化工进展 ›› 2018, Vol. 37 ›› Issue (04): 1364-1373.DOI: 10.16085/j.issn.1000-6613.2017-1139
赵宁波, 郑洪涛, 闻雪友
收稿日期:
2017-06-13
修回日期:
2017-07-13
出版日期:
2018-04-05
发布日期:
2018-04-05
通讯作者:
赵宁波(1987-),男,讲师,研究方向为纳米功能燃料、先进燃烧与低排放。
作者简介:
赵宁波(1987-),男,讲师,研究方向为纳米功能燃料、先进燃烧与低排放。E-mail:zhaoningbo314@126.com。
基金资助:
ZHAO Ningbo, ZHENG Hongtao, WEN Xueyou
Received:
2017-06-13
Revised:
2017-07-13
Online:
2018-04-05
Published:
2018-04-05
摘要: 液态纳米燃料是一种由纳米颗粒与燃料基液组成的特殊液-固两相混合物,具有热传输能力强、催化助燃性能好、污染物排放低等诸多优点。然而,纳米颗粒的小尺寸特征使得液态纳米燃料的热/质输运机理、雾化蒸发特性以及燃烧化学反应过程极其复杂,导致液态纳米燃料强化燃烧理论与应用研究至今还存在许多问题。本文首先介绍了液态纳米燃料制备与稳定性处理方法,其次分析了纳米颗粒影响下液态燃料热物性参数、雾化、蒸发与燃烧特性的研究进展,然后重点综述了液态纳米燃料在动力装置性能提升与污染物减排领域的潜在应用价值。在此基础上,对液态纳米燃料强化燃烧技术的未来研究方向进行了展望,指出高效可控制备方法、热物性参数变化规律与数学描述、催化助燃与减排机制是液态纳米燃料领域亟需解决的重点问题。
中图分类号:
赵宁波, 郑洪涛, 闻雪友. 液态纳米燃料及其强化燃烧研究进展[J]. 化工进展, 2018, 37(04): 1364-1373.
ZHAO Ningbo, ZHENG Hongtao, WEN Xueyou. Research progress on liquid nanofuel and its combustion enhancement[J]. Chemical Industry and Engineering Progress, 2018, 37(04): 1364-1373.
[1] SEDDIEK I S,ELGOHARY M M. Eco-friendly selection of ship emissions reduction strategies with emphasis on SOx and NOx emissions[J]. International Journal of Naval Architecture and Ocean Engineering,2014,6(3):737-748. [2] 宋鹏翔,丁玉龙,文东升. 纳米燃料——一种新的储能载体[J]. 储能科学与技术,2012,1(1):41-49. SONG Pengxiang,DING Yulong,WEN Dongsheng. A novel energy storage carrier:nanofuels[J]. Energy Storage Science and Technology,2012,1(1):41-49. [3] WEN D,LIN G,VAFAEI S,et al. Review of nanofluids for heat transfer applications[J]. Particuology,2009,7(2):141-150. [4] YETTER R A,RISHA G A,SON S F. Metal particle combustion and nanotechnology[J]. Proceedings of the Combustion Institute,2009,32(2):1819-1838. [5] MEHTA R N,CHAKRABORTY M,PARIKH P A. Nanofuels:combustion,engine performance and emissions[J]. Fuel,2014,120:91-97. [6] CORCORAN A L,HOFFMANN V K,DREIZIN E L. Aluminum particle combustion in turbulent flames[J]. Combustion and Flame,2013,160(3):718-724. [7] SHAAFI T,SAIRAM K,GOPINATH A,et al. Effect of dispersion of various nanoadditives on the performance and emission characteristics of a CI engine fuelled with diesel,biodiesel and blends-a review[J]. Renewable and Sustainable Energy Reviews,2015,49:563-573. [8] ABDALLA S,AL-WAFI R,PIZZI A. Stability and combustion of metal nano-particles and their additive impact with diesel and biodiesel on engine efficiency:a comprehensive study[J]. Journal of Renewable and Sustainable Energy,2017,9(2):022701. [9] SIDIK N A C,MOHAMMED H A,ALAWI O A,et al. A review on preparation methods and challenges of nanofluids[J]. International Communications in Heat and Mass Transfer,2014,54:115-125. [10] JAVED I,BAEK S W,WAHEED K,et al. Evaporation characteristics of kerosene droplets with dilute concentrations of ligand-protected aluminum nanoparticles at elevated temperatures[J]. Combustion and Flame,2013,160(12):2955-2963. [11] JAVED I,BAEK S W,WAHEED K. Autoignition and combustion