版日期:2022-09-25 发布日期:2022-09-27
  • 通讯作者: 张正国
  • 作者简介:蔡楚玥(1997—),女,硕士研究生,研究方向为传热强化。E-mail:374591187@qq.com
  • 基金资助:
    国家重点研发计划(2020YFA0210704)

Research progress on thermal conductivity enhancement and form stability improvement of phase change thermal interface materials

CAI Chuyue1(), FANG Xiaoming1,2, LING Ziye1,2, ZHANG Zhengguo1,2,3()   

  1. 1.Key Laboratory of Enhanced Heat Transfer and Energy Conservation, The Ministry of Education, South China University of Technology, Guangzhou 510640, Guangdong, China
    2.Guangdong Engineering Technology Research Center of Efficient Heat Storage and Application, South China University of Technology, Guangzhou 510640, Guangdong, China
    3.South China University of Technology-Zhuhai Institute of Modern Industrial Innovation, Zhuhai 519175, Guangdong, China
  • Received:2021-11-23 Revised:2021-12-27 Online:2022-09-25 Published:2022-09-27
  • Contact: ZHANG Zhengguo

摘要:

将相变时伴随潜热的相变材料(phase change material, PCM)特别是潜热值较大的固-液PCM引入热界面材料(TIM)领域,有望获得兼具储热和导热双功能的新型热界面材料——相变热界面材料(phase change thermal interface material, PCTIM)。然而,鉴于固-液相变材料的热导率普遍较低且存在液相流动泄漏问题,使得增强热传导并同时提升固-液相变材料的定形性成为研制高性能相变热界面材料(PCTIM)的关键。本文系统评述了国内外研究者在提升相变热界面材料热导率以及改善其定形性方面的策略及其研究进展。文中指出,目前强化PCTIM导热的手段主要有添加高导热填料、促使填料有序结构化以及使用低熔点金属等。在改善定形性方面,已运用的策略主要包括使用柔性载体负载固-液PCM以在保证一定柔性的基础上克服其液相泄漏问题,使用固-固PCM来取代固-液PCM来彻底避免液相泄漏问题的出现,以及将固-液PCM封装在微米级或纳米级胶囊内,旨在牺牲借助液相PCM增加柔性的功能,而且通过提高PCTIM的潜热值来提升其抗热流冲击性能。文章指出,当前已研制的PCTIM热导率还较低,储热和导热这两个特性对其散热性能的协同影响机制缺乏深入了解。今后,需要探索研制高性能PCTIM的新策略,以期获得定形性好、热导率高、界面热阻小且潜热值大的PCTIM,从而满足5G通信等高热流密度芯片的散热需求。

关键词: 电子材料, 界面, 复合材料, 热传导, 相变, 焓, 纳米材料

Abstract:

Thermal interface materials (TIMs) is a kind of material used to establish thermal conductive path between chip and heat sink for reducing heat transfer resistance and thus improving heat dissipation efficiency. Introducing phase change materials (PCMs) especially solid-liquid PCMs into TIMs is expected to develop a novel kind of TIM, that is, phase change TIM (PCTIM), which has the functions of both thermal storage and heat conductance. However, in view of the low thermal conductivity of solid-liquid PCMs as well as the problem of their liquid flow and leakage, the enhancement on heat conduction along with the improvement in form-stability has become the key to developing high-performance PCTIMs. In this paper, the strategies and research progress on improving thermal conductivity and formability of PCTIMs are reviewed. Specifically, the means of strengthening the thermal conductivity of PCTIMs mainly include adding the fillers with high thermal conductivity, forming the orderly structures of the fillers and employing low melting point metal, etc. As for improving the form-stability, the solid-liquid PCMs could be combined with flexible supporting materials for overcoming the problem of liquid leakage as well as maintaining the flexibility to some extent. The solid-solid PCMs are used to replace solid-liquid PCMs to avoid liquid leakage completely. The solid-liquid PCMs could be encapsulated into micron or nanoscale capsules followed by introducing TIMs, which would develop the PCTIMs with high latent heat and thus exhibiting good performance to resist thermal shock for chips. At present, the thermal conductivities of the PCTIMs are still low, and the synergistic influence mechanism of the two characteristics of heat storage and thermal conductivity on their heat dissipation performance is not well understood. In the future, new strategies should be explored for developing the form-stable PCTIMs with high thermal conductivity, low interface thermal resistance and large latent heat value with the purpose of meeting the heat dissipation requirements of high heat flux chips for the fields such as 5G communication.

Key words: electronic materials, interface, composites, heat conduction, phase change, enthalpy, nanomaterials

中图分类号: 

京ICP备12046843号-2;京公网安备 11010102001994号
版权所有 © 《化工进展》编辑部
地址:北京市东城区青年湖南街13号 邮编:100011
电子信箱:hgjz@cip.com.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn