[1] CORMA A, SARA I A, VELTY A. Chemical routes for the transformation of biomass into chemicals[J]. Chemical Reviews, 2007, 107(6):2411-2502.
[2] BAI C X, ZHU L F, SHEN F, et al. Black liquor-derived carbonaceous solid acid catalyst for the hydrolysis of pretreated rice straw in ionic liquid[J]. Bioresource Technology, 2016, 220:656-660.
[3] PANG J, WANG A, ZHENG M, et al. Hydrolysis of cellulose into glucose over carbons sulfonated at elevated temperatures[J]. Chemical Communications, 2010, 46(37):6935-6937.
[4] WEI W, WU S. Depolymerization of cellulose into high-value chemicals by using synergy of zinc chloride hydrate and sulfate ion promoted titania catalyst[J]. Bioresource Technology, 2017, 241:760-766.
[5] JIANG X, GU J, TIAN X, et al. Modification of cellulose for high glucose generation[J]. Bioresource Technology, 2012, 104(1):473-479.
[6] BEHERA S, ARORA R, NANDHAGOPAL N, et al. Importance of chemical pretreatment for bioconversion of lignocellulosic biomass[J].Renewable & Sustainable Energy Reviews, 2014, 36(7):91-106.
[7] MOHSENZADEH A, JEIHANIPOUR A, KARIMI K, et al. Alkali pretreatment of softwood spruce and hardwood birch by NaOH/thiourea, NaOH/urea, NaOH/urea/thiourea, and NaOH/PEG to improve ethanol and biogas production[J]. Journal of Chemical Technology & Biotechnology, 2012, 87(8):1209-1214.
[8] SANG J Y, LEE J G, TAJIMA H, et al. Extraction of lanthanide ions from aqueous solution by bis(2-ethylhexyl)phosphoric acid with room-temperature ionic liquids[J]. Journal of Industrial & Engineering Chemistry, 2010, 16(3):350-354.
[9] CAI J, ZHANG L N. Rapid dissolution of cellulose in LiOH/urea and NaOH/urea aqueous solutions[J]. Macromolecular Bioscience, 2005, 5(6):539-548.
[10] 刘睿, 韩卿, 钱威威. 纤维在NaOH-尿素体系中的溶解性能[J]. 中国造纸, 2015, 34(7):18-22. LIU Rui, HAN Qing, QIAN Weiwei. Dissolution property of pulp in NaOH-urea solvent[J]. China Pulp & Paper, 2015, 34(7):18-22.
[11] SU T C, FANG Z. One-pot microwave-assisted hydrolysis of cellulose and hemicellulose in selected tropical plant wastes by NaOH-freeze pretreatment[J]. Sustainable Chemistry & Engineering, 2017, 5(6):5166-5174.
[12] SEGAL L C, CREELY J J, MARTIN A E J, et al. An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer[J]. Textile Research Journal, 1959, 29(10):786-794.
[13] HU S, SMITH T J, LOU W, et al. Correction to efficient hydrolysis of cellulose over a novel sucralose-derived solid acid with cellulose-binding and catalytic sites[J]. Journal of Agricultural & Food Chemistry, 2014, 62(50):1905-1911.
[14] WETTERLING J, MATTSSON T, THELIANDER H. Effects of surface structure on the filtration properties of microcrystalline cellulose[J]. Separation & Purification Technology, 2014, 136:1-9.
[15] 蒋志伟. 纤维素在NaOH/尿素(或硫脲)水溶剂中的氢键作用及其包合物结构[D].武汉:武汉大学, 2014. JANG Zhiwei. The hydrogen bonding interaction and inclusive complex structure of cellolose in NaOH/urea(thiourea) aqueous system[D]. Wuhan:Wuhan University, 2014.
[16] 牟莉.微波辅助下木质纤维素降解与溶解过程的研究[D].长春:东北师范大学, 2012. MU Li. Research on the degradation methods of ligno Cellulose under microwave[D]. Changchun:Northeast Normal University, 2012.
[17] SHROTRI A, KOBAYASHI H, FUKUOKA A. Air oxidation of activated carbon to synthesize a biomimetic catalyst for hydrolysis of cellulose[J]. Chemsuschem, 2016, 9(11):1299-1303.
[18] SUN B, PENG G, DUAN L, et al. Pretreatment by NaOH swelling and then HCl regeneration to enhance the acid hydrolysis of cellulose to glucose[J]. Bioresource Technology, 2015, 196:454-458.
[19] CAI J, KIMURA S, WADA M, et al. Cellulose aerogels from aqueous alkali hydroxide-urea solution[J]. Chemsuschem, 2008, 1(1/2):149-154.
[20] 郭海心.生物质基碳微球的制备及其在生物质催化转化中的应用[D].天津:南开大学, 2013. GUO Haixin. Preparation of biomass carbon microbead and application in catalytic conversion of biomass[D]. Tianjin:Nankai University, 2013.
[21] JONES R J, MASSANET-NICOLAU J, GUWY A, et al. Removal and recovery of inhibitory volatile fatty acids from mixed acid fermentations by conventional electrodialysis[J]. Bioresource Technology, 2015, 189:279-284. |