characteristics of heptane droplets with the addition of aluminium nanoparticles at elevated temperatures[J]. Combustion and Flame,2015,162(1):191-206. [12] DU M,LI G. Preparation of silane-capped boron nanoparticles with enhanced dispersibility in hydrocarbon fuels[J]. Fuel,2017,194:75-82. [13] SHARIATMADAR F S,PAKDEHI S G. Effect of various surfactants on the stability time of kerosene-boron nanofluids[J]. Micro & Nano Letters,2016,11(9):498-502. [14] JONES M,LI C H,AFJEH A,et al. Experimental study of combustion characteristics of nanoscale metal and metal oxide additives in biofuel (ethanol)[J]. Nanoscale Research Letters,2011,6(1):246. [15] TANVIR S,QIAO L. Effect of addition of energetic nanoparticles on droplet-burning rate of liquid fuels[J]. Journal of Propulsion and Power,2014,31(1):408-415. [16] 刘冠楠,朱洁,刘冬. 含铝的醇基纳米流体燃料烧特性研究[C]//2016年中国工程热物理学会燃烧学术会议,2016. LIU Guannan,ZHU Jie,LIU Dong. Combustion characteristic of alcohol based nanofluids fuel containing Al[C]//2016 China National Symposium on Combustion,2016. [17] GAN Y,LIM Y S,QIAO L. Combustion of nanofluid fuels with the addition of boron and iron particles at dilute and dense concentrations[J]. Combustion and Flame,2012,159(4):1732-1740. [18] MIGLANI A,BASU S. Effect of particle concentration on shape de-formation and secondary atomization characteristics of a burning nanotitania dispersion droplet[J]. Journal of Heat Transfer,2015,137(10):102001. [19] SONAWANE S,PATANKAR K,FOGLA A,et al. An experimental investigation of thermo-physical properties and heat transfer performance of Al2O3-aviation turbine fuel nanofluids[J]. Applied Thermal Engineering,2011,31(14):2841-2849. [20] E Xiu-tian-feng,PAN L,WWANG F,et al. Al-nanoparticle-containing nanofluid fuel:synthesis,stability,properties,and propulsion performance[J]. Ind. Eng. Chem. Res.,2016,55(10):2738-2745. [21] GHAMARI M,RATNER A. Combustion characteristics of colloidal droplets of jet fuel and carbon based nanoparticles[J]. Fuel,2017,188:182-189. [22] KANNAIYAN K,ANOOP K,SADR R. Effect of nanoparticles on the fuel properties and spray performance of aviation turbine fuel[J]. Journal of Energy Resources Technology,2017,139(3):032201. [23] JAVED I,BAEK S W,WAHEED K. Autoignition and combustion characteristics of heptane droplets with the addition of aluminium nanoparticles at elevated temperatures[J]. Combustion and Flame,2015,162(1):191-206. [24] TYAGI H,PHELAN P E,PRASHER R,et al. Increased hot-plate ignition probability for nanoparticle-laden diesel fuel[J]. Nano Letters,2008,8(5):1410-1416. [25] MEHTA R N,CHAKRABORTY M,PARIKH P A. Nanofuels:combustion,engine performance and emissions[J]. Fuel,2014,120:91-97. [26] GUMUS S,OZCAN H,OZBEY M,et al. Aluminum oxide and copper oxide nanodiesel fuel properties and usage in a compression ignition engine[J]. Fuel,2016,163:80-87. [27] KIM D M,BAEK S W,YOON J. Ignition characteristics of kerosene droplets with the addition of aluminum nanoparticles at elevated temperature and pressure[J]. Combustion and Flame,2016,173:106-113. [28] ZHAO N B,LI S Y,YANG J L. A review on nanofluids:data-driven modeling of thermalphysical properties and the application in automotive radiator[J]. Renewable and Sustainable Energy Reviews,2016,66:596-616. [29] 池海. 