[1] Lin H B,Rong H B,Huang W Z,et al. Triple-shelled Mn2O3 hollow nanocubes:Forceinduced synthesis and excellent performance as the anode in lithium-ion batteries[J]. J. Mater. Chem. A,2014,2(34):14189-14194.[2] Zhan F M,Geng B Y,Guo Y J. Porous Co3O4 nanosheets with extraordinarily high discharge capacity for lithium batteries[J]. Chem. Eur. J.,2009,15(25):6169-6174.[3] Song H J,Jia X H,Qi H,et al. Flexible morphology-controlled synthesis of monodisperse α-Fe2O3 hierarchical hollow microspheres and their gas-sensing properties[J]. J. Mater. Chem.,2012,22(8):3508-3516.[4] Yin M L,Liu S Z. Preparation of ZnO hollow spheres with different surface roughness and their enhanced gas sensing property[J]. Sensor. Actuat. B:Chem.,2014,197:58-65.[5] Xu P F,Yu R B,Ren H,et al. Hierarchical nanoscale multi-shell Au/CeO2 hollow spheres[J]. Chem. Sci.,2014,5(11):4221-4226.[6] Zhou D L,Chen D J,Zhang P P,et al. Facile synthesis of MnO2-Ag hollow microspheres with sheet-like subunits and their catalytic properties[J]. Cryst. Eng. Comm.,2014,16(5):863-869.[7] 董群,于婷,仇登可,等. 介孔过渡金属氧化物的合成研究进展[J]. 化工进展,2012,31(2):355-359.[8] 刘勇军. 过渡金属硫化物催化稳态活性相[J]. 化工进展,2012,31(9):1968-1974.[9] Hu P,Han N,Zhang X,et al. Fabrication of ZnO nanorod-assembled multishelled hollow spheres and enhanced performance in gas sensor[J]. J. Mater. Chem.,2011,21(37):14277-14284.[10] Dong Z H,Lai X Y,Halpert J E,et al. Accurate control of multishelled ZnO hollow microspheres for dye-Sensitized solar cells with high effiiency[J]. Adv. Mater.,2012,24(8):1046-1049.[11] Han L J,Liu R J,Li C,et al. Controlled synthesis of double-shelled CeO2 hollow spheres and enzyme-free electrochemical bio-sensing properties for uric acid[J]. J. Mater. Chem.,2012,22(33):17079-17085.[12] Ma X M,Zhang X T,Yang L,et al. An unusual temperature gradient crystallization process:Facile synthesis of hierarchical ZnO porous hollow spheres with controllable shell numbers[J]. Cryst. Eng. Comm.,2014,16(34):7933-7941.[13] Zhang L X,Sun Y X,Jia W B,et al. Multiple shell hollow CoFe2O4 spheres:Synthesis,formation mechanism and properties[J]. Ceram. Int.,2014,40(7):8997-9002.[14] Qi J,Zhao K,Li G D,et al. Multi-shelled CeO2 hollow microspheres as superior photocatalysts for water oxidation[J]. Nanoscale,2014,6(24):4072-4077.[15] Zhang G Q,Lou X W. General synthesis of multi-shelled mixed metal oxide hollow spheres with superior lithium storage properties[J]. Angew. Chem. Int. Ed.,2014,53(34):9041-9044.[16] Wang Y P,Pan A Q,Zhu Q Y,et al. Facile synthesis of nanorod-assem bled multi-shelled Co3O4 hollow microspheres for high-performance supercapacitors[J]. J. Power Sources,2014,272:107-112.[17] Zhou L,Xu H Y,Zhang H W,et al. Cheap and scalable synthesis of α-Fe2O3 multi-shelled hollow spheres as high-performance anode materials for lithium ion batteries[J]. Chem. Commun.,2013,49(77):8695-8697.[18] Wang Q,Li H,Chen L Q,et al. Monodispersed hard carbon spherules with uniform nanopores[J]. Carbon,2001,39(14):2211-2214.[19] Sun X M,Li Y D. Colloidal carbon spheres and their core/shell structures with noble-Metal nanoparticles[J]. Angew. Chem. Int. Ed.,2004,43(5):597-601.[20] Wang L L,Dou H M,Li F,et al. Controllable and enhanced HCHO sensing performances of different-shelled ZnO hollow microspheres[J]. Sensor. Actuat. B:Chem.,2013,183:467-473.[21] Wang J Y,Yang N L,Tang H J,et al. Accurate control of multishelled Co3O4 hollow microspheres as high performance anode materials in lithium-ion batteries[J]. Angew. Chem. Int. Ed.,2013,52(25):6417-6420.[22] Ren H,Yu R B,Wang J Y,et al. Multishelled TiO2 hollow microspheres as anodes with superior reversible capacity for lithium ion batteries[J]. Nano Lett.,2014,14(11):6679-6684.[23] Xi G C,Yan Y,Ma Q,et al. Synthesis of multiple-shell WO3 hollow spheres by a binary carbonaceous template route and their applications in visible light photocatalysis[J]. Chem. Eur. J.,2012,18(44):13949-13953.[24] Chaudhuri R G,Paria S. Optical properties of double-shell hollow ZnS-Ag2S nanoparticles[J]. J. Phys. Chem. C,2013,117(44):23385-23390.[25] Zeng Y,Wang X,Wang H,et al. Multi-shelled titania hollow spheres fabricated by a hard template strategy:Enhanced photocatalytic activity[J]. Chem. Commun.,2010,46(24):4312-4314.[26] Wang X,Wu XL,Guo Y G,et al. Synthesis and lithium storage properties of Co3O4 nanosheet-assembled multishelled hollow spheres[J]. Adv. Funct. Mater.,2010,20(10):1680-1686.