1 |
高丽娜, 赵领. 温度应力下基于步进加速退化试验的电子器件寿命预测[J]. 电子元件与材料, 2014, 33(6): 72-76.
|
|
GAO Lina, ZHAO Ling. Life prediction of electronic equipments based on step-stress accelerated degradation test under temperature stress[J]. Electronic Components and Materials, 2014, 33(6): 72-76.
|
2 |
YOVANOVICH M M. Four decades of research on thermal contact, gap, and joint resistance in microelectronics[J]. IEEE Transactions on Components and Packaging Technologies, 2005, 28(2): 182-206.
|
3 |
SARVAR F, WHALLEY D C, CONWAY P P. Thermal interface materials: a review of the state of the art[C]//2006 1st Electronic Systemintegration Technology Conference. Dresden, IEEE, 2006: 1292-1302.
|
4 |
杨斌, 孙蓉. 热界面材料产业现状与研究进展[J]. 中国基础科学, 2020, 22(2): 56-62.
|
|
YANG Bin, SUN Rong. The current industry status and research progress in thermal interface materials[J]. China Basic Science, 2020, 22(2): 56-62.
|
5 |
周四丽, 张正国, 方晓明. 固-固相变储热材料的研究进展[J]. 化工进展, 2021, 40(3): 1371-1383.
|
|
ZHOU Sili, ZHANG Zhengguo, FANG Xiaoming. Research progress of solid-solid phase change materials for thermal energy storage[J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1371-1383.
|
6 |
IRFAN LONE M, JILTE R. A review on phase change materials for different applications[J]. Materials Today: Proceedings, 2021, 46: 10980-10986.
|
7 |
AFTAB Waseem, HUANG Xinyu, WU Wenhao, et al. Nanoconfined phase change materials for thermal energy applications[J]. Energy & Environmental Science, 2018, 11(6): 1392-1424.
|
8 |
RAZEEB K M, DALTON E, CROSS G L W, et al. Present and future thermal interface materials for electronic devices[J]. International Materials Reviews, 2018, 63(1): 1-21.
|
9 |
史剑, 吴晓琳, 符显珠, 等. 相变热界面材料研究进展[J]. 材料导报, 2015, 29(S1): 151-156.
|
|
SHI Jian, WU Xiaolin, FU Xianzhu, et al. Research progress of phase change thermal interface materials[J]. Materials Review, 2015, 29(S1): 151-156.
|
10 |
LIU C Q, CHEN C, YU W, et al. Thermal properties of a novel form-stable phase change thermal interface materials olefin block copolymer/paraffin filled with Al2O3 [J]. International Journal of Thermal Sciences, 2020, 152: 106293.
|
11 |
LIU Z, CHUNG D D L. Boron nitride particle filled paraffin wax as a phase-change thermal interface material[J]. Journal of Electronic Packaging, 2006, 128(4): 319-323.
|
12 |
AOYAGI Y, LEONG C K, CHUNG D D L. Polyol-based phase-change thermal interface materials[J]. Journal of Electronic Materials, 2006, 35(3): 416-424.
|
13 |
WANG J F, XIE H Q, XIN Z. Thermal properties of paraffin based composites containing multi-walled carbon nanotubes[J]. Thermochimica Acta, 2009, 488(1/2): 39-42.
|
14 |
LI M, CHEN M R, WU Z S, et al. Carbon nanotube grafted with polyalcohol and its influence on the thermal conductivity of phase change material[J]. Energy Conversion and Management, 2014, 83: 325-329.
|
15 |
LI M, GUO Q G, CHEN Q W. Thermal conductivity improvement of heat-storage composite filled with milling modified carbon nanotubes[J]. International Journal of Green Energy, 2019, 16(15): 1617-1623.
|
16 |
ZOU D Q, MA X F, LIU X S, et al. Thermal performance enhancement of composite phase change materials (PCM) using graphene and carbon nanotubes as additives for the potential application in lithium-ion power battery[J]. International Journal of Heat and Mass Transfer, 2018, 120: 33-41.
|
17 |
QU Y, WANG S, ZHOU D, et al. Experimental study on thermal conductivity of paraffin-based shape-stabilized phase change material with hybrid carbon nano-additives[J]. Renewable Energy, 2020, 146: 2637-2645.
|
18 |
MAO D S, XIE J Q, SHENG G Q, et al. Aluminum coated spherical particles filled paraffin wax as a phase-change thermal interface materials[C]//2017 18th International Conference on Electronic Packaging Technology (ICEPT). Harbin, IEEE, 2017: 828-830.