亲油性纳米钯及碳氢燃料基纳米流体的制备与性能研究[D]. 杭州:浙江大学,2014. CHI Hai. Preparation and properties of hydrophobic palladium nanoparticles and hydrocarbon fuel-based nanofluids[D]. Hangzhou:Zhejiang Universityr,2014. [30] KANNAIYAN K,SADR R. Influence of nanoparticles on spray performance of alternative jet fuels[C]//ASME Turbo Expo 2016:Turbomachinery Technical Conference and Exposition,2016. [31] 鄂秀天凤,彭浩,邹吉军,等. 含有纳米铝颗粒的高密度悬浮燃料研究[J]. 推进技术,2016,37(5):974-978. E Xiu-tian-feng,PENG Hao,ZOU Jijun,et al. Study on Al NPs-containing suspension as high-density liquid fuel[J]. Journal of Propulsion Technology,2016,37(5):974-978. [32] SANJID A, KALAM M A,MASJUKI H H. Performance,combustion and emission characteristics of a DI diesel engine fuelled with nanoparticle blended jatropha biodiesel[J]. RSC Advances,2014,4(70):36973-36982. [33] BIODIESEL B. Effect of metalloid compound and bio-solution additives on biodiesel engine performance and exhaust emissions[J]. American Journal of Applied Sciences,2013,10(10):1201-1213. [34] SHARIATMADAR F S,PAKDEHI S G. Synthesis and characterization of aviation turbine kerosene nanofluid fuel containing boron nanoparticles[J]. Energy & Fuels,2016,30(9):7755-7762. [35] MIGLANI A,BASU S. Coupled mechanisms of precipitation and atomization in burning nanofluid fuel droplets[J]. Scientific Reports,2015,5:15008. [36] TANVIR S,QIAO L. Surface tension of nanofluid-type fuels containing suspended nanomaterials[J]. Nanoscale Research Letters,2012,7(1):226:1-10. [37] BASU S,MIGLANI A. Combustion and heat transfer characteristics of nanofluid fuel droplets:a short review[J]. International Journal of Heat and Mass Transfer,2016,96:482-503. [38] KANNAIVAN K,ANOOP K,SADR R. Effect of nanoparticles on the fuel properties and spray performance of aviation turbine fuel[J]. Journal of Energy Resources Technology,2017,139(3):032201. [39] SHAAFI T,VELRAJ R. Influence of alumina nanoparticles,ethanol and isopropanol blend as additive with diesel-soybean biodiesel blend fuel:combustion,engine performance and emissions[J]. Renewable Energy,2015,80:655-663. [40] GAN Y,QIAO L. Evaporation characteristics of fuel droplets with the addition of nanoparticles under natural and forced convections[J]. International Journal of Heat and Mass Transfer,2011,54(23):4913-4922. [41] JAVED I,BAEK S W,WAHEED K. Evaporation characteristics of heptane droplets with the addition of aluminum nanoparticles at elevated temperatures[J]. Combustion and Flame,2013,160(1):170-183. [42] JAVED I,BAEK S W,WAHEED K. Effects of dense concentrations of aluminum nanoparticles on the evaporation behavior of kerosene droplet at elevated temperatures:the phenomenon of microexplosion[J]. Experimental Thermal and Fluid Science,2014,56:33-44. [43] 袁银男,纪晨,梅德清,等. 