[27] Zhang G Q,Yu L,Wu H B,et al. Formation of ZnMn2O4 ball-in-ball hollow microspheres as a high-performance anode for lithium-ion batteries[J]. Adv. Mater.,2012,24(34):4609-4613.[28] Li J F,Wang J Z,Liang X,et al. Hollow MnCo2O4 submicrospheres with multilevel interiors:From mesoporous spheres to yolk-in-double-shell structures[J]. ACS Appl. Mater. Inter.,2014,6(1):24-30.[29] Wang W Z,Tu Y,Zhang P C,et al. Surfactant-assisted synthesis of double-wall Cu2O hollow spheres[J]. Cryst. Eng. Comm.,2011,13(6):1838-1842.[30] Zhang Y,Zhou G W,Sun B,et al. A cationic-cationic co-surfactant templating route for synthesizing well-defined multilamellar vesicular silica with an adjustable number of layers[J]. Chem. Commun.,2014,50(22):2907-2909.[31] Zhou G W,Chen Y J,Yang J H,et al. From cylindrical-channel mesoporous silica to vesicle-like silica with welldefined multilamella shells and large inter-shell mesopores[J]. J. Mater. Chem.,2007,17(27):2839-2844.[32] Wang X,Zhong Y T,Zhai T Y,et al. Multishelled Co3O4-Fe3O4 hollow spheres with even magnetic phase distribution:Synthesis,magnetic properties and their application in water treatment[J]. J. Mater. Chem.,2011,21(44):17680-17687.[33] Ma Z C,Wanga L M,Chu D Q,et al. Template-free synthesis of complicated double-wall Cu2O hollow spheres with enhanced visible photocatalytic activities[J]. RSC Adv.,2015,5(11):8223-8227.[34] Wu Z G,Zhong Y J,Li J T,et al. L-histidine-assisted template-free hydrothermal synthesis of α-Fe2O3 porous multi-shelled hollow spheres with enhanced lithium storage properties[J]. J. Mater. Chem. A,2014,2(31):12361-12367.[35] Xu S M,Hessel C M,Ren H,et al. α-Fe2O3 multi-shelled hollow microspheres for lithium ion battery anodes with superior capacity and charge retention[J]. Energ. Environ. Sci.,2014,7(2):632-637.[36] Lai X Y,Halpert J E,Wang D. Recent advances in micro-/nano-structured hollow spheres for energy applications:From simple to complex systems[J]. Energ. Environ. Sci.,2012,5(2):5604-5618.[37] Han L Y,Islam A,Chen H,et al. High-efficiency dye-sensitized solar cell with a novel co-adsorbent[J]. Energ. Environ. Sci.,2012,5(3):6057-6060.[38] Ke G J,Chen H Y,Su C Y,et al. Template-free solvothermal fabrication of hierarchical TiO2 hollow microspheres for efficient dye-sensitized solar cells[J]. J. Mater. Chem. A,2013,1(42):13274-13282.[39] Wu X,Lu G Q,Wang L Z. Shell-in-shell TiO2 hollow spheres synthesized by one-pot hydrothermal method for dye-sensitized solar cell application[J]. Energ. Environ. Sci.,2011,4(9):3565-3572.[40] Fan Z J,Yan J,Wei T,et al. Asymmetric supercapacitors based on graphene/MnO2 and activated carbon nanofiber electrodes with high power and energy density[J]. Adv. Funct. Mater.,2011 ,21(12):2366-2375.[41] Wei W F,Cui X W,Chen W X,et al. Manganese oxide-based materials as electrochemical supercapacitor electrodes[J]. Chem. Soc. Rev.,2011,40(3):1697-1721.[42] Wang J Y,Tang H J,Ren H,et al. pH-Regulated synthesis of multi-shelled manganese oxide hollow microspheres as supercapacitor electrodes using carbonaceous microspheres as templates[J]. Adv. Sci.,2014,1(1):1-6.[43] Yang Z H,Xu F F,Zhang W X,et al. Controllable preparation of multishelled NiO hollow nanospheres via layer-by-layer self-assembly for supercapacitor application[J]. J. Power Sources,2014,246:24-31.[44] Lai X Y,Li J,Korgel B A,et al. General synthesis and gas-sensing properties of multiple-shell metal oxide hollow microspheres[J]. Angew. Chem. Int. Ed.,2011,50(12):2738-2741.[45] Liu Y,Yu C,Dai W,et al. One-pot solvothermal synthesis of multi-shelled α-Fe2O3 hollow spheres with enhanced visible-light photocatalytic activity[J]. J. Alloy. Compd.,2013,551:440-443.[46] Cao J,Zhu Y C,Shi L,et al. Double-shelled Mn2O3 hollow spheres and their application in water treatment[J]. Eur. J. Inorg. Chem.,2010,2010(8):1172-1176.[47] Sun B,Zhou G W,Shao C W,et al. Spherical mesoporous TiO2 fabricated by sodium dodecyl sulfate-assisted hydrothermal treatment and its photocatalytic decomposition of papermaking wastewater[J]. Powder Technol.,2014,256:118-125.[48] Shao C W,Zhou G W,Li Z C,et al. Fabrication of large-diameter tube-like mesoporous TiO2 via homogeneous precipitation and photocatalytic decomposition of papermaking wastewater[J]. Chem. Eng. J.,2013,230:227-235. |