[1] 罗玉,黄斌,金玉,等. 污水中抗生素的处理方法研究进展[J]. 化工进展,2014,33(9):2471-2477. [2] Chee-Sanford J C,Mackie R I,Koike S,et al. Fate and transport of antibiotic residues and antibiotic resistance genes following land application of manure waste[J]. Journal of Environmental Quality,2009,38:1086-1108. [3] Sun H Y,Shi X,Mao J D,et al. Tetracycline sorption to coal and soil humic acids:An examination of humic structural heterogeneity[J]. Environ. Toxicol. Chem.,2010,29:1934-1942. [4] Rodriguez-Rojas A,Rodriguez-Beltran J,Couce A,et al. Antibiotics and antibiotic resistance:A bitter fight against evolution[J]. Int. J. Med. Microbiol.,2013,303(6-7):293-297. [5] Michael I,Rizzo L,McArdell CS,et al. Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment:A review[J]. Water Research,2013,47(3):957-995. [6] Liu S,Zhao X R,Sun H Y,et al. The degradation of tetracycline in a photo-electro-Fenton system[J]. Chemical Engineering Journal,2013,231:441-448. [7] Jing X R,Wang Y Y,Liu W J. Enhanced adsorption performance of tetracycline in aqueous solutions by methanol-modified biochar[J]. Chemical Engineering Journal,2014,248:168-174. [8] Benitez F J,Real F J,Acero J L,et al. Removal of selected pharmaceuticals in waters by photochemical processes[J]. Chemistry Technology Biotechnology,2009,84:1186-1195. [9] Bian Z,Zhu J,Wang S,et al. Self-assembly of active Bi2O3/TiO2 visible photocatalyst with ordered mesoporous structure and highly crystallized anatase[J]. Journal of Physics Chemistry C ,2008,112:6258-6262. [10] Xu F,Chen J,Guo L,et al. In situ electrochemically etching-derived ZnO nanotube arrays for highly efficient and facilely recyclable photocatalyst[J]. Applied Surface Science,2012,258:8160-8165. [11] Lu Y,Wang L,Wang D,et al. A comparative study on plate-like and flower-like ZnO nanocrystals surface photovoltage property and photocatalytic activity[J]. Materials Chemistry and Physics,2011,129:281-287. [12] Anju N S G,Yesodharan S,Yesodharan E P. Zinc oxide mediated sonophotocatalytic degradation of phenol in water[J]. Chemical Engineering Journal,2012,189-190:84-93. [13] Faisal M,Bahadar Khan S,Rahman M M,et al. Smart chemical sensor and active photo-catalyst for environmental pollutants[J]. Chemical Engineering Journal,2011,173:178-184. [14] Vanalakar S A,Pawar R C,Suryawanshi M P,et al. Low temperature aqueous chemical synthesis of CdS sensitized ZnO nanorods[J]. Materials Letters,2011,65:548-551. [15] Tak Y J,Hong S J,Lee J S,et al. Solution-based synthesis of a CdS nanoparticle/ZnO nanowire heterostructure array[J]. Crystal Growth & Design,2009,9(6):2627-2632. [16] Bao N,Shen L,Takata T,et al. Facile Cd-thiourea complex thermolysis synthesis of phase-controlled CdS nanocrystals for photocatalytic hydrogen production under visible light[J]. J. Phys. Chem.,2007,111(47):17527-17534. [17] Wu Y,Tamaki T,Volotinen T,et al. Enhanced photoresponce of inkjet-printed Zno thin films capped with CdS nanoparticles[J]. Journal of Physics Chemistry Letters,2010,1(1):89-92. [18] Xu F,Volkov V,Zhu Y,et al. Long electron-hole separation of ZnO-CdS core-shell quantum dots[J]. Journal of Physics Chemistry C,2009,113(45):19419-19423. [19] Wang X,Liu G,Chen Z G,et al. Enhanced photocatalytic hydrogen evolution by prolonging the lifetime of carriers in ZnO/CdS heterostructures[J]. Chemical Communications,2009,23:3452-3454. [20] Zhai J L,Wang L L,Wang D J,et al. Enhancement of gas sensing properties of CdS nanowire/ZnO nanosphere composite materials at room temperature by visible-light activation[J]. ACS Applied Materials & Interfaces,2011,3:2253-2258. [21] Yao C Z,Wei B H,Meng L X,et al. Controllable electrochemical synthesis and photovoltaic performance of ZnO/CdS core-shell nanorod arrays on fluorine-doped tin oxide[J]. Journal of Power Sources,2012,207:222-228. [22] Barpuzary D,Khan A,Vinothkumar N,et al. Hierarchically grown urchinlike CdS@ZnO and CdS@Al2O3 heteroarrays for efficient visible-light-driven photocatalytic hydrogen generation[J]. Journal of Physics Chemistry C,2012,116:150-156. [23] Qi X,She G,Liu Y,et al. Electrochemical synthesis of CdS/ZnO nanotube arrays with excellent photoelectrochemical properties[J]. Chemistry Communications,2012,48:242-244. [24] Kundu P,Deshpande P A,Madras G,et al. Nanoscale ZnO/CdS heterostructures with engineered interfaces for high photocatalytic activity under solar radiation[J]. Journal of Materials Chemistry,2011,21:4209-4216. [25] Khanchandani S,Kundu S,Patra A,et al. Shell thickness dependent photocatalytic properties of ZnO/CdS core-shell nanorods[J]. Journal of Physics Chemistry C,2012,116:23653-23662. [26] Tak Y,Hong S J,Lee J S,et al. Solution-based synthesis of a CdS nanoparticle/ZnO nanowire heterostructure array[J]. Crystal Growth and Design,2009,19:2627-2632. [27] Yang P D,Yan H,Mao S,et al. Controlled growth of ZnO nanowires and their optical properties[J]. Advance Fuanctional Materials,2002,12:323-331. [28] Fang F,Zhao D X,Li B H,et al. The enhancement of ZnO nanowalls photoconductivity induced by CdS nanoparticle modification[J]. Appl. Phys. Lett.,2008,93(23):233115-1-3. [29] Wang X W,Liu G,Chen Z G,et al. Enhanced photocatalytic hydrogen evolution by prolonging the lifetime of carriers in ZnO/CdS heterostructures[J]. Chem. Commun.,2009,66(23):3452-3454. |