纳米颗粒添加剂对柴油挥发及氧化过程的影响[J]. 江苏大学学报(自然科学版),2015,36(6):265-270. YUAN Yinnan,JI Chen,MEI Deqing,et al. Effects of nano-particles on volatilization and oxidation characteristics of diesel fuel[J]. Journal of Jiangsu University(Natural Science Edition),2015,36(6):265-270. [44] JACKSON D,DAVIDSON D,HANSON R. Application of an aerosol shock tube for the kinetic studies of n-dodecane/nano-aluminum slurries[C]//44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit,2008. [45] 王琪,朱宝忠,孙运兰. 乙醇基纳米流体燃料液滴着火燃烧研究[C]//2016年中国工程热物理学会燃烧学术会议,2016. WANG Qi,ZHU Baozhong,SUN Yunlan. Droplet combustion of ethyl alcohol based nanofluids fuel[C]//2016 China National Symposium on Combustion,2016. [46] 王方,鄂秀天凤,郭成,等. 油溶性钯纳米颗粒催化高密度燃料点火燃烧研究[J]. 推进技术,2016,37(3):572-577. WANG Fang,E Xiu Tian-feng,GUO Cheng,et al. Hydrocarbon fuel-soluble palladium nanoparticles for catalytic combustion of high density fuel[J]. Journal of Propulsion Technology,2016,37(3):572-577. [47] 阚伟民,章先涛,江浩庆,等. 悬浮纳米颗粒对液体燃料着火点的影响[J]. 热科学与技术,2015,14(1):63-67. KAN Weimin,ZHANG Xiantao,JIANG Haoqing,et al. Effect of suspended nano-sized particle on liquid fuel ignition[J]. Journal of Thermal Science and Technology,2015,14(1):63-67. [48] GAN Y,QIAO L. Combustion characteristics of fuel droplets with addition of nano and micron-sized aluminum particles[J]. Combustion and Flame,2011,158(2):354-368. [49] GAN Y,LIM Y S,QIAO L. Combustion of nanofluid fuels with the addition of boron and iron particles at dilute and dense concentrations[J]. Combustion and Flame,2012,159(4):1732-1740. [50] LIU G N,LIU D. Combustion characteristics of nanofluid fuels in a half-opening slot tube[J]. Science China Technological Sciences,2017, 60(7):1075-1087. [51] BELLO M N,PANTOYA M L,KAPPAGANTULA K,et al. Reaction dynamics of rocket propellant with magnesium oxide nanoparticles[J]. Energy & Fuels,2015,29(9):6111-6117. [52] SAXENA V,KUMAR N,SAXENA V K. A comprehensive review on combustion and stability aspects of metal nanoparticles and its additive effect on diesel and biodiesel fuelled CI engine[J]. Renewable and Sustainable Energy Reviews,2017,70:563-588. [53] KHOND V W,KRIPLANI V M. Effect of nanofluid additives on performances and emissions of emulsified diesel and biodiesel fueled stationary CI engine:a comprehensive review[J]. Renewable and Sustainable Energy Reviews,2016,59:1338-1348. [54] KUMAR M V,BABU A V,KUMAR P R. The impacts on combustion,performance and emissions of biodiesel by using additives in direct injection diesel engine[J]. Alexandria Engineering Journal,2017. https://doi.org/10.1016/j.aej.2016.12.016. [55] VENU H,MADHAVAN V. Effect of Al2O3 nanoparticles in bio-diesel-diesel-ethanol blends at various injection strategies:performance,combustion and emission characteristics[J]. Fuel,2016,186:176-189. [56] SELVAN