[1] 彭容秋. 铜冶金[M]. 长沙:中南大学出版社, 2004:97-102. PENG R Q. Copper metallurgy[M]. Changsha:Central South University Press, 2004:97-102.
[2] THAKRE S, MA W, LI L. A numerical analysis on hydrodynamic deformation of molten droplets in a water pool[J]. Annals of Nuclear Energy, 2013, 53:228-237.
[3] THAKRE S, MA W. 3D simulations of the hydrodynamic deformation of melt droplets in a water pool[J]. Annals of Nuclear Energy, 2015, 75:123-131.
[4] 杨濮亦,王冲,王仕博,等. 顶吹气泡在两相间运动的形变过程对熔池搅拌效果的影响[J]. 化工进展, 2014, 33(3):617-622. YANG P Y, WANG C, WANG S B, et al.Water model experiments on impact of top-blown two-phase mixing in molten bath[J].Chemical Industry and Engineering Progress, 2014, 33(3):617-622.
[5] 熊靓,王华,王冲,等. 顶吹两相流影响熔池搅拌效果的水模型实验研究[J]. 化工进展, 2014, 33(7):1697-1701. XIONG L, WANG H, WANG C, et al.Water model experiments on impact of top-blown two-phase mixing in molten bath[J]. Chemical Industry and Engineering Progress, 2014, 33(7):1697-1701.
[6] 闫红杰,夏韬,刘柳,等. 高铅渣还原炉内气液两相流的数值模拟与结构优化[J]. 中国有色金属学报, 2014, 24(10):2642-2651. YAN H J, XIA T, LIU L, et al. Numerical simulation and structural optimization of gas-liquid two-phase flow in reduction furnace of lead-rich slag[J]. Chinese Journal of Nonferrous Metals, 2014, 24(10):2642-2651.
[7] 闫红杰,赵国建,刘柳,等. 静止水中单气泡形状及上升规律的实验研究[J]. 中南大学学报(自然科学版), 2016, 47(7):2513-2520. YAN H J, ZHAO G J, LIU L, et al. Experimental study on shape and rising behavior of single bubble in stagnant water[J]. Journal of Central South University(Science and Technology), 2016, 47(7):2513-2520.
[8] ZHANG J, YU Y, QU C, et al. Experimental study and numerical simulation of periodic bubble formation at submerged micron-sized nozzles with constant gas flow rate[J]. Chemical Engineering Science, 2017, 168:1-10.
[9] ABBASSI W, BESBES S, HAJEM M E, et al. Influence of operating conditions and liquid phase viscosity with volume of fluid method on bubble formation process[J]. European Journal of Mechanics B:Fluids, 2017, 65:284-298.
[10] LIU L, YAN H, ZHAO G, et al. Experimental studies on the terminal velocity of air bubbles in water and glycerol aqueous solution[J]. Experimental Thermal and Fluid Science, 2016, 78:254-265.
[11] AGARWAL A K, SOM S, SHUKLA P C, et al. In-nozzle flow and spray characteristics for mineral diesel, karanja, and Jatropha biodiesels[J]. Applied Energy, 2015, 156:138-148.
[12] AGARWAL A K, DHAR A, GUPTA J G, et al. Effect of fuel injection pressure and injection timing on spray characteristics and particulate size-number distribution in a biodiesel fuelled common rail direct injection diesel engine[J]. Applied Energy, 2014, 130(5):212-221.
[13] BATTISTONI M, GRIMALDI C N. Numerical analysis of injector flow and spray characteristics from diesel injectors using fossil and biodiesel fuels[J]. Applied Energy, 2012, 97(3):656-666.
[14] LESNIK Luka, VAJDA Blaz, ZUNIC Zoran, et al. The influence of biodiesel fuel on injection characteristics, diesel engine performance, and emission formation[J]. Applied Energy, 2013, 111:558-570.
[15] VAJDA B, LESNIK L, BOMBEK O, et al. The numerical simulation of biofuels spray[J]. Fuel, 2015, 144:71-79.
[16] 何旭,石永昊,刘海,等. 利用LSD技术对高压共轨柴油机喷雾特性SMD的研究[J]. 北京理工大学学报, 2016, 36(12):1243-1247. HE X, SHI Y H, LIU H, et al. Spray characteristics SMD of diesel engine based high-pressure common rail on LSD technique[J].Journal of Beijing Institute of Technology, 2016, 36(12):1243-1247.
[17] OROURKE P J, AMSDEN A A. The TAB method for numerical calculation of spray droplet breakup[C]//The International Fuels and Lubricants Meeting and Exposition. Toronto, Ont., 1987.
[18] SAUTER J. Determining size of drops in fuel mixture of internal combustion engines[R]. Technical Report Archive and Image Library, NACA Technical Memorandums. 1926:390-399.
[19] LIND S, RETZER U, WILL S, et al, Investigation of mixture formation in a diesel spray by tracer-based laser-induced fluorescence using 1-methylnaphthalene[J]. Proceedings of the Combustion Institute, 2017, 36(3):4497-4504.
[20] ENOMOTO H, TERAOKA Y, HIEDA N, et al. Higashihara, secondary atomization of small hydrocarbon droplet by fourth harmonic generation of Nd:YAG pulsed laser[J]. Proceedings of the Combustion Institute, 2017, 36(2):2409-2416. |