|
19 |
GUPTA N, KUMAR A, DHAWAN S K, et al. Metal nanoparticles enhanced thermophysical properties of phase change material for thermal energy storage[J]. Materials Today: Proceedings, 2020, 32: 463-467.
|
20 |
ZENG J L, CAO Z, YANG D W, et al. Thermal conductivity enhancement of Ag nanowires on an organic phase change material[J]. Journal of Thermal Analysis and Calorimetry, 2010, 101(1): 385-389.
|
21 |
ZENG J L, ZHU F R, YU S B, et al. Effects of copper nanowires on the properties of an organic phase change material[J]. Solar Energy Materials and Solar Cells, 2012, 105: 174-178.
|
22 |
KIM W. Strategies for engineering phonon transport in thermoelectrics[J]. Journal of Materials Chemistry C, 2015, 3(40): 10336-10348.
|
23 |
CHEN Z W, ZHANG X Y, PEI Y Z. Manipulation of phonon transport in thermoelectrics[J]. Advanced Materials, 2018, 30(17): 1705617.
|
24 |
ZHANG Q, LIU J. Anisotropic thermal conductivity and photodriven phase change composite based on RT100 infiltrated carbon nanotube array[J]. Solar Energy Materials and Solar Cells, 2019, 190: 1-5.
|
25 |
黄华, 吴扬, 刘长洪, 等. 热界面材料制备方法: CN100358132C[P]. 2007-12-26.
|
|
HUANG Hua, WU Yang, LIU Changhong, et al. A preparation method of thermal interface materials: CN100358132C[P]. 2007-12-26.
|
26 |
ZHANG L, ZHOU K C, WEI Q, et al. Thermal conductivity enhancement of phase change materials with 3D porous diamond foam for thermal energy storage[J]. Applied Energy, 2019, 233/234: 208-219.
|
27 |
ARAMESH M, SHABANI B. Metal foam-phase change material composites for thermal energy storage: a review of performance parameters[J]. Renewable and Sustainable Energy Reviews, 2022, 155: 111919.
|
28 |
ZHANG P, MENG Z N, ZHU H, et al. Melting heat transfer characteristics of a composite phase change material fabricated by paraffin and metal foam[J]. Applied Energy, 2017, 185: 1971-1983.
|
29 |
WANG G, WEI G S, XU C, et al. Numerical simulation of effective thermal conductivity and pore-scale melting process of PCMs in foam metals[J]. Applied Thermal Engineering, 2019, 147: 464-472.
|
30 |
SABRINA FERFERA R, MADANI B, SERHANE R. Investigation of heat transfer improvement at idealized microcellular scale for metal foam incorporated with paraffin[J]. International Journal of Thermal Sciences, 2020, 156: 106444.
|
31 |
WANG X H, LU C N, RAO W. Liquid metal-based thermal interface materials with a high thermal conductivity for electronic cooling and bioheat-transfer applications[J]. Applied Thermal Engineering, 2021, 192: 116937.
|
32 |
HILL R F, STRADER J L. Practical utilization of low melting alloy thermal interface materials[C]//Twenty-Second Annual IEEE Semiconductor Thermal Measurement and Management Symposium. Dallas, IEEE, 2006: 23-27.
|
33 |
李元元, 程晓敏. 低熔点合金传热储热材料的研究与应用[J]. 储能科学与技术, 2013, 2(3): 189-198.
|
|
LI Yuanyuan, CHENG Xiaomin. Review on the low melting point alloys for thermal energy storage and heat transfer applications[J]. Energy Storage Science and Technology, 2013, 2(3): 189-198.
|
34 |
DENG Y G, LIU J. Corrosion development between liquid gallium and four typical metal substrates used in chip cooling device[J]. Applied Physics A, 2009, 95(3): 907-915.
|
35 |
JI Y L, YAN H L, XIAO X, et al. Excellent thermal performance of gallium-based liquid metal alloy as thermal interface material between aluminum substrates[J]. Applied Thermal Engineering, 2020, 166: 114649.
|
36 |
HUANG K Y, QIU W K, OU M L, et al. An anti-leakage liquid metal thermal interface material[J]. RSC Advances, 2020, 10(32): 18824-18829.
|
37 |
ROY C K, BHAVNANI S, HAMILTON M C, et al. Investigation into the application of low melting temperature alloys as wet thermal interface materials[J]. International Journal of Heat and Mass Transfer, 2015, 85: 996-1002.
|
38 |
CHU W X, TSENG P H, WANG C C. Utilization of low-melting temperature alloy with confined seal for reducing thermal contact resistance[J]. Applied Thermal Engineering, 2019, 163: 114438.