V A M,ANAND R B,UDAYAKUMAR M. Effect of cerium oxide nanoparticles and carbon nanotubes as fuel-borne additives in diesterol blends on the performance,combustion and emission characteristics of a variable compression ratio engine[J]. Fuel,2014,130:160-167. [57] DEBBARMA S,MISRA R D. Effects of iron nanoparticles blended biodiesel on the performance and emission characteristics of a diesel engine[J]. Journal of Energy Resources Technology,2017,139(4):042212. [58] CHANDRASEKARAN V,ARTHANARISAMY M,NACHIAPPAN P,et al. The role of nano additives for biodiesel and diesel blended transportation fuels[J]. Transportation Research Part D:Transport and Environment,2016,46:145-156. [59] LENIN M A,SWAMINATHAN M R,KUMARESAN G. Performance and emission characteristics of a DI diesel engine with a nanofuel additive[J]. Fuel,2013,109:362-365. [60] ÖZGUR T,ÖZCANLI M,AYDIN K. Investigation of nanoparticle additives to biodiesel for improvement of the performance and exhaust emissions in a compression ignition engine[J]. International Journal of Green Energy,2015,12(1):51-56. [61] EI-SEESY A I,ABDEL-RAHMAN A K,BADY M,et al. Performance,combustion,and emission characteristics of a diesel engine fueled by biodiesel-diesel mixtures with multi-walled carbon nanotubes additives[J]. Energy Conversion and Management,2017,135:373-393. [62] SADHIK B J,ANAND R B. Role of nanoadditive blended bio-diesel emulsion fuel on the working characteristics of a diesel engine[J]. Journal of Renewable and Sustainable Energy,2011,3(2):023106. [63] BASHA J S,ANAND R B. An experimental investigation in a diesel engine using carbon nanotubes blended water-diesel emulsion fuel[J]. Proceedings of the Institution of Mechanical Engineers,Part A:Journal of Power and Energy,2011,225(3):279-288. [64] BASHA J S,ANAND R B. The influence of nano additive blended biodiesel fuels on the working characteristics of a diesel engine[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering,2013,35(3):257-264. [65] RAO M S,ANAND R B. Performance and emission characteristics improvement studies on a biodiesel fuelled DICI engine using water and AlO(OH) nanoparticles[J]. Applied Thermal Engineering,2016,98:636-645. [66] KARTHIKEYAN S,ELANGO A,PRATHIMA A. The effect of cerium oxide additive on the performance and emission characteristics of a CI engine operated with rice bran biodiesel and its blends[J]. International Journal of Green Energy,2016,13(3):267-273. [67] KARTHIKEYAN S,PRATHIMA A. Analysis of emissions from use of an algae biofuel with nano-ZrO2[J]. Energy Sources,Part A:Recovery,Utilization,and Environmental Effects,2017,39(5):473-479. [68] KARTHIKEYAN S,PRATHIMA A. Environmental effect of CI engine using microalgae methyl ester with doped nano additives[J]. Transportation Research Part D:Transport and Environment,2017,50:385-396. [69] YANG W M,AN H,CHOU S K,et al. Emulsion fuel with novel nano-organic additives for