1 | SHKAUN J D, CLARK P U, MARCOTT S A, et al. Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation[J]. Nature, 2012, 484(7392): 49-54. | 2 | KONDRATENKO E V, ULl G, BALTRUSAITIS J, et al. Status and perspectives of CO2 conversion into fuels and chemicals by catalytic, photocatalytic and electrocatalytic processes[J]. Energy & Environmental Science, 2013, 6(11): 3112-3135. | 3 | QIAO J, LIU Y, HONG F. A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels[J]. Chemical Society Reviews, 2014, 43(2): 631-675. | 4 | TURNER J A. A realizable renewable energy future[J]. Science, 1999, 285(5428): 687-689. | 5 | COSTENTIN C, ROBERT M. Catalysis of the electrochemical reduction of carbon dioxide[J]. Chemical Society Reviews, 2013, 42(6): 2423-2436. | 6 | ZHU D D, JIN L L, SHI Z Q. Recent advances in inorganic heterogeneous electrocatalysts for reduction of carbon dioxide[J]. Advanced Materials, 2016, 28(18): 3423-3452. | 7 | HORI Y I. Electrochemical CO2 reduction on metal electrodes[J]. Modern Aspects of Electrochemistry, 2008(42): 89-189. | 8 | NIELSEN D U, HU X M, DAASBJERG K. Chemically and electrochemically catalyzed conversion of CO2 to CO with follow-up utilization to value-added chemicals[J]. Nature Catalysis, 2018, 1(4): 244-254. | 9 | CHEN Y, JI S, CHEN C, et al. Single-atom catalysts: synthetic strategies and electrochemical applications[J]. Joule, 2018, 2(7): 1242-1264. | 10 | XIA W, QU C, LIANG Z, et al. High-performance energy storage and conversion materials derived from a single metal-organic framework/graphene aerogel composite[J]. Nano Letters, 2017, 17(5): 2788-2795. | 11 | ZHAO C, DAI X, YAO T, et al. Ionic exchange of metal-organic frameworks to access single nickel sites for efficient electroreduction of CO2[J]. Journal of the American Chemical Society, 2017, 139(24): 8078-8081. | 12 | KUHL K P, CAVE E R, ABRAM D N. New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces[J]. Energy & Environmental Science, 2012, 5(5): 7050-7059. | 13 | PETERSON A A, NORSKOV J K. Activity descriptors for CO2 electroreduction to methane on transition-metal catalysts[J]. The Journal of Physical Chemistry Letters, 2012, 3(2): 251-258. | 14 | HANSEN H A, VARLEY J B, PETERSON A A, et al. Understanding trends in the electrocatalytic activity of metals and enzymes for CO2 reduction to CO[J]. The Journal of Physical Chemistry Letters, 2013, 4(3): 388-392. | 15 | ZHU C, FU S, SHI Q, et al. Single-atom electrocatalysts[J]. Angewandte Chemie: International Edition, 2017, 56(45): 13944-13960. | 16 | QIAO B, WANG A, YANG X, et al. Single-atom catalysis of CO oxidation using Pt1/FeOx[J]. Nature Chemistry, 2011, 3(8): 634. | 17 | FLYTZANI-STEPHINOPOULOS M. Gold atoms stabilized on various supports catalyze the water-gas shift reaction[J]. Accounts of Chemical Research, 2013, 47(3): 783-792. | 18 | CHOI C H, KIM M, KWON H C, et al. Tuning selectivity of electrochemical reactions by atomically dispersed platinum catalyst[J]. Nature Communications, 2016, 7: 10922. | 19 | HE T, MATTA S K, WILL G, et al. Transition‐metal single atoms anchored on graphdiyne as high‐efficiency electrocatalysts for water splitting and oxygen reduction[J]. Small Methods, 2019, 3(9): 1800419. | 20 | REN D, DENG Y, HANDOKO A D, et al. Selective electrochemical reduction of carbon dioxide to ethylene and ethanol on copper() oxide catalysts[J]. ACS Catalysis, 2015, 5(5): 2814-2821. | 21 | XU J, GAO Q, ZHANG Y, et al. Preparing two-dimensional microporous carbon from Pistachio nutshell with high areal capacitance as supercapacitor materials[J]. Scientific Reports, 2014, 4: 5545. | 22 | QIAN W, SUN F, XU Y, et al. Human hair-derived carbon flakes for electrochemical supercapacitors[J]. Energy & Environmental Science, 2014, 7(1): 379-386. | 23 | ZHANG P, WENX, WANG L, et al. Algae-derived N-doped porous carbons with ultrahigh specific surface area for highly selective separation of light hydrocarbons[J]. Chemical Engineering Journal, 2019, 381: 122731. | 24 | YANG F, WANG J, LIU L, et al. Synthesis of porous carbons with high N-content from shrimp shells for efficient CO2-capture and gas separation[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(11): 15550-15559. | 25 | LEI C, WANG Y, HOU Y, et al. Efficient alkaline hydrogen evolution on atomically dispersed Ni–Nx Species anchored porous carbon with embedded Ni nanoparticles by accelerating water dissociation kinetics[J]. Energy & Environmental Science, 2019, 12(1): 149-156. | 26 | LI X, BI W, CHEN M, et al. Exclusive Ni–N4 sites realize near-unity CO selectivity for electrochemical CO2 reduction[J]. Journal of the American Chemical Society, 2017, 139(42): 14889-14892. | 27 | ZHANG Y, LIN Y, JIANG H, et al. Well‐defined cobalt catalyst with N-doped carbon layers enwrapping: the correlation between surface atomic structure and electrocatalytic property[J]. Small, 2018, 14(6): 1702074. | 28 | LIU L, ZENG G, CHEN J, et al. N-doped porous carbon nanosheets as pH-universal ORR electrocatalyst in various fuel cell devices[J]. Nano Energy, 2018, 49: 393-402. | 29 | SONG Y, CHEN W, ZHAO C, et al. Metal‐free nitrogen‐doped mesoporous carbon for electroreduction of CO2 to ethanol[J]. Angewandte Chemie: International Edition, 2017, 56(36): 10840-10844. | 30 | XIE J F, HUANG Y X, LI W W, et al. Efficient electrochemical CO2 reduction on a unique chrysanthemum-like Cu nanoflower electrode and direct observation of carbon deposite[J]. Electrochimica Acta, 2014, 139: 137-144. | 31 | DAI L, QIN Q, WANG P, et al. Ultrastable atomic copper nanosheets for selective electrochemical reduction of carbon dioxide[J]. Science Advances, 2017, 3(9): e1701069. | 32 | VASILEFF A, XU C, JIAO Y, et al. Surface and interface engineering in copper-based bimetallic materials for selective CO2 electroreduction[J]. Chem., 2018, 4(8): 1809-1831. | 33 | ZHU Y, SUN W, CHEN W, et al. Scale-up biomass pathway to cobalt single-site catalysts anchored on N-doped porous carbon nanobelt with ultrahigh surface area[J]. Advanced Functional Materials, 2018, 28(37): 1802167. | 34 | LIU S, YANG H, HUANG X, et al. Identifying active sites of nitrogen-doped carbon materials for the CO2 reduction reaction[J]. Advanced Functional Materials, 2018, 28(21): 1800499. | 35 | LIU X, XIAO J, PENG H, et al. Understanding trends in electrochemical carbon dioxide reduction rates[J]. Nature Communications, 2017, 8: 1543. |
|