|
39 |
Indigo[EB/OL]. .
|
40 |
ZHANG Y F, LI W, HUANG J H, et al. Expanded graphite/paraffin/silicone rubber as high temperature form-stabilized phase change materials for thermal energy storage and thermal interface materials[J]. Materials, 2020, 13(4): 894.
|
41 |
LIU C Q, YU W, CHEN C, et al. Remarkably reduced thermal contact resistance of graphene/olefin block copolymer/paraffin form stable phase change thermal interface material[J]. International Journal of Heat and Mass Transfer, 2020, 163: 120393.
|
42 |
邓志军, 万炜涛, 陈田安. 一种橡胶改性的相变导热界面材料及制备方法: CN105441034A [P]. 2016-03-30.
|
|
DENG Zhijun, WAN Weitao, CHEN Tian’an. A rubber modified phase change thermal interface material and preparation method: CN105441034A [P]. 2016-03-30.
|
43 |
CAI Z D, LIU J, ZHOU Y X, et al. Flexible phase change materials with enhanced tensile strength, thermal conductivity and photo-thermal performance[J]. Solar Energy Materials and Solar Cells, 2021, 219: 110728.
|
44 |
RAJ C R, SURESH S, BHAVSAR R R, et al. Recent developments in thermo-physical property enhancement and applications of solid solid phase change materials[J]. Journal of Thermal Analysis and Calorimetry, 2020, 139(5): 3023-3049.
|
45 |
张杨飞, 李安然, 张聪. 一种固-固相变热界面材料及其制备方法: CN107163547A[P]. 2017-09-15.
|
|
ZHANG Yangfei, LI Anran, ZHANG Cong, et al. Solid-solid phase change thermal interface material and preparation method thereof: CN107163547A[P]. 2017-09-15.
|
46 |
ZHANG C, SHI Z, LI A, et al. RGO-coated polyurethane foam/segmented polyurethane composites as solid–solid phase change thermal interface material[J]. Polymers, 2020, 12(12): 3004.
|
47 |
FENG J, LIU Z J, ZHANG D Q, et al. Phase change materials coated with modified graphene-oxide as fillers for silicone rubber used in thermal interface applications[J]. New Carbon Materials, 2019, 34(2): 188-195.
|
48 |
WENG Z S, WU K, LUO F B, et al. Fabrication of high thermal conductive shape-stabilized polyethylene glycol/silica phase change composite by two-step sol-gel method[J]. Composites Part A: Applied Science and Manufacturing, 2018, 110: 106-112.
|
49 |
ZHU X Y, LI X, SHEN J J, et al. Stable microencapsulated phase change materials with ultrahigh payload for efficient cooling of mobile electronic devices[J]. Energy Conversion and Management, 2020, 223: 113478.
|
50 |
ZHOU Y C, LI S S, ZHAO Y, et al. Compatible paraffin@SiO2 microcapsules/polydimethylsiloxane composites with heat storage capacity and enhanced thermal conductivity for thermal management[J]. Composites Science and Technology, 2022, 218: 109192.
|
51 |
GU X K, WEI Y J, YIN X B, et al. Colloquium: phononic thermal properties of two-dimensional materials[J]. Reviews of Modern Physics, 2018, 90(4): 041002.
|
52 |
MAO D S, CHEN J H, REN L L, et al. Spherical core-shell Al@Al2O3 filled epoxy resin composites as high-performance thermal interface materials[J]. Composites Part A: Applied Science and Manufacturing, 2019, 123: 260-269.
|
53 |
DAI W, LYU L, LU J, et al. A paper-like inorganic thermal interface material composed of hierarchically structured graphene/silicon carbide nanorods[J]. ACS Nano, 2019, 13(2): 1547-1554.
|
54 |
DAI W, MA T, YAN Q, et al. Metal-level thermally conductive yet soft graphene thermal interface materials[J]. ACS Nano, 2019, 13(10): 11561-11571.
|
55 |
RAMASWAMY C, SHINDE S, POMPEO F, et al. Phase change materials as a viable thermal interface material for high-power electronic applications[C]//The Ninth Intersociety Conference on Thermal and Thermomechanical Phenomena In Electronic Systems (IEEE Cat. No.04CH37543). Las Vegas, IEEE, 2004: 687-691.
|
56 |
TOMIZAWA Y, SASAKI K, KURODA A, et al. Experimental and numerical study on phase change material (PCM) for thermal management of mobile devices[J]. Applied Thermal Engineering, 2016, 98: 320-329.
|