diesel engine application[J]. Fuel,2013,104:726-731. [70] YANG W M,AN H,CHOU S K,et al. Impact of emulsion fuel with nano-organic additives on the performance of diesel engine[J]. Applied Energy,2013,112:1206-1212. [71] SARAEE H S,JAFARMADAR S,TAGHAVIFAR H,et al. Reduction of emissions and fuel consumption in a compression ignition engine using nanoparticles[J]. International Journal of Environmental Science and Technology,2015,12(7):2245-2252. [72] KAO M J,TING C C,LIN B F,et al. Aqueous aluminum nanofluid combustion in diesel fuel[J]. Journal of Testing and Evaluation,2007,36(2):1-5. [73] SAJITH V,SOBHAN C B,PETERSON G P. Experimental investigations on the effects of cerium oxide nanoparticle fuel additives on biodiesel[J]. Advances in Mechanical Engineering,2010,2010:1-6. [74] 邬齐敏,孙平,梅德清,等. 纳米燃油添加剂CeO2提高柴油燃烧效率减少排放[J]. 农业工程学报,2013,29(9):64-69. WU Qimin,SUN Ping,MEI Deqing,et al. Nano-fuel additive CeO2 on promoting efficient combustion and reducing emissions of diesel engine[J]. Transactions of the Chinese Society of Agricultural Engineering,2013,29(9):64-69. [75] 郝保红,蒋濛璠,段秋桐,等. 纳米三氧化二铝在柴油尾气净化中的活性评价[J]. 北京石油化工学院学报,2013,21(1):8-11. HAO Baohong,JIANG Mengfan,DUAN Qiutong,et al. Activity evaluation of nano-Al2O3 in diesel[J]. Journal of Beijing Institute of Petro-Chemical Technology,2013,21(1):8-11. [76] 李明显. CNT及MoO3纳米柴油的燃烧过程和排放特性研究[D]. 镇江:江苏大学,2016. LI Mingxian. Study on combustion process and emission characteristics for CNT and MoO3 nano-diesel[D]. Zhenjiang:Jiangsu University,2016. |
[1] | 汤磊, 曾德森, 凌子夜, 张正国, 方晓明. 相变蓄冷材料及系统应用研究进展[J]. 化工进展, 2023, 42(8): 4322-4339. |
[2] | 刘宇龙, 姚俊虎, 舒闯闯, 佘跃惠. 磁性Fe3O4纳米颗粒的生物合成及其在提高采收率中的应用[J]. 化工进展, 2023, 42(5): 2464-2474. |
[3] | 司银芳, 胡语婕, 张凡, 董浩, 佘跃惠. 生物合成氧化锌纳米颗粒材料及其抗菌应用[J]. 化工进展, 2023, 42(4): 2013-2023. |
[4] | 张伟, 安兴业, 刘利琴, 龙垠荧, 张昊, 程正柏, 曹海兵, 刘洪斌. 木质素纳米颗粒/天然纤维基活性碳纤维材料的制备及其电化学性能[J]. 化工进展, 2022, 41(7): 3770-3783. |
[5] | 张瑞瑞, 王宁, 高志, 于晓慧, 杨宾. 赤藻糖醇/甘露醇过冷特性分析[J]. 化工进展, 2022, 41(6): 2959-2966. |
[6] | 尹少武, 康鹏, 韩嘉维, 张朝, 王立, 童莉葛. 基于相变材料的锂离子电池热管理性能[J]. 化工进展, 2022, 41(10): 5518-5529. |
[7] | 胡楠, 陈林, 李会珍, 张思瑶, 张志军. 强化泡沫排液下浮选富集和回收工程纳米颗粒[J]. 化工进展, 2022, 41(1): 485-492. |
[8] | 张润霞, 顾兆林, 王赞社, 康彦青, 白梦梦. 空气能蓄冷用相变材料研制及热物性表征[J]. 化工进展, 2021, 40(7): 3892-3899. |
[9] | 李炳鑫, 周慧然, 吕温馨, 赵晓华, 王晓兵, 张明, 娄向东. ZnO晶面对纳米Au催化CO氧化性能的影响[J]. 化工进展, 2021, 40(6): 3197-3202. |
[10] | 冯阳阳, 赵众从, 杨文博, 胡琳琪, 张文达, 佘跃惠. 微生物合成金属纳米颗粒及在稠油催化降黏中的应用研究进展[J]. 化工进展, 2021, 40(4): 2215-2226. |
[11] | 宋颖, 葛圆圆, 韩玉蓉, 周覃艺, 黄来涛, 周剑. GPs-PVA/MCE多功能杂化膜的制备及性能[J]. 化工进展, 2021, 40(11): 6287-6294. |
[12] | 于楠, 陈超, 蔺洁, 韩枫涛, 邹平, 贺祎鹏, 胡庆玲. 应用于太阳能相变蓄热PC构件升温养护建筑的复合相变材料热物性[J]. 化工进展, 2021, 40(1): 297-304. |
[13] | 王路喜, 杨芳麒, 林欢欢, 李响, 王珺, 邓曙光. Cu修饰的多孔碳材料高效电化学还原CO2为CO[J]. 化工进展, 2020, 39(9): 3685-3691. |
[14] | 李子薇,胡楠,杨松琴,吴兆亮. 纳米颗粒作为稳泡剂泡沫分离酪蛋白的工艺[J]. 化工进展, 2020, 39(3): 851-857. |
[15] | 郭石菲,谢锐,汪伟,巨晓洁,刘壮,褚良银. 负载银纳米催化剂的聚多巴胺基微球的高效催化性能[J]. 化工进展, 2020, 39(1): 166-173. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |